1932

Abstract

In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP), an intracellular chemical signal that binds to the IP receptor (IPR) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IPR and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IPR structures and begun to integrate with concurrent functional studies, which can explicate IP-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IPR structure and function. We also propose how protein plasticity within IPR, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034433
2020-02-10
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034433.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034433&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mikoshiba K, Changeux JP. 1978. Morphological and biochemical studies on isolated molecular and granular layers from bovine cerebellum. Brain Res 142487–504
    [Google Scholar]
  2. 2. 
    Mikoshiba K, Huchet M, Changeux JP 1979. Biochemical and immunological studies on the P400 protein, a protein characteristic of the Purkinje cell from mouse and rat cerebellum. Dev. Neurosci. 2254–75
    [Google Scholar]
  3. 3. 
    Crepel F, Dupont JL, Gardette R 1984. Selective absence of calcium spikes in Purkinje cells of staggerer mutant mice in cerebellar slices maintained in vitro. J. Physiol. 346111–25
    [Google Scholar]
  4. 4. 
    Maeda N, Niinobe M, Nakahira K, Mikoshiba K 1988. Purification and characterization of P400 protein, a glycoprotein characteristic of Purkinje cell, from mouse cerebellum. J. Neurochem. 511724–30
    [Google Scholar]
  5. 5. 
    Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K 1989. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 34232–38
    [Google Scholar]
  6. 6. 
    Foskett JK, White C, Cheung KH, Mak DO 2007. Inositol trisphosphate receptor Ca2+ release channels. Physiol. Rev. 87593–658
    [Google Scholar]
  7. 7. 
    Patterson RL, Boehning D, Snyder SH 2004. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu. Rev. Biochem. 73437–65
    [Google Scholar]
  8. 8. 
    Berridge MJ. 2016. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 961261–96
    [Google Scholar]
  9. 9. 
    Iino M. 1990. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J. Gen. Physiol. 951103–22
    [Google Scholar]
  10. 10. 
    Bezprozvanny I, Watras J, Ehrlich BE 1991. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351751–54
    [Google Scholar]
  11. 11. 
    Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K et al. 1996. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379168–71
    [Google Scholar]
  12. 12. 
    Inoue T, Kato K, Kohda K, Mikoshiba K 1998. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J. Neurosci. 185366–73
    [Google Scholar]
  13. 13. 
    Hisatsune C, Kuroda Y, Akagi T, Torashima T, Hirai H et al. 2006. Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production. J. Neurosci. 2610916–24
    [Google Scholar]
  14. 14. 
    Hisatsune C, Miyamoto H, Hirono M, Yamaguchi N, Sugawara T et al. 2013. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. Front. Neural Circuits 7156
    [Google Scholar]
  15. 15. 
    Sugawara T, Hisatsune C, Le TD, Hashikawa T, Hirono M et al. 2013. Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of purkinje cells in adult mice. J. Neurosci. 3312186–96
    [Google Scholar]
  16. 16. 
    Sugawara T, Hisatsune C, Miyamoto H, Ogawa N, Mikoshiba K 2017. Regulation of spinogenesis in mature Purkinje cells via mGluR/PKC-mediated phosphorylation of CaMKIIβ. PNAS 114E5256–65
    [Google Scholar]
  17. 17. 
    Tsuboi D, Kuroda K, Tanaka M, Namba T, Iizuka Y et al. 2015. Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity. Nat. Neurosci. 18698–707
    [Google Scholar]
  18. 18. 
    Monai H, Ohkura M, Tanaka M, Oe Y, Konno A et al. 2016. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat. Commun. 711100
    [Google Scholar]
  19. 19. 
    Nizar K, Uhlirova H, Tian P, Saisan PA, Cheng Q et al. 2013. In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J. Neurosci. 338411–22
    [Google Scholar]
  20. 20. 
    Petravicz J, Fiacco TA, McCarthy KD 2008. Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J. Neurosci. 284967–73
    [Google Scholar]
  21. 21. 
    Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E et al. 2017. Astrocytic IP3Rs: contribution to Ca2+ signalling and hippocampal LTP. Glia 65502–13
    [Google Scholar]
  22. 22. 
    Okubo Y, Kanemaru K, Suzuki J, Kobayashi K, Hirose K, Iino M 2019. Inositol 1,4,5-trisphosphate receptor type 2-independent Ca2+ release from the endoplasmic reticulum in astrocytes. Glia 67113–24
    [Google Scholar]
  23. 23. 
    Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T et al. 1990. The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J. Cell Biol. 111615–24
    [Google Scholar]
  24. 24. 
    Pinton P, Pozzan T, Rizzuto R 1998. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 175298–308
    [Google Scholar]
  25. 25. 
    Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH 1995. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell 80439–44
    [Google Scholar]
  26. 26. 
    Stehno-Bittel L, Perez-Terzic C, Clapham DE 1995. Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 2701835–38
    [Google Scholar]
  27. 27. 
    Huh YH, Yoo SH. 2003. Presence of the inositol 1,4,5-triphosphate receptor isoforms in the nucleoplasm. FEBS Lett 555411–18
    [Google Scholar]
  28. 28. 
    Fadool DA, Ache BW. 1992. Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 9907–18
    [Google Scholar]
  29. 29. 
    Kuno M, Maeda N, Mikoshiba K 1994. IP3-activated calcium-permeable channels in the inside-out patches of cultured cerebellar Purkinje cells. Biochem. Biophys. Res. Commun. 1991128–35
    [Google Scholar]
  30. 30. 
    Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH 2003. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat. Cell Biol. 5440–46
    [Google Scholar]
  31. 31. 
    Bading H. 2013. Nuclear calcium signalling in the regulation of brain function. Nat. Rev. Neurosci. 14593–608
    [Google Scholar]
  32. 32. 
    Ondrias K, Lencesova L, Sirova M, Labudova M, Pastorekova S et al. 2011. Apoptosis induced clustering of IP3R1 in nuclei of non-differentiated PC12 cells. J. Cell Physiol. 2263147–55
    [Google Scholar]
  33. 33. 
    Ikebara JM, Takada SH, Cardoso DS, Dias NM, de Campos BC et al. 2017. Functional role of intracellular calcium receptor inositol 1,4,5-trisphosphate type 1 in rat hippocampus after neonatal anoxia. PLOS ONE 12e0169861
    [Google Scholar]
  34. 34. 
    Khan AA, Soloski MJ, Sharp AH, Schilling G, Sabatini DM et al. 1996. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science 273503–7
    [Google Scholar]
  35. 35. 
    El-Daher SS, Patel Y, Siddiqua A, Hassock S, Edmunds S et al. 2000. Distinct localization and function of 1,4,5IP3 receptor subtypes and the 1,3,4,5IP4 receptor GAP1IP4BP in highly purified human platelet membranes. Blood 953412–22
    [Google Scholar]
  36. 36. 
    Guillemette G, Balla T, Baukal AJ, Catt KJ 1988. Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in a hepatic plasma membrane fraction. J. Biol. Chem. 2634541–48
    [Google Scholar]
  37. 37. 
    Vazquez G, Wedel BJ, Bird GS, Joseph SK, Putney JW 2002. An inositol 1,4,5-trisphosphate receptor-dependent cation entry pathway in DT40 B lymphocytes. EMBO J 214531–8
    [Google Scholar]
  38. 38. 
    Dellis O, Dedos SG, Tovey SC, Taufiq-Ur-Rahman, Dubel SJ, Taylor CW 2006. Ca2+ entry through plasma membrane IP3 receptors. Science 313229–33
    [Google Scholar]
  39. 39. 
    Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN 2005. Acidocalcisomes—conserved from bacteria to man. Nat. Rev. Microbiol. 3251–61
    [Google Scholar]
  40. 40. 
    Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R 2016. CRISPR/Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 29125505–15
    [Google Scholar]
  41. 41. 
    Huang G, Bartlett PJ, Thomas AP, Moreno SN, Docampo R 2013. Acidocalcisomes of Trypanosoma brucei have an inositol 1,4,5-trisphosphate receptor that is required for growth and infectivity. PNAS 1101887–92
    [Google Scholar]
  42. 42. 
    Li FJ, He CY. 2014. Acidocalcisome is required for autophagy in Trypanosoma brucei. Autophagy 101978–88
    [Google Scholar]
  43. 43. 
    Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE et al. 1998. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 2801763–66
    [Google Scholar]
  44. 44. 
    Csordas G, Renken C, Varnai P, Walter L, Weaver D et al. 2006. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174915–21
    [Google Scholar]
  45. 45. 
    Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR et al. 2006. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175901–11
    [Google Scholar]
  46. 46. 
    Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN 2013. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. PNAS 11012526–34
    [Google Scholar]
  47. 47. 
    Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature 495389–93
    [Google Scholar]
  48. 48. 
    Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U 2013. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31581–93
    [Google Scholar]
  49. 49. 
    Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S 2011. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30556–68
    [Google Scholar]
  50. 50. 
    Cárdenas C, Müller M, McNeal A, Lovy A, Jaňa F et al. 2016. Selective vulnerability of cancer cells by inhibition of Ca2+ transfer from endoplasmic reticulum to mitochondria. Cell Rep 142313–24
    [Google Scholar]
  51. 51. 
    Bonneau B, Ando H, Kawaai K, Hirose M, Takahashi-Iwanaga H, Mikoshiba K 2016. IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. eLife 5e19896
    [Google Scholar]
  52. 52. 
    Hayashi T, Su TP. 2007. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131596–610
    [Google Scholar]
  53. 53. 
    Brailoiu E, Chakraborty S, Brailoiu GC, Zhao P, Barr JL et al. 2019. Choline is an intracellular messenger linking extracellular stimuli to IP3-evoked Ca2+ signals through sigma-1 receptors. Cell Rep 26330–37.e4
    [Google Scholar]
  54. 54. 
    Petkovic M, Jemaiel A, Daste F, Specht CG, Izeddin I et al. 2014. The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion. Nat. Cell Biol. 16434–44
    [Google Scholar]
  55. 55. 
    Fernandez-Busnadiego R, Saheki Y, De Camilli P 2015. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. PNAS 112E2004–13
    [Google Scholar]
  56. 56. 
    Lur G, Sherwood MW, Ebisui E, Haynes L, Feske S et al. 2011. InsP3 receptors and Orai channels in pancreatic acinar cells: co-localization and its consequences. Biochem. J. 436231–39
    [Google Scholar]
  57. 57. 
    Okeke E, Parker T, Dingsdale H, Concannon M, Awais M et al. 2016. Epithelial-mesenchymal transition, IP3 receptors and ER-PM junctions: translocation of Ca2+ signalling complexes and regulation of migration. Biochem. J. 473757–67
    [Google Scholar]
  58. 58. 
    Wang Q, Wang Y, Downey GP, Plotnikov S, McCulloch CA 2016. A ternary complex comprising FAK, PTPα and IP3 receptor 1 functionally engages focal adhesions and the endoplasmic reticulum to mediate IL-1-induced Ca2+ signalling in fibroblasts. Biochem. J. 473397–410
    [Google Scholar]
  59. 59. 
    Otsu H, Yamamoto A, Maeda N, Mikoshiba K, Tashiro Y 1990. Immunogold localization of inositol 1, 4, 5-trisphosphate (InsP3) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies. Cell Struct. Funct. 15163–73
    [Google Scholar]
  60. 60. 
    Yamamoto A, Otsu H, Yoshimori T, Maeda N, Mikoshiba K, Tashiro Y 1991. Stacks of flattened smooth endoplasmic reticulum highly enriched in inositol 1,4,5-trisphosphate (InsP3) receptor in mouse cerebellar Purkinje cells. Cell Struct. Funct. 16419–32
    [Google Scholar]
  61. 61. 
    Rusakov DA, Podini P, Villa A, Meldolesi J 1993. Tridimensional organization of Purkinje neuron cisternal stacks, a specialized endoplasmic-reticulum subcompartment rich in inositol 1,4,5-trisphosphate receptors. J. Neurocytol. 22273–82
    [Google Scholar]
  62. 62. 
    Takei K, Mignery GA, Mugnaini E, Sudhof TC, De Camilli P 1994. Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells. Neuron 12327–42
    [Google Scholar]
  63. 63. 
    Banno T, Kohno K. 1996. Conformational changes of smooth endoplasmic reticulum induced by brief anoxia in rat Purkinje cells. J. Comp. Neurol. 369462–71
    [Google Scholar]
  64. 64. 
    Ikemoto T, Yorifuji H, Satoh T, Vizi ES 2003. Reversibility of cisternal stack formation during hypoxic hypoxia and subsequent reoxygenation in cerebellar Purkinje cells. Neurochem. Res. 281535–42
    [Google Scholar]
  65. 65. 
    Varadarajan S, Bampton ET, Smalley JL, Tanaka K, Caves RE et al. 2012. A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum. Cell Death Differ 191896–907
    [Google Scholar]
  66. 66. 
    Varadarajan S, Tanaka K, Smalley JL, Bampton ET, Pellecchia M et al. 2013. Endoplasmic reticulum membrane reorganization is regulated by ionic homeostasis. PLOS ONE 8e56603
    [Google Scholar]
  67. 67. 
    Morgan AJ, Platt FM, Lloyd-Evans E, Galione A 2011. Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem. J. 439349–74
    [Google Scholar]
  68. 68. 
    Prinz WA. 2014. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell Biol. 205759–69
    [Google Scholar]
  69. 69. 
    Elbaz Y, Schuldiner M. 2011. Staying in touch: the molecular era of organelle contact sites. Trends Biochem. Sci. 36616–23
    [Google Scholar]
  70. 70. 
    Mignery GA, Newton CL, Archer BT 3rd, Sudhof TC 1990. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 26512679–85
    [Google Scholar]
  71. 71. 
    Ross CA, Danoff SK, Schell MJ, Snyder SH, Ullrich A 1992. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. PNAS 894265–69
    [Google Scholar]
  72. 72. 
    Yamamoto-Hino M, Sugiyama T, Hikichi K, Mattei MG, Hasegawa K et al. 1994. Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors. Recept. Channels 29–22
    [Google Scholar]
  73. 73. 
    Iwai M, Tateishi Y, Hattori M, Mizutani A, Nakamura T et al. 2005. Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. J. Biol. Chem. 28010305–17
    [Google Scholar]
  74. 74. 
    Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K 1991. The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. PNAS 886244–48
    [Google Scholar]
  75. 75. 
    Danoff SK, Ferris CD, Donath C, Fischer GA, Munemitsu S et al. 1991. Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. PNAS 882951–55
    [Google Scholar]
  76. 76. 
    Yamada N, Makino Y, Clark RA, Pearson DW, Mattei MG et al. 1994. Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3R1: structure, function, regulation of expression and chromosomal localization. Biochem. J. 302Part 3781–90
    [Google Scholar]
  77. 77. 
    Regan MR, Lin DD, Emerick MC, Agnew WS 2005. The effect of higher order RNA processes on changing patterns of protein domain selection: a developmentally regulated transcriptome of type 1 inositol 1,4,5-trisphosphate receptors. Proteins 59312–31
    [Google Scholar]
  78. 78. 
    Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K 1996. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 27118277–84
    [Google Scholar]
  79. 79. 
    Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K 2003. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 27816551–60
    [Google Scholar]
  80. 80. 
    Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S et al. 2002. Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420696–700
    [Google Scholar]
  81. 81. 
    Hamada K, Terauchi A, Mikoshiba K 2003. Three-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium. J. Biol. Chem. 27852881–89
    [Google Scholar]
  82. 82. 
    Sato C, Hamada K, Ogura T, Miyazawa A, Iwasaki K et al. 2004. Inositol 1,4,5-trisphosphate receptor contains multiple cavities and L-shaped ligand-binding domains. J. Mol. Biol. 336155–64
    [Google Scholar]
  83. 83. 
    Fan G, Baker MR, Wang Z, Seryshev AB, Ludtke SJ et al. 2018. Cryo-EM reveals ligand induced allostery underlying InsP3R channel gating. Cell Res 281158–70
    [Google Scholar]
  84. 84. 
    Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA et al. 2015. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 527336–41
    [Google Scholar]
  85. 85. 
    Paknejad N, Hite RK. 2018. Structural basis for the regulation of inositol trisphosphate receptors by Ca2+ and IP3. Nat. Struct. Mol. Biol. 25660–68
    [Google Scholar]
  86. 86. 
    Sudhof TC, Newton CL, Archer BT 3rd, Ushkaryov YA, Mignery GA 1991. Structure of a novel InsP3 receptor. EMBO J 103199–206
    [Google Scholar]
  87. 87. 
    Ida Y, Kidera A. 2013. The conserved Arg241-Glu439 salt bridge determines flexibility of the inositol 1,4,5-trisphosphate receptor binding core in the ligand-free state. Proteins 811699–708
    [Google Scholar]
  88. 88. 
    Bosanac I, Yamazaki H, Matsu-Ura T, Michikawa T, Mikoshiba K, Ikura M 2005. Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol. Cell 17193–203
    [Google Scholar]
  89. 89. 
    Yamazaki H, Chan J, Ikura M, Michikawa T, Mikoshiba K 2010. Tyr-167/Trp-168 in type 1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening. J. Biol. Chem. 28536081–91
    [Google Scholar]
  90. 90. 
    Iwai M, Michikawa T, Bosanac I, Ikura M, Mikoshiba K 2007. Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 28212755–64
    [Google Scholar]
  91. 91. 
    Lin CC, Baek K, Lu Z 2011. Apo and InsP3-bound crystal structures of the ligand-binding domain of an InsP3 receptor. Nat. Struct. Mol. Biol. 181172–74
    [Google Scholar]
  92. 92. 
    Seo MD, Velamakanni S, Ishiyama N, Stathopulos PB, Rossi AM et al. 2012. Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483108–12
    [Google Scholar]
  93. 93. 
    Chandran A, Chee X, Prole DL, Rahman T 2019. Exploration of inositol 1,4,5-trisphosphate (IP3) regulated dynamics of N-terminal domain of IP3 receptor reveals early phase molecular events during receptor activation. Sci. Rep. 92454
    [Google Scholar]
  94. 94. 
    Ando H, Hirose M, Mikoshiba K 2018. Aberrant IP3 receptor activities revealed by comprehensive analysis of pathological mutations causing spinocerebellar ataxia 29. PNAS 11512259–64
    [Google Scholar]
  95. 95. 
    Ladenburger EM, Korn I, Kasielke N, Wassmer T, Plattner H 2006. An Ins(1,4,5)P3 receptor in Paramecium is associated with the osmoregulatory system. J. Cell Sci. 1193705–17
    [Google Scholar]
  96. 96. 
    Hashimoto M, Enomoto M, Morales J, Kurebayashi N, Sakurai T et al. 2013. Inositol 1,4,5-trisphosphate receptor regulates replication, differentiation, infectivity and virulence of the parasitic protist Trypanosoma cruzi. Mol. Microbiol 871133–50
    [Google Scholar]
  97. 97. 
    Hashimoto M, Doi M, Kurebayashi N, Furukawa K, Hirawake-Mogi H et al. 2016. Inositol 1,4,5-trisphosphate receptor determines intracellular Ca2+ concentration in Trypanosoma cruzi throughout its life cycle. FEBS Open Bio 61178–85
    [Google Scholar]
  98. 98. 
    Morales-Perez CL, Noviello CM, Hibbs RE 2016. X-ray structure of the human α4β2 nicotinic receptor. Nature 538411–15
    [Google Scholar]
  99. 99. 
    Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A et al. 2016. Mechanism of NMDA receptor inhibition and activation. Cell 165704–14
    [Google Scholar]
  100. 100. 
    Chen L, Durr KL, Gouaux E 2014. X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism. Science 3451021–26
    [Google Scholar]
  101. 101. 
    Miller PS, Aricescu AR. 2014. Crystal structure of a human GABAA receptor. Nature 512270–75
    [Google Scholar]
  102. 102. 
    Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB et al. 2014. X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512276–81
    [Google Scholar]
  103. 103. 
    Mansoor SE, Lu W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E 2016. X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature 53866–71
    [Google Scholar]
  104. 104. 
    des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ et al. 2016. Structural basis for gating and activation of RyR1. Cell 167145–57.e17
    [Google Scholar]
  105. 105. 
    Chadwick CC, Saito A, Fleischer S 1990. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. PNAS 872132–36
    [Google Scholar]
  106. 106. 
    Hamada K, Miyata T, Mayanagi K, Hirota J, Mikoshiba K 2002. Two-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium. J. Biol. Chem. 27721115–18
    [Google Scholar]
  107. 107. 
    da Fonseca PC, Morris SA, Nerou EP, Taylor CW, Morris EP 2003. Domain organization of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis. PNAS 1003936–41
    [Google Scholar]
  108. 108. 
    Jiang QX, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ 2002. Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 Å resolution. EMBO J 213575–81
    [Google Scholar]
  109. 109. 
    Serysheva II, Bare DJ, Ludtke SJ, Kettlun CS, Chiu W, Mignery GA 2003. Structure of the type 1 inositol 1,4,5-trisphosphate receptor revealed by electron cryomicroscopy. J. Biol. Chem. 27821319–22
    [Google Scholar]
  110. 110. 
    Henderson R, Sali A, Baker ML, Carragher B, Devkota B et al. 2012. Outcome of the first electron microscopy validation task force meeting. Structure 20205–14
    [Google Scholar]
  111. 111. 
    Henderson R. 2013. Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. PNAS 11018037–41
    [Google Scholar]
  112. 112. 
    Hamada K, Miyatake H, Terauchi A, Mikoshiba K 2017. IP3-mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X-ray crystallography. PNAS 1144661–66
    [Google Scholar]
  113. 113. 
    Anyatonwu G, Khan MT, Schug ZT, da Fonseca PC, Morris EP, Joseph SK 2010. Calcium-dependent conformational changes in inositol trisphosphate receptors. J. Biol. Chem. 28525085–93
    [Google Scholar]
  114. 114. 
    Shinohara T, Michikawa T, Enomoto M, Goto J, Iwai M et al. 2011. Mechanistic basis of bell-shaped dependence of inositol 1,4,5-trisphosphate receptor gating on cytosolic calcium. PNAS 10815486–91
    [Google Scholar]
  115. 115. 
    Sienaert I, Missiaen L, De Smedt H, Parys JB, Sipma H, Casteels R 1997. Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 27225899–906
    [Google Scholar]
  116. 116. 
    Miyakawa T, Mizushima A, Hirose K, Yamazawa T, Bezprozvanny I et al. 2001. Ca2+-sensor region of IP3 receptor controls intracellular Ca2+ signaling. EMBO J 201674–80
    [Google Scholar]
  117. 117. 
    Alzayady KJ, Sebe-Pedros A, Chandrasekhar R, Wang L, Ruiz-Trillo I, Yule DI 2015. Tracing the evolutionary history of inositol, 1,4,5-trisphosphate receptor: insights from analyses of Capsaspora owczarzaki Ca2+ release channel orthologs. Mol. Biol. Evol. 322236–53
    [Google Scholar]
  118. 118. 
    Nunn DL, Taylor CW. 1990. Liver inositol, 1,4,5-trisphosphate-binding sites are the Ca2+-mobilizing receptors. Biochem. J. 270227–32
    [Google Scholar]
  119. 119. 
    Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE 2nd, Van Petegem F, Yule DI 2016. Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. Sci. Signal. 9ra35
    [Google Scholar]
  120. 120. 
    Takahashi M, Tanzawa K, Takahashi S 1994. Adenophostins, newly discovered metabolites of Penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 269369–72
    [Google Scholar]
  121. 121. 
    Boehning D, Joseph SK. 2000. Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. EMBO J 195450–59
    [Google Scholar]
  122. 122. 
    Hamada K, Mikoshiba K. 2012. Revisiting channel allostery: a coherent mechanism in IP3 and ryanodine receptors. Sci. Signal. 5pe24
    [Google Scholar]
  123. 123. 
    Schug ZT, Joseph SK. 2006. The role of the S4-S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. J. Biol. Chem. 28124431–40
    [Google Scholar]
  124. 124. 
    Galvan DL, Mignery GA. 2002. Carboxyl-terminal sequences critical for inositol 1,4,5-trisphosphate receptor subunit assembly. J. Biol. Chem. 27748248–60
    [Google Scholar]
  125. 125. 
    Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH 2003. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat. Cell Biol. 51051–61
    [Google Scholar]
  126. 126. 
    Boehning D, van Rossum DB, Patterson RL, Snyder SH 2005. A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. PNAS 1021466–71
    [Google Scholar]
  127. 127. 
    White C, Li C, Yang J, Petrenko NB, Madesh M et al. 2005. The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat. Cell Biol. 71021–28
    [Google Scholar]
  128. 128. 
    Yang J, Vais H, Gu W, Foskett JK 2016. Biphasic regulation of InsP3 receptor gating by dual Ca2+ release channel BH3-like domains mediates Bcl-xL control of cell viability. PNAS 113E1953–62
    [Google Scholar]
  129. 129. 
    Mery L, Magnino F, Schmidt K, Krause KH, Dufour JF 2001. Alternative splice variants of hTrp4 differentially interact with the C-terminal portion of the Inositol 1,4,5-trisphosphate receptors. FEBS Lett 487377–83
    [Google Scholar]
  130. 130. 
    Fredericks GJ, Hoffmann FW, Rose AH, Osterheld HJ, Hess FM et al. 2014. Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. PNAS 11116478–83
    [Google Scholar]
  131. 131. 
    Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K et al. 2008. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. PNAS 1052427–32
    [Google Scholar]
  132. 132. 
    Khan MT, Wagner L 2nd, Yule DI, Bhanumathy C, Joseph SK 2006. Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. 2813731–37
    [Google Scholar]
  133. 133. 
    Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E et al. 2012. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40D261–70
    [Google Scholar]
  134. 134. 
    Mertins P, Yang F, Liu T, Mani DR, Petyuk VA et al. 2014. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol. Cell. Proteom. 131690–704
    [Google Scholar]
  135. 135. 
    McEntagart M, Williamson KA, Rainger JK, Wheeler A, Seawright A et al. 2016. A restricted repertoire of de novo mutations in ITPR1 cause Gillespie syndrome with evidence for dominant-negative effect. Am. J. Hum. Genet. 98981–92
    [Google Scholar]
  136. 136. 
    Gerber S, Alzayady KJ, Burglen L, Brémond-Gignac D, Marchesin V et al. 2016. Recessive and dominant de novo ITPR1 mutations cause Gillespie syndrome. Am. J. Hum. Genet. 98971–80
    [Google Scholar]
  137. 137. 
    Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, Mikoshiba K 2006. IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol. Cell 22795–806
    [Google Scholar]
  138. 138. 
    Kawaai K, Ando H, Satoh N, Yamada H, Ogawa N et al. 2017. Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins. PNAS 1143921–26
    [Google Scholar]
  139. 139. 
    Bonneau B, Nougarede A, Prudent J, Popgeorgiev N, Peyrieras N et al. 2014. The Bcl-2 homolog Nrz inhibits binding of IP3 to its receptor to control calcium signaling during zebrafish epiboly. Sci. Signal. 7ra14
    [Google Scholar]
  140. 140. 
    Fos C, Becart S, Canonigo Balancio AJ, Boehning D, Altman A 2014. Association of the EF-hand and PH domains of the guanine nucleotide exchange factor SLAT with IP3 receptor 1 promotes Ca2+ signaling in T cells. Sci. Signal. 7ra93
    [Google Scholar]
  141. 141. 
    Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K et al. 1998. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21717–26
    [Google Scholar]
  142. 142. 
    Kang S, Kwon H, Wen H, Song Y, Frueh D et al. 2011. Global dynamic conformational changes in the suppressor domain of IP3 receptor by stepwise binding of the two lobes of calmodulin. FASEB J 25840–50
    [Google Scholar]
  143. 143. 
    Geyer M, Huang F, Sun Y, Vogel SM, Malik AB et al. 2015. Microtubule-associated protein EB3 regulates IP3 receptor clustering and Ca2+ signaling in endothelial cells. Cell Rep 1279–89
    [Google Scholar]
  144. 144. 
    Tu H, Tang TS, Wang Z, Bezprozvanny I 2004. Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J. Biol. Chem. 27919375–82
    [Google Scholar]
  145. 145. 
    Ivanova H, Ritaine A, Wagner L, Luyten T, Shapovalov G et al. 2016. The trans-membrane domain of Bcl-2α, but not its hydrophobic cleft, is a critical determinant for efficient IP3 receptor inhibition. Oncotarget 755704–20
    [Google Scholar]
  146. 146. 
    Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M et al. 1995. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem. J. 308Part 183–88
    [Google Scholar]
  147. 147. 
    Hirota J, Ando H, Hamada K, Mikoshiba K 2003. Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem. J. 372435–41
    [Google Scholar]
  148. 148. 
    Hirota J, Furuichi T, Mikoshiba K 1999. Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J. Biol. Chem. 27434433–37
    [Google Scholar]
  149. 149. 
    Kopil CM, Vais H, Cheung KH, Siebert AP, Mak DO et al. 2011. Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) has InsP3-independent gating and disrupts intracellular Ca2+ homeostasis. J. Biol. Chem. 28635998–6010
    [Google Scholar]
  150. 150. 
    Schulman JJ, Wright FA, Kaufmann T, Wojcikiewicz RJ 2013. The Bcl-2 protein family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. J. Biol. Chem. 28825340–49
    [Google Scholar]
  151. 151. 
    Lee B, Vermassen E, Yoon SY, Vanderheyden V, Ito J et al. 2006. Phosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway. Development 1334355–65
    [Google Scholar]
  152. 152. 
    Zhang N, Yoon SY, Parys JB, Fissore RA 2015. Effect of M-phase kinase phosphorylations on type 1 inositol 1,4,5-trisphosphate receptor-mediated Ca2+ responses in mouse eggs. Cell Calcium 58476–88
    [Google Scholar]
  153. 153. 
    Cui J, Matkovich SJ, deSouza N, Li S, Rosemblit N, Marks AR 2004. Regulation of the type 1 inositol 1,4,5-trisphosphate receptor by phosphorylation at tyrosine 353. J. Biol. Chem. 27916311–16
    [Google Scholar]
  154. 154. 
    Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA 2011. Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci. Signal. 4rs5
    [Google Scholar]
  155. 155. 
    Malathi K, Kohyama S, Ho M, Soghoian D, Li X et al. 2003. Inositol 1,4,5-trisphosphate receptor (type 1) phosphorylation and modulation by Cdc2. J. Cell. Biochem. 901186–96
    [Google Scholar]
  156. 156. 
    Maxwell JT, Natesan S, Mignery GA 2012. Modulation of inositol 1,4,5-trisphosphate receptor type 2 channel activity by Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation. J. Biol. Chem. 28739419–28
    [Google Scholar]
  157. 157. 
    Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS et al. 2008. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol. Cell 31438–48
    [Google Scholar]
  158. 158. 
    Humphrey SJ, Yang G, Yang P, Fazakerley DJ, Stockli J et al. 2013. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab 171009–20
    [Google Scholar]
  159. 159. 
    Tsai CF, Wang YT, Yen HY, Tsou CC, Ku WC et al. 2015. Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat. Commun. 66622
    [Google Scholar]
  160. 160. 
    Sliter DA, Aguiar M, Gygi SP, Wojcikiewicz RJ 2011. Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation. J. Biol. Chem. 2861074–82
    [Google Scholar]
  161. 161. 
    Wagner SA, Beli P, Weinert BT, Scholz C, Kelstrup CD et al. 2012. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol. Cell. Proteom. 111578–85
    [Google Scholar]
  162. 162. 
    Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A et al. 2012. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2419–31
    [Google Scholar]
  163. 163. 
    Haun S, Sun L, Hubrack S, Yule D, Machaca K 2012. Phosphorylation of the rat Ins(1,4,5)P3 receptor at T930 within the coupling domain decreases its affinity to Ins(1,4,5)P3. Channels 6379–84
    [Google Scholar]
  164. 164. 
    Boutin B, Tajeddine N, Monaco G, Molgo J, Vertommen D et al. 2015. Endoplasmic reticulum Ca2+ content decrease by PKA-dependent hyperphosphorylation of type 1 IP3 receptor contributes to prostate cancer cell resistance to androgen deprivation. Cell Calcium 57312–20
    [Google Scholar]
  165. 165. 
    Gomez L, Thiebaut PA, Paillard M, Ducreux S, Abrial M et al. 2016. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ 23313–22
    [Google Scholar]
  166. 166. 
    Barresi S, Niceta M, Alfieri P, Brankovic V, Piccini G et al. 2017. Mutations in the IRBIT domain of ITPR1 are a frequent cause of autosomal dominant nonprogressive congenital ataxia. Clin. Genet. 9186–91
    [Google Scholar]
  167. 167. 
    Ohba C, Osaka H, Iai M, Yamashita S, Suzuki Y et al. 2013. Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics 14225–32
    [Google Scholar]
  168. 168. 
    Sasaki M, Ohba C, Iai M, Hirabayashi S, Osaka H et al. 2015. Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene. J. Neurol. 2621278–84
    [Google Scholar]
  169. 169. 
    Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE et al. 2012. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J. Rare Dis. 767
    [Google Scholar]
  170. 170. 
    Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y et al. 2008. Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71547–51
    [Google Scholar]
  171. 171. 
    Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K 2011. Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. Biochem. Biophys. Res. Commun. 410754–58
    [Google Scholar]
  172. 172. 
    Schnekenberg RP, Perkins EM, Miller JW, Davies WI, D'Adamo MC et al. 2015. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain 1381817–32
    [Google Scholar]
  173. 173. 
    Hamada K, Terauchi A, Nakamura K, Higo T, Nukina N et al. 2014. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. PNAS 111E3966–75
    [Google Scholar]
  174. 174. 
    Boulay G, Brown DM, Qin N, Jiang M, Dietrich A et al. 1999. Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. PNAS 9614955–60
    [Google Scholar]
  175. 175. 
    Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K et al. 2017. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546549–53
    [Google Scholar]
  176. 176. 
    Kuchay S, Giorgi C, Simoneschi D, Pagan J, Missiroli S et al. 2017. PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature 546554–58
    [Google Scholar]
  177. 177. 
    Khan MT, Bhanumathy CD, Schug ZT, Joseph SK 2007. Role of inositol 1,4,5-trisphosphate receptors in apoptosis in DT40 lymphocytes. J. Biol. Chem. 28232983–90
    [Google Scholar]
  178. 178. 
    Matsu-Ura T, Shirakawa H, Suzuki KGN, Miyamoto A, Sugiura K et al. 2019. Dual-FRET imaging of IP3 and Ca2+ revealed Ca2+-induced IP3 production maintains long lasting Ca2+ oscillations in fertilized mouse eggs. Sci. Rep. 94829
    [Google Scholar]
  179. 179. 
    Lock JT, Alzayady KJ, Yule DI, Parker I 2018. All three IP3 receptor isoforms generate Ca2+ puffs that display similar characteristics. Sci. Signal. 11eaau0344
    [Google Scholar]
  180. 180. 
    Prole DL, Taylor CW. 2019. Structure and function of IP3 receptors. Cold Spring Harb. Perspect. Biol. 11 https://doi.org/10.1101/cshperspect.a035063
    [Crossref] [Google Scholar]
  181. 181. 
    Uhlén P, Laestadius A, Jahnukainen T, Söderblom T, Bäckhed F et al. 2000. α-Haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405694–97
    [Google Scholar]
  182. 182. 
    Wang L, Wagner LE 2nd, Alzayady KJ, Yule DI 2017. Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity. J. Biol. Chem. 29211714–26
    [Google Scholar]
  183. 183. 
    Miyamoto A, Miyauchi H, Kogure T, Miyawaki A, Michikawa T, Mikoshiba K 2015. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell. Biochem. Biophys. Res. Commun. 46082–87
    [Google Scholar]
  184. 184. 
    Mikoshiba K, Okano H, Tsukada Y 1985. P400 protein characteristic to Purkinje cells and related proteins in cerebella from neuropathological mutant mice: autoradiographic study by 14C-leucine and phosphorylation. Dev. Neurosci. 7179–87
    [Google Scholar]
  185. 185. 
    Pober JS, Sessa WC. 2007. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7803–15
    [Google Scholar]
  186. 186. 
    Minichiello L. 2009. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10850–60
    [Google Scholar]
  187. 187. 
    De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK et al. 2013. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog. Neurobiol. 1081–20
    [Google Scholar]
  188. 188. 
    Feske S, Skolnik EY, Prakriya M 2012. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 12532–47
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034433
Loading
/content/journals/10.1146/annurev-physiol-021119-034433
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error