1932

Abstract

Genetic variants in the gene, found only in individuals of recent African ancestry, greatly increase risk of multiple types of kidney disease. These kidney risk alleles are a rare example of genetic variants that are common but also have a powerful effect on disease susceptibility. These alleles rose to high frequency in sub-Saharan Africa because they conferred protection against pathogenic trypanosomes that cause African sleeping sickness. We consider the genetic evidence supporting the association between and kidney disease across the range of clinical phenotypes in the nephropathy spectrum. We then explore the origins of the risk variants and evolutionary struggle between humans and trypanosomes at both the molecular and population genetic level. Finally, we survey the rapidly growing literature investigating APOL1 biology as elucidated from experiments in cell-based systems, cell-free systems, mouse and lower organism models of disease, and through illuminating natural experiments in humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034345
2020-02-10
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034345.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034345&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Albertus P, Morgenstern H, Robinson B, Saran R 2016. Risk of ESRD in the United States. Am. J. Kidney Dis. 68:862–72
    [Google Scholar]
  2. 2. 
    Rostand SG, Kirk KA, Rutsky EA, Pate BA 1982. Racial differences in the incidence of treatment for end-stage renal disease. N. Engl. J. Med. 306:1276–79
    [Google Scholar]
  3. 3. 
    Kaze AD, Ilori T, Jaar BG, Echouffo-Tcheugui JB 2018. Burden of chronic kidney disease on the African continent: a systematic review and meta-analysis. BMC Nephrol 19:125
    [Google Scholar]
  4. 4. 
    Ulasi II, Tzur S, Wasser WG, Shemer R, Kruzel E et al. 2013. High population frequencies of APOL1 risk variants are associated with increased prevalence of non-diabetic chronic kidney disease in the Igbo people from south-eastern Nigeria. Nephron. Clin. Pract. 123:123–28
    [Google Scholar]
  5. 5. 
    Riella C, Siemens T, Wang M, Campos RP, Moraes TP et al. 2019. APOL1-associated kidney disease in Brazil. Kidney Int. Rep. 4:923–29
    [Google Scholar]
  6. 6. 
    Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI et al. 2008. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40:1175–84
    [Google Scholar]
  7. 7. 
    Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y et al. 2008. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40:1185–92
    [Google Scholar]
  8. 8. 
    Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P et al. 2010. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–45
    [Google Scholar]
  9. 9. 
    Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S et al. 2010. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 128:345–50
    [Google Scholar]
  10. 10. 
    Friedman DJ, Pollak MR. 2016. Apolipoprotein L1 and kidney disease in African Americans. Trends Endocrinol. Metab. 27:204–15
    [Google Scholar]
  11. 11. 
    Friedman DJ, Kozlitina J, Genovese G, Jog P, Pollak MR 2011. Population-based risk assessment of APOL1 on renal disease. J. Am. Soc. Nephrol. 22:2098–105
    [Google Scholar]
  12. 12. 
    Wasser WG, Tzur S, Wolday D, Adu D, Baumstein D et al. 2012. Population genetics of chronic kidney disease: the evolving story of APOL1. J. Nephrol 25:603–18
    [Google Scholar]
  13. 13. 
    Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G et al. 2011. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22:2129–37
    [Google Scholar]
  14. 14. 
    Kasembeli AN, Duarte R, Ramsay M, Mosiane P, Dickens C et al. 2015. APOL1 risk variants are strongly associated with HIV-associated nephropathy in Black South Africans. J. Am. Soc. Nephrol. 26:2882–90
    [Google Scholar]
  15. 15. 
    Limou S, Nelson GW, Lecordier L, An P, O'hUigin CS et al. 2015. Sequencing rare and common APOL1 coding variants to determine kidney disease risk. Kidney Int 88:753–63
    [Google Scholar]
  16. 16. 
    Thomson R, Genovese G, Canon C, Kovacsics D, Higgins MK et al. 2014. Evolution of the primate trypanolytic factor APOL1. PNAS 111:E2130–39
    [Google Scholar]
  17. 17. 
    Lannon H, Shah S, Dias L, Blackler D, Alper SL et al. 2019. Apolipoprotein L1 (APOL1) risk variant toxicity depends on the haplotype background. Kidney Int 96:1303–7
    [Google Scholar]
  18. 18. 
    Ko WY, Rajan P, Gomez F, Scheinfeldt L, An P et al. 2013. Identifying Darwinian selection acting on different human APOL1 variants among diverse African populations. Am. J. Hum. Genet. 93:54–66
    [Google Scholar]
  19. 19. 
    Palmer ND, Ng MC, Langefeld CD, Divers J, Lea JP et al. 2015. Lack of association of the APOL1 G3 haplotype in African Americans with ESRD. J. Am. Soc. Nephrol. 26:1021–25
    [Google Scholar]
  20. 20. 
    Kanji Z, Powe CE, Wenger JB, Huang C, Ankers E et al. 2011. Genetic variation in APOL1 associates with younger age at hemodialysis initiation. J. Am. Soc. Nephrol. 22:2091–97
    [Google Scholar]
  21. 21. 
    Tzur S, Rosset S, Skorecki K, Wasser WG 2012. APOL1 allelic variants are associated with lower age of dialysis initiation and thereby increased dialysis vintage in African and Hispanic Americans with non-diabetic end-stage kidney disease. Nephrol. Dial. Transplant. 27:1498–505
    [Google Scholar]
  22. 22. 
    Nichols B, Jog P, Lee JH, Blackler D, Wilmot M et al. 2015. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int 87:332–42
    [Google Scholar]
  23. 23. 
    Reidy KJ, Hjorten R, Parekh RS 2018. Genetic risk of APOL1 and kidney disease in children and young adults of African ancestry. Curr. Opin. Pediatr. 30:252–59
    [Google Scholar]
  24. 24. 
    Lipkowitz MS, Freedman BI, Langefeld CD, Comeau ME, Bowden DW et al. 2013. Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int 83:114–20
    [Google Scholar]
  25. 25. 
    Larsen CP, Beggs ML, Saeed M, Walker PD 2013. Apolipoprotein L1 risk variants associate with systemic lupus erythematosus-associated collapsing glomerulopathy. J. Am. Soc. Nephrol. 24:722–25
    [Google Scholar]
  26. 26. 
    Freedman BI, Langefeld CD, Andringa KK, Croker JA, Williams AH et al. 2014. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol 66:390–96
    [Google Scholar]
  27. 27. 
    Larsen CP, Beggs ML, Walker PD, Saeed M, Ambruzs JM, Messias NC 2014. Histopathologic effect of APOL1 risk alleles in PLA2R-associated membranous glomerulopathy. Am. J. Kidney Dis. 64:161–63
    [Google Scholar]
  28. 28. 
    Parsa A, Kao WH, Xie D, Astor BC, Li M et al. 2013. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369:2183–96
    [Google Scholar]
  29. 29. 
    Reidy KJ, Hjorten RC, Simpson CL, Rosenberg AZ, Rosenblum SD et al. 2018. Fetal—not maternal—APOL1 genotype associated with risk for preeclampsia in those with African ancestry. Am. J. Hum. Genet. 103:367–76
    [Google Scholar]
  30. 30. 
    Reeves-Daniel AM, DePalma JA, Bleyer AJ, Rocco MV, Murea M et al. 2011. The APOL1 gene and allograft survival after kidney transplantation. Am. J. Transplant. 11:1025–30
    [Google Scholar]
  31. 31. 
    Lee BT, Kumar V, Williams TA, Abdi R, Bernhardy A et al. 2012. The APOL1 genotype of African American kidney transplant recipients does not impact 5-year allograft survival. Am. J. Transplant. 12:1924–28
    [Google Scholar]
  32. 32. 
    Doshi MD, Ortigosa-Goggins M, Garg AX, Li L, Poggio ED et al. 2018. APOL1 genotype and renal function of black living donors. J. Am. Soc. Nephrol. 29:1309–16
    [Google Scholar]
  33. 33. 
    Nadkarni GN, Wyatt CM, Murphy B, Ross MJ 2017. APOL1: a case in point for replacing race with genetics. Kidney Int 91:768–70
    [Google Scholar]
  34. 34. 
    Freedman BI, Julian BA. 2018. Evaluation of potential living kidney donors in the APOL1 era. J. Am. Soc. Nephrol. 29:1079–81
    [Google Scholar]
  35. 35. 
    Freedman BI, Moxey-Mims M. 2018. The APOL1 long-term kidney transplantation outcomes network—APOLLO. Clin. J. Am. Soc. Nephrol. 13:940–42
    [Google Scholar]
  36. 36. 
    Raper J, Fung R, Ghiso J, Nussenzweig V, Tomlinson S 1999. Characterization of a novel trypanosome lytic factor from human serum. Infect. Immun. 67:1910–16
    [Google Scholar]
  37. 37. 
    Vanhollebeke B, Truc P, Poelvoorde P, Pays A, Joshi PP et al. 2006. Human Trypanosoma evansi infection linked to a lack of apolipoprotein L-I. N. Engl. J. Med. 355:2752–56
    [Google Scholar]
  38. 38. 
    Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, Nolan DP, Lins L et al. 2003. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422:83–87
    [Google Scholar]
  39. 39. 
    Uzureau P, Uzureau S, Lecordier L, Fontaine F, Tebabi P et al. 2013. Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature 501:430–34
    [Google Scholar]
  40. 40. 
    Cooper A, Ilboudo H, Alibu VP, Ravel S, Enyaru J et al. 2017. APOL1 renal risk variants have contrasting resistance and susceptibility associations with African trypanosomiasis. eLife 6:e25461
    [Google Scholar]
  41. 41. 
    Kabore JW, Ilboudo H, Noyes H, Camara O, Kabore J et al. 2017. Candidate gene polymorphisms study between human African trypanosomiasis clinical phenotypes in Guinea. PLOS Negl. Trop. Dis. 11:e0005833
    [Google Scholar]
  42. 42. 
    Smith EE, Malik HS. 2009. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions. Genome Res 19:850–58
    [Google Scholar]
  43. 43. 
    Friedman DJ. 2017. A brief history of APOL1: a gene evolving. Semin. Nephrol. 37:508–13
    [Google Scholar]
  44. 44. 
    Pays E, Vanhollebeke B. 2008. Mutual self-defence: the trypanolytic factor story. Microbes Infect 10:985–89
    [Google Scholar]
  45. 45. 
    Sharma AK, Friedman DJ, Pollak MR, Alper SL 2016. Structural characterization of the C-terminal coiled-coil domains of wild-type and kidney disease-associated mutants of apolipoprotein L1. FEBS J 283:1846–62
    [Google Scholar]
  46. 46. 
    Madhavan SM, O'Toole JF, Konieczkowski M, Barisoni L, Thomas DB et al. 2017. APOL1 variants change C-terminal conformational dynamics and binding to SNARE protein VAMP8. JCI Insight 2:e92581
    [Google Scholar]
  47. 47. 
    Lugli EB, Pouliot M, del Pilar Molina Portela M, Loomis MR, Raper J 2004. Characterization of primate trypanosome lytic factors. Mol. Biochem. Parasitol. 138:9–20
    [Google Scholar]
  48. 48. 
    Shiflett AM, Bishop JR, Pahwa A, Hajduk SL 2005. Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes. J. Biol. Chem. 280:32578–85
    [Google Scholar]
  49. 49. 
    Shukha K, Mueller JL, Chung RT, Curry MP, Friedman DJ et al. 2017. Most ApoL1 is secreted by the liver. J. Am. Soc. Nephrol. 28:1079–83
    [Google Scholar]
  50. 50. 
    Duchateau PN, Pullinger CR, Orellana RE, Kunitake ST, Naya-Vigne J et al. 1997. Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L. J. Biol. Chem. 272:25576–82
    [Google Scholar]
  51. 51. 
    Duchateau PN, Pullinger CR, Cho MH, Eng C, Kane JP 2001. Apolipoprotein L gene family: tissue-specific expression, splicing, promoter regions; discovery of a new gene. J. Lipid Res. 42:620–30
    [Google Scholar]
  52. 52. 
    Zhaorigetu S, Wan G, Kaini R, Jiang Z, Hu CA 2008. ApoL1, a BH3-only lipid-binding protein, induces autophagic cell death. Autophagy 4:1079–82
    [Google Scholar]
  53. 53. 
    Monajemi H, Fontijn RD, Pannekoek H, Horrevoets AJ 2002. The apolipoprotein L gene cluster has emerged recently in evolution and is expressed in human vascular tissue. Genomics 79:539–46
    [Google Scholar]
  54. 54. 
    Skorecki KL, Lee JH, Langefeld CD, Rosset S, Tzur S et al. 2018. A null variant in the apolipoprotein L3 gene is associated with non-diabetic nephropathy. Nephrol. Dial. Transplant. 33:323–30
    [Google Scholar]
  55. 55. 
    Kozlitina J, Zhou H, Brown PN, Rohm RJ, Pan Y et al. 2016. Plasma levels of risk-variant APOL1 do not associate with renal disease in a population-based cohort. J. Am. Soc. Nephrol. 27:3204–19
    [Google Scholar]
  56. 56. 
    Bruggeman LA, O'Toole JF, Ross MD, Madhavan SM, Smurzynski M et al. 2014. Plasma apolipoprotein L1 levels do not correlate with CKD. J. Am. Soc. Nephrol. 25:634–44
    [Google Scholar]
  57. 57. 
    Vanhollebeke B, Pays E. 2010. The trypanolytic factor of human serum: many ways to enter the parasite, a single way to kill. Mol. Microbiol. 76:806–14
    [Google Scholar]
  58. 58. 
    Perez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F, Nolan DP, Lins L et al. 2005. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309:469–72
    [Google Scholar]
  59. 59. 
    del Pilar Molina-Portela M, Lugli EB, Recio-Pinto E, Raper J 2005. Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes. Mol. Biochem. Parasitol. 144:218–26
    [Google Scholar]
  60. 60. 
    Vanwalleghem G, Fontaine F, Lecordier L, Tebabi P, Klewe K et al. 2015. Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat. Commun. 6:8078
    [Google Scholar]
  61. 61. 
    Currier RB, Cooper A, Burrell-Saward H, MacLeod A, Alsford S 2018. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1. PLOS Pathog 14:e1006855
    [Google Scholar]
  62. 62. 
    Lecordier L, Uzureau P, Tebabi P, Perez-Morga D, Nolan D et al. 2014. Identification of Trypanosoma brucei components involved in trypanolysis by normal human serum. Mol. Microbiol. 94:625–36
    [Google Scholar]
  63. 63. 
    Harrington JM, Howell S, Hajduk SL 2009. Membrane permeabilization by trypanosome lytic factor, a cytolytic human high density lipoprotein. J. Biol. Chem. 284:13505–12
    [Google Scholar]
  64. 64. 
    Thomson R, Finkelstein A. 2015. Human trypanolytic factor APOL1 forms pH-gated cation-selective channels in planar lipid bilayers: relevance to trypanosome lysis. PNAS 112:2894–99
    [Google Scholar]
  65. 65. 
    Bruno J, Pozzi N, Oliva J, Edwards JC 2017. Apolipoprotein L1 confers pH-switchable ion permeability to phospholipid vesicles. J. Biol. Chem. 292:18344–53
    [Google Scholar]
  66. 66. 
    O'Toole JF, Schilling W, Kunze D, Madhavan SM, Konieczkowski M et al. 2018. ApoL1 overexpression drives variant-independent cytotoxicity. J. Am. Soc. Nephrol. 29:869–79
    [Google Scholar]
  67. 67. 
    Bruggeman LA, O'Toole JF, Sedor JR 2019. APOL1 polymorphisms and kidney disease: loss-of-function or gain-of-function?. Am. J. Physiol. Ren. Physiol. 316:F1–8
    [Google Scholar]
  68. 68. 
    Beckerman P, Bi-Karchin J, Park AS, Qiu C, Dummer PD et al. 2017. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23:429–38
    [Google Scholar]
  69. 69. 
    Wen H, Kumar V, Lan X, Shoshtari SSM, Eng JM et al. 2018. APOL1 risk variants cause podocytes injury through enhancing endoplasmic reticulum stress. Biosci. Rep. 38:BSR20171713
    [Google Scholar]
  70. 70. 
    Lan X, Jhaveri A, Cheng K, Wen H, Saleem MA et al. 2014. APOL1 risk variants enhance podocyte necrosis through compromising lysosomal membrane permeability. Am. J. Physiol. Ren. Physiol. 307:F326–36
    [Google Scholar]
  71. 71. 
    Lan X, Wen H, Saleem MA, Mikulak J, Malhotra A et al. 2015. Vascular smooth muscle cells contribute to APOL1-induced podocyte injury in HIV milieu. Exp. Mol. Pathol. 98:491–501
    [Google Scholar]
  72. 72. 
    Olabisi OA, Zhang JY, VerPlank L, Zahler N, DiBartolo S 3rd et al. 2016. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases. PNAS 113:830–37
    [Google Scholar]
  73. 73. 
    Cheng D, Weckerle A, Yu Y, Ma L, Zhu X et al. 2015. Biogenesis and cytotoxicity of APOL1 renal risk variant proteins in hepatocytes and hepatoma cells. J. Lipid Res. 56:1583–93
    [Google Scholar]
  74. 74. 
    Ma L, Chou JW, Snipes JA, Bharadwaj MS, Craddock AL et al. 2017. APOL1 renal-risk variants induce mitochondrial dysfunction. J. Am. Soc. Nephrol. 28:1093–105
    [Google Scholar]
  75. 75. 
    Granado D, Muller D, Krausel V, Kruzel-Davila E, Schuberth C et al. 2017. Intracellular APOL1 risk variants cause cytotoxicity accompanied by energy depletion. J. Am. Soc. Nephrol. 28:3227–38
    [Google Scholar]
  76. 76. 
    Kumar V, Paliwal N, Ayasolla K, Vashistha H, Jha A et al. 2019. Disruption of APOL1-miR193a axis induces disorganization of podocyte actin cytoskeleton. Sci. Rep. 9:3582
    [Google Scholar]
  77. 77. 
    Kumar V, Vashistha H, Lan X, Chandel N, Ayasolla K et al. 2018. Role of apolipoprotein L1 in human parietal epithelial cell transition. Am. J. Pathol. 188:2508–28
    [Google Scholar]
  78. 78. 
    Mishra A, Ayasolla K, Kumar V, Lan X, Vashistha H et al. 2018. Modulation of apolipoprotein L1-microRNA-193a axis prevents podocyte dedifferentiation in high-glucose milieu. Am. J. Physiol. Ren. Physiol. 314:F832–43
    [Google Scholar]
  79. 79. 
    Chun J, Zhang JY, Wilkins MS, Subramanian B, Riella C et al. 2019. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. PNAS 116:3712–21
    [Google Scholar]
  80. 80. 
    Hayek SS, Koh KH, Grams ME, Wei C, Ko YA et al. 2017. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat. Med. 23:945–53
    [Google Scholar]
  81. 81. 
    Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CA 2008. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem. 283:21540–49
    [Google Scholar]
  82. 82. 
    Heneghan JF, Vandorpe DH, Shmukler BE, Giovinazzo JA, Raper J et al. 2015. BH3 domain-independent apolipoprotein L1 toxicity rescued by BCL2 prosurvival proteins. Am. J. Physiol. Cell Physiol. 309:C332–47
    [Google Scholar]
  83. 83. 
    Limou S, Dummer PD, Nelson GW, Kopp JB, Winkler CA 2015. APOL1 toxin, innate immunity, and kidney injury. Kidney Int 88:28–34
    [Google Scholar]
  84. 84. 
    Bruggeman LA, Wu Z, Luo L, Madhavan SM, Konieczkowski M et al. 2016. APOL1-G0 or APOL1-G2 transgenic models develop preeclampsia but not kidney disease. J. Am. Soc. Nephrol. 27:3600–10
    [Google Scholar]
  85. 85. 
    Ryu JH, Ge M, Merscher S, Rosenberg AZ, Desante M et al. 2019. APOL1 renal risk variants promote cholesterol accumulation in tissues and cultured macrophages from APOL1 transgenic mice. PLOS ONE 14:e0211559
    [Google Scholar]
  86. 86. 
    Molina-Portela MP, Samanovic M, Raper J 2008. Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model. J. Exp. Med. 205:1721–28
    [Google Scholar]
  87. 87. 
    Anderson BR, Howell DN, Soldano K, Garrett ME, Katsanis N et al. 2015. In vivo modeling implicates APOL1 in nephropathy: evidence for dominant negative effects and epistasis under anemic stress. PLOS Genet 11:e1005349
    [Google Scholar]
  88. 88. 
    Kotb AM, Simon O, Blumenthal A, Vogelgesang S, Dombrowski F et al. 2016. Knockdown of ApoL1 in zebrafish larvae affects the glomerular filtration barrier and the expression of nephrin. PLOS ONE 11:e0153768
    [Google Scholar]
  89. 89. 
    Olabisi O, Al-Romaih K, Henderson J, Tomar R, Drummond I et al. 2016. From man to fish: What can zebrafish tell us about ApoL1 nephropathy. Clin. Nephrol. 86:114–18
    [Google Scholar]
  90. 90. 
    Kruzel-Davila E, Shemer R, Ofir A, Bavli-Kertselli I, Darlyuk-Saadon I et al. 2017. APOL1-mediated cell injury involves disruption of conserved trafficking processes. J. Am. Soc. Nephrol. 28:1117–30
    [Google Scholar]
  91. 91. 
    Fu Y, Zhu JY, Richman A, Zhang Y, Xie X et al. 2017. APOL1-G1 in nephrocytes induces hypertrophy and accelerates cell death. J. Am. Soc. Nephrol. 28:1106–16
    [Google Scholar]
  92. 92. 
    Robinson TW, Freedman BI. 2017. APOL1 genotype, blood pressure, and survival in African Americans with nondiabetic nephropathy. Kidney Int 91:276–78
    [Google Scholar]
  93. 93. 
    Mukamal KJ, Tremaglio J, Friedman DJ, Ix JH, Kuller LH et al. 2016. APOL1 genotype, kidney and cardiovascular disease, and death in older adults. Arterioscler. Thromb. Vasc. Biol. 36:398–403
    [Google Scholar]
  94. 94. 
    Ito K, Bick AG, Flannick J, Friedman DJ, Genovese G et al. 2014. Increased burden of cardiovascular disease in carriers of APOL1 genetic variants. Circ. Res. 114:845–50
    [Google Scholar]
  95. 95. 
    Hughson MD, Hoy WE, Mott SA, Bertram JF, Winkler CA, Kopp JB 2018. APOL1 risk variants independently associated with early cardiovascular disease death. Kidney Int. Rep. 3:89–98
    [Google Scholar]
  96. 96. 
    Bodonyi-Kovacs G, Ma JZ, Chang J, Lipkowitz MS, Kopp JB et al. 2016. Combined effects of GSTM1 null allele and APOL1 renal risk alleles in CKD progression in the African American Study of Kidney Disease and Hypertension trial. J. Am. Soc. Nephrol. 27:3140–52
    [Google Scholar]
  97. 97. 
    Ashley-Koch AE, Okocha EC, Garrett ME, Soldano K, De Castro LM et al. 2011. MYH9 and APOL1 are both associated with sickle cell disease nephropathy. Br. J. Haematol. 155:386–94
    [Google Scholar]
  98. 98. 
    Zhang JY, Wang M, Tian L, Genovese G, Yan P et al. 2018. UBD modifies APOL1-induced kidney disease risk. PNAS 115:3446–51
    [Google Scholar]
  99. 99. 
    Snyder A, Alsauskas Z, Gong P, Rosenstiel PE, Klotman ME et al. 2009. FAT10: a novel mediator of Vpr-induced apoptosis in human immunodeficiency virus-associated nephropathy. J. Virol. 83:11983–88
    [Google Scholar]
  100. 100. 
    Sampson MG, Robertson CC, Martini S, Mariani LH, Lemley KV et al. 2016. Integrative genomics identifies novel associations with APOL1 risk genotypes in black NEPTUNE subjects. J. Am. Soc. Nephrol. 27:814–23
    [Google Scholar]
  101. 101. 
    Divers J, Núñez M, High KP, Murea M, Rocco MV et al. 2013. JC polyoma virus interacts with APOL1 in African Americans with nondiabetic nephropathy. Kidney Int 84:1207–13
    [Google Scholar]
  102. 102. 
    Freedman BI, Kistler AL, Skewes-Cox P, Ganem D, Spainhour M et al. 2018. JC polyoma viruria associates with protection from chronic kidney disease independently from apolipoprotein L1 genotype in African Americans. Nephrol. Dial. Transplant. 33:1960–67
    [Google Scholar]
  103. 103. 
    Taylor HE, Khatua AK, Popik W 2014. The innate immune factor apolipoprotein L1 restricts HIV-1 infection. J. Virol. 88:592–603
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034345
Loading
/content/journals/10.1146/annurev-physiol-021119-034345
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error