To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis—from salt and water balance to metabolism—by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families—() citric acid cycle intermediate receptors, () purinergic receptors, and () short-chain fatty acid receptors—we emphasize the unique and important roles that these receptors play in renal and vascular physiology and pathophysiology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hebert SC. 1.  2004. Physiology: orphan detectors of metabolism. Nature 429:143–45 [Google Scholar]
  2. Joyner MJ, Casey DP. 2.  2014. Muscle blood flow, hypoxia, and hypoperfusion. J. Appl. Physiol. 1985 116:852–57 [Google Scholar]
  3. Koivunen P, Hirsila M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J. 3.  2007. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 282:4524–32 [Google Scholar]
  4. Leipziger J. 4.  2003. Control of epithelial transport via luminal P2 receptors. Am. J. Physiol. Ren. Physiol. 284:F419–32 [Google Scholar]
  5. Tanaka S, Tanaka T, Nangaku M. 5.  2014. Hypoxia as a key player in the AKI-to-CKD transition. Am. J. Physiol. Ren. Physiol. 307:F1187–95 [Google Scholar]
  6. Tokonami N, Morla L, Centeno G, Mordasini D, Ramakrishnan SK. 6.  et al. 2013. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism. J. Clin. Investig. 123:3166–71 [Google Scholar]
  7. Natarajan N, Pluznick JL. 7.  2014. From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. Am. J. Physiol. Cell Physiol. 307:C979–85 [Google Scholar]
  8. Cai TQ, Ren N, Jin L, Cheng K, Kash S. 8.  et al. 2008. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem. Biophys. Res. Commun. 377:987–91 [Google Scholar]
  9. Ahmed K, Tunaru S, Offermanns S. 9.  2009. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol. Sci. 30:557–62 [Google Scholar]
  10. Hara T, Kashihara D, Ichimura A, Kimura I, Tsujimoto G, Hirasawa A. 10.  2014. Role of free fatty acid receptors in the regulation of energy metabolism. Biochim. Biophys. Acta 1841:1292–300 [Google Scholar]
  11. Papanicolaou KN, O'Rourke B, Foster DB. 11.  2014. Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Front. Physiol. 5:301 [Google Scholar]
  12. He W, Miao FJ, Lin DC, Schwandner RT, Wang Z. 12.  et al. 2004. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–93 [Google Scholar]
  13. Regard JB, Sato IT, Coughlin SR. 13.  2008. Anatomical profiling of G protein–coupled receptor expression. Cell 135:561–71 [Google Scholar]
  14. Correa PR, Kruglov EA, Thompson M, Leite MF, Dranoff JA, Nathanson MH. 14.  2007. Succinate is a paracrine signal for liver damage. J. Hepatol. 47:262–69 [Google Scholar]
  15. Robben JH, Fenton RA, Vargas SL, Schweer H, Peti-Peterdi J. 15.  et al. 2009. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 76:1258–67 [Google Scholar]
  16. Toma I, Kang JJ, Sipos A, Vargas S, Bansal E. 16.  et al. 2008. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J. Clin. Investig. 118:2526–34 [Google Scholar]
  17. Vargas SL, Toma I, Kang JJ, Meer EJ, Peti-Peterdi J. 17.  2009. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J. Am. Soc. Nephrol. 20:1002–11 [Google Scholar]
  18. Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal JS. 18.  et al. 2008. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat. Med. 14:1067–76 [Google Scholar]
  19. Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J. 19.  et al. 2008. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat. Immunol. 9:1261–69 [Google Scholar]
  20. Hakak Y, Lehmann-Bruinsma K, Phillips S, Le T, Liaw C. 20.  et al. 2009. The role of the GPR91 ligand succinate in hematopoiesis. J. Leukoc. Biol. 85:837–43 [Google Scholar]
  21. Banfi C, Ferrario S, De Vincenti O, Ceruti S, Fumagalli M. 21.  et al. 2005. P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNFα and potential role in myocardial cell death. J. Mol. Cell. Cardiol. 39:929–39 [Google Scholar]
  22. Hamel D, Sanchez M, Duhamel F, Roy O, Honore JC. 22.  et al. 2014. G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler. Thromb. Vasc. Biol. 34:285–93 [Google Scholar]
  23. Sundstrom L, Greasley PJ, Engberg S, Wallander M, Ryberg E. 23.  2013. Succinate receptor GPR91, a Gαi coupled receptor that increases intracellular calcium concentrations through PLCβ. FEBS Lett. 587:2399–404 [Google Scholar]
  24. Hu J, Li T, Du S, Chen Y, Wang S. 24.  et al. 2015. The MAPK signaling pathway mediates the GPR91-dependent release of VEGF from RGC-5 cells. Int. J. Mol. Med. 36:130–38 [Google Scholar]
  25. Ariza AC, Deen PM, Robben JH. 25.  2012. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress–related conditions. Front. Endocrinol. 3:22 [Google Scholar]
  26. Deen PM, Robben JH. 26.  2011. Succinate receptors in the kidney. J. Am. Soc. Nephrol. 22:1416–22 [Google Scholar]
  27. Favret S, Binet F, Lapalme E, Leboeuf D, Carbadillo J. 27.  et al. 2013. Deficiency in the metabolite receptor SUCNR1 (GPR91) leads to outer retinal lesions. Aging 5:427–44 [Google Scholar]
  28. Peti-Peterdi J. 28.  2010. High glucose and renin release: the role of succinate and GPR91. Kidney Int. 78:1214–17 [Google Scholar]
  29. Goldberg ND, Passonneau JV, Lowry OH. 29.  1966. Effects of changes in brain metabolism on the levels of citric acid cycle intermediates. J. Biol. Chem. 241:3997–4003 [Google Scholar]
  30. Krebs HA. 30.  1970. Rate control of the tricarboxylic acid cycle. Adv. Enzyme Regul. 8:335–53 [Google Scholar]
  31. Fedotcheva NI, Sokolov AP, Kondrashova MN. 31.  2006. Nonezymatic formation of succinate in mitochondria under oxidative stress. Free Radic. Biol. Med. 41:56–64 [Google Scholar]
  32. Sadagopan N, Li W, Roberds SL, Major T, Preston GM. 32.  et al. 2007. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am. J. Hypertens. 20:1209–15 [Google Scholar]
  33. Schurek HJ, Jost U, Baumgartl H, Bertram H, Heckmann U. 33.  1990. Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am. J. Physiol. Ren. Physiol. 259:F910–15 [Google Scholar]
  34. Peti-Peterdi J, Gevorgyan H, Lam L, Riquier-Brison A. 34.  2013. Metabolic control of renin secretion. Pflüg. Arch. 465:53–58 [Google Scholar]
  35. Peti-Peterdi J, Harris RC. 35.  2010. Macula densa sensing and signaling mechanisms of renin release. J. Am. Soc. Nephrol. 21:1093–96 [Google Scholar]
  36. Peti-Peterdi J, Kang JJ, Toma I. 36.  2008. Activation of the renal renin-angiotensin system in diabetes—new concepts. Nephrol. Dial. Transplant. 23:3047–49 [Google Scholar]
  37. Hu J, Wu Q, Li T, Chen Y, Wang S. 37.  2013. Inhibition of high glucose-induced VEGF release in retinal ganglion cells by RNA interference targeting G protein–coupled receptor 91. Exp. Eye Res. 109:31–39 [Google Scholar]
  38. Gnana-Prakasam JP, Ananth S, Prasad PD, Zhang M, Atherton SS. 38.  et al. 2011. Expression and iron-dependent regulation of succinate receptor GPR91 in retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 52:3751–58 [Google Scholar]
  39. Peti-Peterdi J. 39.  2013. Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance. J. Clin. Investig. 123:2788–90 [Google Scholar]
  40. Schöneberg T, Hermsdorf T, Engemaier E, Engel K, Liebscher I. 40.  et al. 2007. Structural and functional evolution of the P2Y12-like receptor group. Purinergic Signal. 3:255–68 [Google Scholar]
  41. Wittenberger T, Schaller HC, Hellebrand S. 41.  2001. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J. Mol. Biol. 307:799–813 [Google Scholar]
  42. Burnstock G. 42.  2009. Purinergic signalling: past, present and future. Braz. J. Med. Biol. Res. 42:3–8 [Google Scholar]
  43. Burnstock G. 43.  2012. Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. BioEssays 34:218–25 [Google Scholar]
  44. Alves LA. Silva JH, Ferreira DN, Fidalgo-Neto AA, Teixeira PC. 44. , da et al. 2014. Structural and molecular modeling features of P2X receptors. Int. J. Mol. Sci. 15:4531–49 [Google Scholar]
  45. Harden TK, Sesma JI, Fricks IP, Lazarowski ER. 45.  2010. Signalling and pharmacological properties of the P2Y receptor. Acta Physiol. 199:149–60 [Google Scholar]
  46. Jacobson KA, Balasubramanian R, Deflorian F, Gao ZG. 46.  2012. G protein–coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signal. 8:419–36 [Google Scholar]
  47. Surprenant A, North RA. 47.  2009. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 71:333–59 [Google Scholar]
  48. Praetorius HA, Leipziger J. 48.  2010. Intrarenal purinergic signaling in the control of renal tubular transport. Annu. Rev. Physiol. 72:377–93 [Google Scholar]
  49. Kishore BK, Ginns SM, Krane CM, Nielsen S, Knepper MA. 49.  2000. Cellular localization of P2Y2 purinoceptor in rat renal inner medulla and lung. Am. J. Physiol. Ren. Physiol. 278:F43–51 [Google Scholar]
  50. Edwards RM. 50.  2002. Basolateral, but not apical, ATP inhibits vasopressin action in rat inner medullary collecting duct. Eur. J. Pharmacol. 438:179–81 [Google Scholar]
  51. Kishore BK, Chou CL, Knepper MA. 51.  1995. Extracellular nucleotide receptor inhibits AVP-stimulated water permeability in inner medullary collecting duct. Am. J. Physiol. Ren. Physiol. 269:F863–69 [Google Scholar]
  52. Rouse D, Leite M, Suki WN. 52.  1994. ATP inhibits the hydrosmotic effect of AVP in rabbit CCT: evidence for a nucleotide P2u receptor. Am. J. Physiol. Ren. Physiol. 267:F289–95 [Google Scholar]
  53. Mironova E, Boiko N, Bugaj V, Kucher V, Stockand JD. 53.  2015. Regulation of Na+ excretion and arterial blood pressure by purinergic signalling intrinsic to the distal nephron: consequences and mechanisms. Acta Physiol. 213:213–21 [Google Scholar]
  54. Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W. 54.  et al. 2007. Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J. 21:3717–26 [Google Scholar]
  55. Stockand JD. 55.  2010. Vasopressin regulation of renal sodium excretion. Kidney Int. 78:849–56 [Google Scholar]
  56. Kishore BK, Nelson RD, Miller RL, Carlson NG, Kohan DE. 56.  2009. P2Y2 receptors and water transport in the kidney. Purinergic Signal. 5:491–99 [Google Scholar]
  57. Leipziger J. 57.  2011. Luminal nucleotides are tonic inhibitors of renal tubular transport. Curr. Opin. Nephrol. Hypertens. 20:518–22 [Google Scholar]
  58. Toney GM, Vallon V, Stockand JD. 58.  2012. Intrinsic control of sodium excretion in the distal nephron by inhibitory purinergic regulation of the epithelial Na+ channel. Curr. Opin. Nephrol. Hypertens. 21:52–60 [Google Scholar]
  59. Vallon V. 59.  2008. P2 receptors in the regulation of renal transport mechanisms. Am. J. Physiol. Ren. Physiol. 294:F10–27 [Google Scholar]
  60. Vallon V, Rieg T. 60.  2011. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am. J. Physiol. Ren. Physiol. 301:F463–75 [Google Scholar]
  61. Zhang Y, Pop IL, Carlson NG, Kishore BK. 61.  2012. Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling. Am. J. Physiol. Ren. Physiol. 302:F70–77 [Google Scholar]
  62. Zhang Y, Li L, Kohan DE, Ecelbarger CM, Kishore BK. 62.  2013. Attenuation of lithium-induced natriuresis and kaliuresis in P2Y2 receptor knockout mice. Am. J. Physiol. Ren. Physiol. 305:F407–16 [Google Scholar]
  63. Potthoff SA, Stegbauer J, Becker J, Wagenhaeuser PJ, Duvnjak B. 63.  et al. 2013. P2Y2 receptor deficiency aggravates chronic kidney disease progression. Front. Physiol. 4:234 [Google Scholar]
  64. Zhang Y, Peti-Peterdi J, Müller CE, Carlson NG, Baqi Y. 64.  et al. 2015. P2Y12 receptor localizes in the renal collecting duct and its blockade augments arginine vasopressin action and alleviates nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. In press [Google Scholar]
  65. Kishore BK, Carlson NG, Ecelbarger CM, Kohan DE, Müller CE. 65.  et al. 2015. Targeting renal purinergic signalling for the treatment of lithium-induced nephrogenic diabetes insipidus. Acta Physiol. 214:176–88 [Google Scholar]
  66. Guan Z, Inscho EW. 66.  2011. Role of adenosine 5′-triphosphate in regulating renal microvascular function and in hypertension. Hypertension 58:333–40 [Google Scholar]
  67. Van Beusecum J, Inscho EW. 67.  2015. Regulation of renal function and blood pressure control by P2 purinoceptors in the kidney. Curr. Opin. Pharmacol. 21:82–88 [Google Scholar]
  68. Hillman KA, Woolf AS, Johnson TM, Wade A, Unwin RJ, Winyard PJ. 68.  2004. The P2X7 ATP receptor modulates renal cyst development in vitro. Biochem. Biophys. Res. Commun. 322:434–39 [Google Scholar]
  69. Menzies RI, Unwin RJ, Bailey MA. 69.  2015. Renal P2 receptors and hypertension. Acta Physiol. 213:232–41 [Google Scholar]
  70. Taylor SR, Turner CM, Elliott JI, McDaid J, Hewitt R. 70.  et al. 2009. P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J. Am. Soc. Nephrol. 20:1275–81 [Google Scholar]
  71. Arulkumaran N, Unwin RJ, Tam FW. 71.  2011. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin. Investig. Drugs 20:897–915 [Google Scholar]
  72. Booth JW, Tam FW, Unwin RJ. 72.  2012. P2 purinoceptors: renal pathophysiology and therapeutic potential. Clin. Nephrol. 78:154–63 [Google Scholar]
  73. Guan Z, Osmond DA, Inscho EW. 73.  2007. P2X receptors as regulators of the renal microvasculature. Trends Pharmacol. Sci. 28:646–52 [Google Scholar]
  74. Lu D, Insel PA. 74.  2014. Cellular mechanisms of tissue fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis. Am. J. Physiol. Cell Physiol. 306:C779–88 [Google Scholar]
  75. Nishiyama A, Rahman M, Inscho EW. 75.  2004. Role of interstitial ATP and adenosine in the regulation of renal hemodynamics and microvascular function. Hypertens. Res. 27:791–804 [Google Scholar]
  76. Wildman SS, King BF. 76.  2008. P2X receptors: epithelial ion channels and regulators of salt and water transport. Nephron Physiol. 108:60–67 [Google Scholar]
  77. Chen JF, Eltzschig HK, Fredholm BB. 77.  2013. Adenosine receptors as drug targets—what are the challenges?. Nat. Rev. Drug Discov. 12:265–86 [Google Scholar]
  78. Fredholm BB. 78.  2010. Adenosine receptors as drug targets. Exp. Cell Res. 316:1284–88 [Google Scholar]
  79. Samsel M, Dzierzbicka K. 79.  2011. Therapeutic potential of adenosine analogues and conjugates. Pharmacol. Rep. 63:601–17 [Google Scholar]
  80. Vallon V, Osswald H. 80.  2009. Adenosine receptors and the kidney. Handb. Exp. Pharmacol. 193:443–70 [Google Scholar]
  81. Vallon V. 81.  2003. Tubuloglomerular feedback and the control of glomerular filtration rate. News Physiol. Sci. 18:169–74 [Google Scholar]
  82. Laubach VE, French BA, Okusa MD. 82.  2011. Targeting of adenosine receptors in ischemia-reperfusion injury. Expert Opin. Ther. Targets 15:103–18 [Google Scholar]
  83. Quezada C, Alarcon S, Jaramillo C, Munoz D, Oyarzun C, San Martin R. 83.  2013. Targeting adenosine signaling to treatment of diabetic nephropathy. Curr. Drug Targets 14:490–96 [Google Scholar]
  84. Roberts V, Lu B, Rajakumar S, Cowan PJ, Dwyer KM. 84.  2013. The CD39-adenosinergic axis in the pathogenesis of renal ischemia-reperfusion injury. Purinergic Signal. 9:135–43 [Google Scholar]
  85. Yap SC, Lee HT. 85.  2012. Adenosine and protection from acute kidney injury. Curr. Opin. Nephrol. Hypertens. 21:24–32 [Google Scholar]
  86. Hanner F, Lam L, Nguyen MT, Yu A, Peti-Peterdi J. 86.  2012. Intrarenal localization of the plasma membrane ATP channel pannexin1. Am. J. Physiol. Ren. Physiol. 303:F1454–59 [Google Scholar]
  87. Hanner F, Sorensen CM, Holstein-Rathlou NH, Peti-Peterdi J. 87.  2010. Connexins and the kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1143–55 [Google Scholar]
  88. Lazarowski ER, Sesma JI, Seminario-Vidal L, Kreda SM. 88.  2011. Molecular mechanisms of purine and pyrimidine nucleotide release. Adv. Pharmacol. 61:221–61 [Google Scholar]
  89. Lohman AW, Isakson BE. 89.  2014. Differentiating connexin hemichannels and pannexin channels in cellular ATP release. FEBS Lett. 588:1379–88 [Google Scholar]
  90. Sipos A, Vargas SL, Toma I, Hanner F, Willecke K, Peti-Peterdi J. 90.  2009. Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis. J. Am. Soc. Nephrol. 20:1724–32 [Google Scholar]
  91. Corriden R, Insel PA. 91.  2010. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci. Signal. 3:re1 [Google Scholar]
  92. Kukulski F, Levesque SA, Sevigny J. 92.  2011. Impact of ectoenzymes on p2 and p1 receptor signaling. Adv. Pharmacol. 61:263–99 [Google Scholar]
  93. Schetinger MR, Morsch VM, Bonan CD, Wyse AT. 93.  2007. NTPDase and 5′-nucleotidase activities in physiological and disease conditions: new perspectives for human health. BioFactors 31:77–98 [Google Scholar]
  94. Yegutkin GG. 94.  2008. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim. Biophys. Acta 1783:673–94 [Google Scholar]
  95. Zimmermann H, Zebisch M, Strater N. 95.  2012. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 8:437–502 [Google Scholar]
  96. Kishore BK, Isaac J, Fausther M, Tripp SR, Shi H. 96.  et al. 2005. Expression of NTPDase1 and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling. Am. J. Physiol. Ren. Physiol. 288:F1032–43 [Google Scholar]
  97. Vekaria RM, Shirley DG, Sevigny J, Unwin RJ. 97.  2006. Immunolocalization of ectonucleotidases along the rat nephron. Am. J. Physiol. Ren. Physiol. 290:F550–60 [Google Scholar]
  98. Crikis S, Lu B, Murray-Segal LM, Selan C, Robson SC. 98.  et al. 2010. Transgenic overexpression of CD39 protects against renal ischemia-reperfusion and transplant vascular injury. Am. J. Transplant. 10:2586–95 [Google Scholar]
  99. Lu B, Rajakumar SV, Robson SC, Lee EK, Crikis S. 99.  et al. 2008. The impact of purinergic signaling on renal ischemia-reperfusion injury. Transplantation 86:1707–12 [Google Scholar]
  100. Oppermann M, Friedman DJ, Faulhaber-Walter R, Mizel D, Castrop H. 100.  et al. 2008. Tubuloglomerular feedback and renin secretion in NTPDase1/CD39-deficient mice. Am. J. Physiol. Ren. Physiol. 294:F965–70 [Google Scholar]
  101. Kinsey GR, Huang L, Jaworska K, Khutsishvili K, Becker DA. 101.  et al. 2012. Autocrine adenosine signaling promotes regulatory T cell–mediated renal protection. J. Am. Soc. Nephrol. 23:1528–37 [Google Scholar]
  102. Wang YM, McRae JL, Robson SC, Cowan PJ, Zhang GY. 102.  et al. 2012. Regulatory T cells participate in CD39-mediated protection from renal injury. Eur. J. Immunol. 42:2441–51 [Google Scholar]
  103. Cheng D, Ren J, Jackson EK. 103.  2010. Multidrug resistance protein 4 mediates cAMP efflux from rat preglomerular vascular smooth muscle cells. Clin. Exp. Pharmacol. Physiol. 37:205–7 [Google Scholar]
  104. Godecke A. 104.  2008. cAMP: fuel for extracellular adenosine formation?. Br. J. Pharmacol. 153:1087–89 [Google Scholar]
  105. Valiunas V. 105.  2013. Cyclic nucleotide permeability through unopposed connexin hemichannels. Front. Pharmacol. 4:75 [Google Scholar]
  106. Jackson EK, Dubey RK. 106.  2001. Role of the extracellular cAMP–adenosine pathway in renal physiology. Am. J. Physiol. Ren. Physiol. 281:F597–612 [Google Scholar]
  107. Bankir L, Ahloulay M, Devreotes PN, Parent CA. 107.  2002. Extracellular cAMP inhibits proximal reabsorption: Are plasma membrane cAMP receptors involved?. Am. J. Physiol. Ren. Physiol. 282:F376–92 [Google Scholar]
  108. Zhang W, Zhang Y, Wang W, Dai Y, Ning C. 108.  et al. 2013. Elevated ecto-5′-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ. Res. 112:1466–78 [Google Scholar]
  109. Marlewski M, Smolenski RT, Szolkiewicz M, Aleksandrowicz Z, Rutkowski B, Swierczynski J. 109.  2000. Increased rate of adenine incorporation into adenine nucleotide pool in erythrocytes of patients with chronic renal failure. Nephron 86:281–86 [Google Scholar]
  110. Bender E, Buist A, Jurzak M, Langlois X, Baggerman G. 110.  et al. 2002. Characterization of an orphan G protein–coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. PNAS 99:8573–78 [Google Scholar]
  111. Kishore BK, Zhang Y, Gevorgyan H, Kohan DE, Schiedel AC. 111.  et al. 2013. Cellular localization of adenine receptors in the rat kidney and their functional significance in the inner medullary collecting duct. Am. J. Physiol. Ren. Physiol. 305:F1298–305 [Google Scholar]
  112. Thimm D, Schiedel AC, Peti-Peterdi J, Kishore BK, Muller CE. 112.  2015. The nucleobase adenine as a signalling molecule in the kidney. Acta Physiol. 213:808–18 [Google Scholar]
  113. Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM. 113.  et al. 2010. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 16:1299–304 [Google Scholar]
  114. Griffin CA, Kafadar KA, Pavlath GK. 114.  2009. MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev. Cell 17:649–61 [Google Scholar]
  115. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W. 115.  et al. 2006. The cells and logic for mammalian sour taste detection. Nature 442:934–38 [Google Scholar]
  116. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ. 116.  et al. 2007. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. PNAS 104:15069–74 [Google Scholar]
  117. Kang N, Bahk YY, Lee N, Jae Y, Cho YH. 117.  et al. 2015. Olfactory receptor Olfr544 responding to azelaic acid regulates glucagon secretion in α-cells of mouse pancreatic islets. Biochem. Biophys. Res. Commun. 460:616–21 [Google Scholar]
  118. Kim SH, Yoon YC, Lee AS, Kang N, Koo J. 118.  et al. 2015. Expression of human olfactory receptor 10J5 in heart aorta, coronary artery, and endothelial cells and its functional role in angiogenesis. Biochem. Biophys. Res. Commun. 460:404–8 [Google Scholar]
  119. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A. 119.  et al. 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein–coupled receptor 41 (GPR41). PNAS 108:8030–35 [Google Scholar]
  120. Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E. 120.  et al. 2007. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. PNAS 104:15075–80 [Google Scholar]
  121. Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. 121.  2009. Motile cilia of human airway epithelia are chemosensory. Science 325:1131–34 [Google Scholar]
  122. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH. 122.  et al. 2003. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–58 [Google Scholar]
  123. Liu X, Gu F, Jiang L, Chen F, Li F. 123.  2015. Expression of bitter taste receptor Tas2r105 in mouse kidney. Biochem. Biophys. Res. Commun. 458:733–38 [Google Scholar]
  124. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A. 124.  et al. 2013. Olfactory receptor responding to gut microbiota–derived signals plays a role in renin secretion and blood pressure regulation. PNAS 110:4410–15 [Google Scholar]
  125. Pluznick JL, Zou DJ, Zhang X, Yan Q, Rodriguez-Gil DJ. 125.  et al. 2009. Functional expression of the olfactory signaling system in the kidney. PNAS 106:2059–64 [Google Scholar]
  126. Rajkumar P, Aisenberg WH, Acres OW, Protzko RJ, Pluznick JL. 126.  2014. Identification and characterization of novel renal sensory receptors. PLOS ONE 9:e111053 [Google Scholar]
  127. Bugaut M. 127.  1987. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol. B 86:439–72 [Google Scholar]
  128. Hill MJ, Drasar BS. 128.  1975. The normal colonic bacterial flora. Gut 16:318–23 [Google Scholar]
  129. Le PE, Loison C, Struyf S, Springael JY, Lannoy V. 129.  et al. 2003. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278:25481–89 [Google Scholar]
  130. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F. 130.  et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–86 [Google Scholar]
  131. Samuel BS, Gordon JI. 131.  2006. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. PNAS 103:10011–16 [Google Scholar]
  132. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N. 132.  et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159–66 [Google Scholar]
  133. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F. 133.  et al. 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein–coupled receptor, Gpr41. PNAS 105:16767–72 [Google Scholar]
  134. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A. 134.  et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:480–84 [Google Scholar]
  135. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L. 135.  et al. 2003. The orphan G protein–coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278:11312–19 [Google Scholar]
  136. Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y. 136.  et al. 2009. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30:149–56 [Google Scholar]
  137. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R. 137.  et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–39 [Google Scholar]
  138. Mortensen FV, Nielsen H, Mulvany MJ, Hessov I. 138.  1990. Short chain fatty acids dilate isolated human colonic resistance arteries. Gut 31:1391–94 [Google Scholar]
  139. Nutting CW, Islam S, Daugirdas JT. 139.  1991. Vasorelaxant effects of short chain fatty acid salts in rat caudal artery. Am. J. Physiol. Heart Circ. Physiol. 261:H561–67 [Google Scholar]
  140. Nutting CW, Islam S, Ye MH, Batlle DC, Daugirdas JT. 140.  1992. The vasorelaxant effects of acetate: role of adenosine, glycolysis, lyotropism, and pHi and Cai2+. Kidney Int. 41:166–74 [Google Scholar]
  141. Keshaviah PR. 141.  1982. The role of acetate in the etiology of symptomatic hypotension. Artif. Organs 6:378–87 [Google Scholar]
  142. Pagel MD, Ahmad S, Vizzo JE, Scribner BH. 142.  1982. Acetate and bicarbonate fluctuations and acetate intolerance during dialysis. Kidney Int. 21:513–18 [Google Scholar]
  143. Pluznick J. 143.  2013. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5:202–7 [Google Scholar]
  144. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. 144.  2014. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121:91–119 [Google Scholar]
  145. Zaibi MS, Stocker CJ, O'Dowd J, Davies A, Bellahcene M. 145.  et al. 2010. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584:2381–86 [Google Scholar]
  146. Bond JH, Levitt MD. 146.  1976. Quantitative measurement of lactose absorption. Gastroenterology 70:1058–62 [Google Scholar]
  147. Demigne C, Remesy C. 147.  1982. Influence of unrefined potato starch on cecal fermentations and volatile fatty acid absorption in rats. J. Nutr. 112:2227–34 [Google Scholar]
  148. Keys JE Jr, DeBarthe JV. 148.  1974. Site and extent of carbohydrate, dry matter, energy and protein digestion and the rate of passage of grain diets in swine. J. Anim. Sci. 39:57–62 [Google Scholar]
  149. McNeil NI, Bingham S, Cole TJ, Grant AM, Cummings JH. 149.  1982. Diet and health of people with an ileostomy. 2. Ileostomy function and nutritional state. Br. J. Nutr. 47:407–15 [Google Scholar]
  150. Orskov ER, Fraser C, Mason VC, Mann SO. 150.  1970. Influence of starch digestion in the large intestine of sheep on caecal fermentation, caecal microflora and faecal nitrogen excretion. Br. J. Nutr. 24:671–82 [Google Scholar]
  151. Perman JA, Modler S. 151.  1983. Role of the intestinal microflora in disposition of nutrients in the gastrointestinal tract. J. Pediatr. Gastroenterol. Nutr. 2:Suppl. 1193–96 [Google Scholar]
  152. Pomare EW, Branch WJ, Cummings JH. 152.  1985. Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood. J. Clin. Investig. 75:1448–54 [Google Scholar]
  153. Saunders DR, Wiggins HS. 153.  1981. Conservation of mannitol, lactulose, and raffinose by the human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 241:G397–402 [Google Scholar]
  154. Wiggins HS. 154.  1984. Nutritional value of sugars and related compounds undigested in the small gut. Proc. Nutr. Soc. 43:69–75 [Google Scholar]
  155. Van Orshoven NP, Jansen PA, Oudejans I, Schoon Y, Oey PL. 155.  2010. Postprandial hypotension in clinical geriatric patients and healthy elderly: prevalence related to patient selection and diagnostic criteria. J. Aging Res. 2010:243752 [Google Scholar]
  156. Whelton SP, Hyre AD, Pedersen B, Yi Y, Whelton PK, He J. 156.  2005. Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials. J. Hypertens. 23:475–81 [Google Scholar]
  157. Khalesi S, Sun J, Buys N, Jayasinghe R. 157.  2014. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64:897–903 [Google Scholar]
  158. Holmes E, Loo RL, Stamler J, Bictash M, Yap IK. 158.  et al. 2008. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453:396–400 [Google Scholar]
  159. Mell B, Jala VR, Mathew AV, Byun J, Waghulde H. 159.  et al. 2015. Evidence for a link between gut microbiota and hypertension in the Dahl rat model. Physiol. Genomics 47187–97 [Google Scholar]
  160. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N. 160.  et al. 2015. Gut dysbiosis is linked to hypertension. Hypertension 65:1331–40 [Google Scholar]
  161. Pluznick JL. 161.  2013. Renal and cardiovascular sensory receptors and blood pressure regulation. Am. J. Physiol. Ren. Physiol. 305:F439–44 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error