1932

Abstract

Many physiological processes, including most kidney-related functions, follow specific rhythms tied to a 24-h cycle. This is largely because circadian genes operate in virtually every cell type in the body. In addition, many noncanonical genes have intrinsic circadian rhythms, especially within the liver and kidney. This new level of complexity applies to the control of renal electrolyte excretion. Furthermore, there is growing evidence that paracrine and autocrine factors, especially the endothelin system, are regulated by clock genes. We have known for decades that excretion of electrolytes is dependent on time of day, which could play an important role in fluid volume balance and blood pressure control. Here, we review what is known about the interplay between paracrine and circadian control of electrolyte excretion. The hope is that recognition of paracrine and circadian factors can be considered more deeply in the future when integrating with well-established neuroendocrine control of excretion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034446
2020-02-10
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034446.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034446&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H 1981. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94
    [Google Scholar]
  2. 2. 
    Kohan DE, Inscho EW, Wesson D, Pollock DM 2011. Physiology of endothelin and the kidney. Compr. Physiol. 1:883–919
    [Google Scholar]
  3. 3. 
    Praetorius HA, Leipziger J. 2010. Intrarenal purinergic signaling in the control of renal tubular transport. Annu. Rev. Physiol. 72:377–93
    [Google Scholar]
  4. 4. 
    Rhaleb NE, Yang XP, Carretero OA 2011. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr. Physiol. 1:971–93
    [Google Scholar]
  5. 5. 
    Imig JD, Khan MA. 2015. Cytochrome P450 and lipoxygenase metabolites on renal function. Compr. Physiol. 6:423–41
    [Google Scholar]
  6. 6. 
    Baylis C. 2012. Nitric oxide synthase derangements and hypertension in kidney disease. Curr. Opin. Nephrol. Hypertens. 21:1–6
    [Google Scholar]
  7. 7. 
    Townsend RR, Sobotka PA. 2018. Catheter-based renal denervation for hypertension. Curr. Hypertens. Rep. 20:93
    [Google Scholar]
  8. 8. 
    Richards J, Gumz ML. 2013. Mechanism of the circadian clock in physiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304:R1053–64
    [Google Scholar]
  9. 9. 
    Sirota JH, Baldwin DS, Villarreal H 1950. Diurnal variations of renal function in man. J. Clin. Investig. 29:187–92
    [Google Scholar]
  10. 10. 
    Mills JN, Stanbury SW. 1952. Persistent 24-hour renal excretory rhythm on a 12-hour cycle of activity. J. Physiol. 117:22–37
    [Google Scholar]
  11. 11. 
    Takahashi JS. 2015. Molecular components of the circadian clock in mammals. Diabetes Obes. Metab. 17:Suppl. 16–11
    [Google Scholar]
  12. 12. 
    Turek FW. 2016. Circadian clocks: not your grandfather's clock. Science 354:992–93
    [Google Scholar]
  13. 13. 
    Panda S, Antoch MP, Miller BH, Su AI, Schook AB et al. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–20
    [Google Scholar]
  14. 14. 
    Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB 2014. A circadian gene expression atlas in mammals: implications for biology and medicine. PNAS 111:16219–24
    [Google Scholar]
  15. 15. 
    Johnston JG, Pollock DM. 2018. Circadian regulation of renal function. Free Radic. Biol. Med. 119:93–107
    [Google Scholar]
  16. 16. 
    Firsov D, Bonny O. 2018. Circadian rhythms and the kidney. Nat. Rev. Nephrol. 14:626–35
    [Google Scholar]
  17. 17. 
    Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA et al. 2000. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–17
    [Google Scholar]
  18. 18. 
    Curtis AM, Cheng Y, Kapoor S, Reilly D, Price TS, Fitzgerald GA 2007. Circadian variation of blood pressure and the vascular response to asynchronous stress. PNAS 104:3450–55
    [Google Scholar]
  19. 19. 
    Wang N, Yang G, Jia Z, Zhang H, Aoyagi T et al. 2008. Vascular PPARγ controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 8:482–91
    [Google Scholar]
  20. 20. 
    Xie Z, Su W, Liu S, Zhao G, Esser K et al. 2015. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J. Clin. Investig. 125:324–36
    [Google Scholar]
  21. 21. 
    Chang L, Xiong W, Zhao X, Fan Y, Guo Y et al. 2018. Bmal1 in perivascular adipose tissue regulates resting-phase blood pressure through transcriptional regulation of angiotensinogen. Circulation 138:67–79
    [Google Scholar]
  22. 22. 
    Nikolaeva S, Ansermet C, Centeno G, Pradervand S, Bize V et al. 2016. Nephron-specific deletion of circadian clock gene Bmal1 alters the plasma and renal metabolome and impairs drug disposition. J. Am. Soc. Nephrol. 27:2997–3004
    [Google Scholar]
  23. 23. 
    Tokonami N, Mordasini D, Pradervand S, Centeno G, Jouffe C et al. 2014. Local renal circadian clocks control fluid-electrolyte homeostasis and BP. J. Am. Soc. Nephrol. 25:1430–9
    [Google Scholar]
  24. 24. 
    Stow LR, Richards J, Cheng KY, Lynch IJ, Jeffers LA et al. 2012. The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension 59:1151–56
    [Google Scholar]
  25. 25. 
    Solocinski K, Holzworth M, Wen X, Cheng KY, Lynch IJ et al. 2017. Desoxycorticosterone pivalate-salt treatment leads to non-dipping hypertension in Per1 knockout mice. Acta Physiol 220:72–82
    [Google Scholar]
  26. 26. 
    Douma LG, Solocinski K, Holzworth MR, Crislip GR, Masten SH et al. 2019. Female C57BL/6J mice lacking the circadian clock protein PER1 are protected from nondipping hypertension. Am. J. Physiol. Regu. Integr. Compar. Physiol. 316:R50–58
    [Google Scholar]
  27. 27. 
    Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A et al. 2009. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J. Clin. Investig. 119:2423–34
    [Google Scholar]
  28. 28. 
    Richards J, Ko B, All S, Cheng KY, Hoover RS, Gumz ML 2014. A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J. Biol. Chem. 289:11791–806
    [Google Scholar]
  29. 29. 
    Gohar EY, Pollock DM. 2018. Sex-specific contributions of endothelin to hypertension. Curr. Hypertens. Rep. 20:58
    [Google Scholar]
  30. 30. 
    Alli A, Yu L, Holzworth M, Richards J, Cheng KY et al. 2019. Direct and indirect inhibition of the circadian clock protein Per1: effects on ENaC and blood pressure. Am. J. Physiol. Ren. Physiol. 316:F807–13
    [Google Scholar]
  31. 31. 
    Vukolic A, Antic V, Van Vliet BN, Yang Z, Albrecht U, Montani JP 2010. Role of mutation of the circadian clock gene Per2 in cardiovascular circadian rhythms. Am. J. Physiol. Regul. Integr. Compar. Physiol. 298:R627–34
    [Google Scholar]
  32. 32. 
    Pati P, Fulton DJ, Bagi Z, Chen F, Wang Y et al. 2016. Low-salt diet and circadian dysfunction synergize to induce angiotensin II-dependent hypertension in mice. Hypertension 67:661–68
    [Google Scholar]
  33. 33. 
    Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H et al. 2010. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat. Med. 16:67–74
    [Google Scholar]
  34. 34. 
    Sei H, Oishi K, Chikahisa S, Kitaoka K, Takeda E, Ishida N 2008. Diurnal amplitudes of arterial pressure and heart rate are dampened in Clock mutant mice and adrenalectomized mice. Endocrinology 149:3576–80
    [Google Scholar]
  35. 35. 
    Zuber AM, Centeno G, Pradervand S, Nikolaeva S, Maquelin L et al. 2009. Molecular clock is involved in predictive circadian adjustment of renal function. PNAS 106:16523–28
    [Google Scholar]
  36. 36. 
    Nikolaeva S, Pradervand S, Centeno G, Zavadova V, Tokonami N et al. 2012. The circadian clock modulates renal sodium handling. J. Am. Soc. Nephrol. 23:1019–26
    [Google Scholar]
  37. 37. 
    Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F et al. 2002. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–44
    [Google Scholar]
  38. 38. 
    Nakashima A, Kawamoto T, Noshiro M, Ueno T, Doi S et al. 2018. Dec1 and CLOCK regulate Na+/K+-ATPase β1 subunit expression and blood pressure. Hypertension 72:746–54
    [Google Scholar]
  39. 39. 
    Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE et al. 2016. Endothelin. Pharmacol. Rev. 68:357–418
    [Google Scholar]
  40. 40. 
    Kohan DE, Rossi NF, Inscho EW, Pollock DM 2011. Regulation of blood pressure and salt homeostasis by endothelin. Physiol. Rev. 91:1–77
    [Google Scholar]
  41. 41. 
    Fellner RC, Guan Z, Cook AK, Pollock DM, Inscho EW 2015. Endothelin contributes to blunted renal autoregulation observed with a high-salt diet. Am. J. Physiol. Ren. Physiol. 309:F687–96
    [Google Scholar]
  42. 42. 
    Gumz ML, Popp MP, Wingo CS, Cain BD 2003. Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. Am. J. Physiol. Ren. Physiol. 285:F664–73
    [Google Scholar]
  43. 43. 
    Hwang YS, Hsieh TJ, Lee YJ, Tsai JH 1998. Circadian rhythm of urinary endothelin-1 excretion in mild hypertensive patients. Am. J. Hypertens. 11:1344–51
    [Google Scholar]
  44. 44. 
    Johnston JG, Speed JS, Jin C, Pollock DM 2016. Loss of endothelin B receptor function impairs sodium excretion in a time- and sex-dependent manner. Am. J. Physiol. Ren. Physiol. 311:F991–98
    [Google Scholar]
  45. 45. 
    Dhaun N, Moorhouse R, MacIntyre IM, Melville V, Oosthuyzen W et al. 2014. Diurnal variation in blood pressure and arterial stiffness in chronic kidney disease: the role of endothelin-1. Hypertension 64:296–304
    [Google Scholar]
  46. 46. 
    Speed JS, Hyndman KA, Roth K, Heimlich JB, Kasztan M et al. 2018. High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am. J. Physiol. Ren. Physiol. 314:F89–98
    [Google Scholar]
  47. 47. 
    Speed JS, Hyndman KA, Kasztan M, Johnston JG, Roth KJ et al. 2016. High salt intake alters renal medullary clock genes via ETB receptors. FASEB J 30:1216 9 (Abstr.)
    [Google Scholar]
  48. 48. 
    Speed JS, Hyndman KA, Kasztan M, Johnston JG, Roth KJ et al. 2018. Diurnal pattern in skin Na+ and water content is associated with salt-sensitive hypertension in ETB receptor-deficient rats. Am. J. Physiol. Regul. Integr. Compar. Physiol. 314:R544–51
    [Google Scholar]
  49. 49. 
    Richards J, Welch AK, Barilovits SJ, All S, Cheng KY et al. 2014. Tissue-specific and time-dependent regulation of the endothelin axis by the circadian clock protein Per1. Life Sci 118:255–62
    [Google Scholar]
  50. 50. 
    Plato CF, Stoos BA, Wang D, Garvin JL 1999. Endogenous nitric oxide inhibits chloride transport in the thick ascending limb. Am. J. Physiol. Ren. Physiol. 276:F159–63
    [Google Scholar]
  51. 51. 
    Plato CF, Pollock DM, Garvin JL 2000. Endothelin inhibits thick ascending limb chloride flux via ETB receptor-mediated NO release. Am. J. Physiol. Ren. Physiol. 279:F326–33
    [Google Scholar]
  52. 52. 
    Ortiz PA, Hong NJ, Garvin JL 2001. NO decreases thick ascending limb chloride absorption by reducing Na+-K+-2Cl cotransporter activity. Am. J. Physiol. Ren. Physiol. 281:F819–25
    [Google Scholar]
  53. 53. 
    Stoos BA, Garcia NH, Garvin JL 1995. Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collecting duct. J. Am. Soc. Nephrol. 6:89–94
    [Google Scholar]
  54. 54. 
    Garcia NH, Stoos BA, Carretero OA, Garvin JL 1996. Mechanism of the nitric oxide-induced blockade of collecting duct water permeability. Hypertension 27:679–83
    [Google Scholar]
  55. 55. 
    Sällström J, Carlström M, Jensen BL, Skott O, Brown RD, Persson AE 2008. Neuronal nitric oxide synthase-deficient mice have impaired renin release but normal blood pressure. Am. J. Hypertens. 21:111–16
    [Google Scholar]
  56. 56. 
    Hyndman KA, Boesen EI, Elmarakby AA, Brands MW, Huang P et al. 2013. Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure. Hypertension 62:91–98
    [Google Scholar]
  57. 57. 
    Herrera M, Garvin JL. 2004. Endothelin stimulates endothelial nitric oxide synthase expression in the thick ascending limb. Am. J. Physiol. Ren. Physiol. 287:F231–35
    [Google Scholar]
  58. 58. 
    Ye Q, Chen S, Gardner DG 2003. Endothelin inhibits NPR-A and stimulates eNOS gene expression in rat IMCD cells. Hypertension 41:675–81
    [Google Scholar]
  59. 59. 
    Sullivan JC, Goodchild TT, Cai Z, Pollock DM, Pollock JS 2007. EndothelinA ETA and ETB receptor-mediated regulation of nitric oxide synthase 1 (NOS1) and NOS3 isoforms in the renal inner medulla. Acta Physiol 191:329–36
    [Google Scholar]
  60. 60. 
    Gao Y, Stuart D, Takahishi T, Kohan DE 2018. Nephron-specific disruption of nitric oxide synthase 3 causes hypertension and impaired salt excretion. J. Am. Heart Assoc. 7:14e009236
    [Google Scholar]
  61. 61. 
    Lu Y, Wei J, Stec DE, Roman RJ, Ge Y et al. 2016. Macula densa nitric oxide synthase 1β protects against salt-sensitive hypertension. J. Am. Soc. Nephrol. 27:2346–56
    [Google Scholar]
  62. 62. 
    Tunctan B, Weigl Y, Dotan A, Peleg L, Zengil H et al. 2002. Circadian variation of nitric oxide synthase activity in mouse tissue. Chronobiol. Int. 19:393–404
    [Google Scholar]
  63. 63. 
    Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G et al. 2009. Vascular disease in mice with a dysfunctional circadian clock. Circulation 119:1510–17
    [Google Scholar]
  64. 64. 
    Anea CB, Cheng B, Sharma S, Kumar S, Caldwell RW et al. 2012. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice. Circ. Res. 111:1157–65
    [Google Scholar]
  65. 65. 
    Westgate EJ, Cheng Y, Reilly DF, Price TS, Walisser JA et al. 2008. Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation 117:2087–95
    [Google Scholar]
  66. 66. 
    Denniff M, Turrell HE, Vanezis A, Rodrigo GC 2014. The time-of-day variation in vascular smooth muscle contractility depends on a nitric oxide signalling pathway. J. Mol. Cell. Cardiol. 66:133–40
    [Google Scholar]
  67. 67. 
    Arraj M, Lemmer B. 2007. Endothelial nitric oxide is not involved in circadian rhythm generation of blood pressure: experiments in wild-type C57 and eNOS knock-out mice under light-dark and free-run conditions. Chronobiol. Int. 24:1231–40
    [Google Scholar]
  68. 68. 
    Van Vliet BN, Chafe LL, Montani JP 2003. Characteristics of 24 h telemetered blood pressure in eNOS-knockout and C57Bl/6J control mice. J. Physiol. 549:313–25
    [Google Scholar]
  69. 69. 
    Kunieda T, Minamino T, Miura K, Katsuno T, Tateno K et al. 2008. Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ. Res. 102:607–14
    [Google Scholar]
  70. 70. 
    Bode-Boger SM, Boger RH, Kielstein JT, Loffler M, Schaffer J, Frolich JC 2000. Role of endogenous nitric oxide in circadian blood pressure regulation in healthy humans and in patients with hypertension or atherosclerosis. J. Investig. Med. 48:125–32
    [Google Scholar]
  71. 71. 
    Bailey MA. 2004. Inhibition of bicarbonate reabsorption in the rat proximal tubule by activation of luminal P2Y1 receptors. Am. J. Physiol. Ren. Physiol. 287:F789–96
    [Google Scholar]
  72. 72. 
    Pochynyuk O, Bugaj V, Rieg T, Insel PA, Mironova E et al. 2008. Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J. Biol. Chem. 283:36599–607
    [Google Scholar]
  73. 73. 
    Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W et al. 2007. Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J 21:3717–26
    [Google Scholar]
  74. 74. 
    Wildman SS, Marks J, Turner CM, Yew-Booth L, Peppiatt-Wildman CM et al. 2008. Sodium-dependent regulation of renal amiloride-sensitive currents by apical P2 receptors. J. Am. Soc. Nephrol. 19:731–42
    [Google Scholar]
  75. 75. 
    Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M et al. 2006. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat. Med. 12:133–7
    [Google Scholar]
  76. 76. 
    Pandit MM, Inscho EW, Zhang S, Seki T, Rohatgi R et al. 2015. Flow regulation of endothelin-1 production in the inner medullary collecting duct. Am. J. Physiol. Ren. Physiol. 308:F541–52
    [Google Scholar]
  77. 77. 
    Gohar EY, Speed JS, Kasztan M, Jin C, Pollock DM 2016. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats. Am. J. Physiol. Ren. Physiol. 311:F260–67
    [Google Scholar]
  78. 78. 
    Gohar EY, Kasztan M, Becker BK, Speed JS, Pollock DM 2017. Ovariectomy uncovers purinergic receptor activation of endothelin-dependent natriuresis. Am. J. Physiol. Ren. Physiol. 313:F361–69
    [Google Scholar]
  79. 79. 
    Palomino-Doza J, Rahman TJ, Avery PJ, Mayosi BM, Farrall M et al. 2008. Ambulatory blood pressure is associated with polymorphic variation in P2X receptor genes. Hypertension 52:980–85
    [Google Scholar]
  80. 80. 
    Ingelfinger JR, Zuo WM, Fon EA, Ellison KE, Dzau VJ 1990. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J. Clin. Investig. 85:417–23
    [Google Scholar]
  81. 81. 
    Navar LG, Prieto MC, Satou R, Kobori H 2011. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr. Opin. Pharmacol. 11:180–86
    [Google Scholar]
  82. 82. 
    Carey RM. 2015. The intrarenal renin-angiotensin system in hypertension. Adv. Chronic Kidney Dis. 22:204–10
    [Google Scholar]
  83. 83. 
    Gonzalez-Villalobos RA, Satou R, Seth DM, Semprun-Prieto LC, Katsurada A et al. 2009. Angiotensin-converting enzyme-derived angiotensin II formation during angiotensin II-induced hypertension. Hypertension 53:351–55
    [Google Scholar]
  84. 84. 
    Gonzalez-Villalobos RA, Satou R, Ohashi N, Semprun-Prieto LC, Katsurada A et al. 2010. Intrarenal mouse renin-angiotensin system during ANG II-induced hypertension and ACE inhibition. Am. J. Physiol. Ren. Physiol. 298:F150–57
    [Google Scholar]
  85. 85. 
    Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MT et al. 2013. The absence of intrarenal ACE protects against hypertension. J. Clin. Investig. 123:2011–23
    [Google Scholar]
  86. 86. 
    Isobe S, Ohashi N, Fujikura T, Tsuji T, Sakao Y et al. 2015. Disturbed circadian rhythm of the intrarenal renin-angiotensin system: relevant to nocturnal hypertension and renal damage. Clin. Exp. Nephrol. 19:231–39
    [Google Scholar]
  87. 87. 
    Ishigaki S, Ohashi N, Isobe S, Tsuji N, Iwakura T et al. 2016. Impaired endogenous nighttime melatonin secretion relates to intrarenal renin-angiotensin system activation and renal damage in patients with chronic kidney disease. Clin. Exp. Nephrol. 20:878–84
    [Google Scholar]
  88. 88. 
    Isobe S, Ohashi N, Ishigaki S, Tsuji T, Sakao Y et al. 2016. Augmented circadian rhythm of the intrarenal renin-angiotensin systems in anti-thymocyte serum nephritis rats. Hypertens. Res. 39:312–20
    [Google Scholar]
  89. 89. 
    Williams JM, Murphy S, Burke M, Roman RJ 2010. 20-Hydroxyeicosatetraeonic acid: a new target for the treatment of hypertension. J. Cardiovasc. Pharmacol. 56:336–44
    [Google Scholar]
  90. 90. 
    Zhang DD, Gao ZX, Vio CP, Xiao Y, Wu P et al. 2018. Bradykinin stimulates renal Na+ and K+ excretion by inhibiting the K+ channel (Kir4.1) in the distal convoluted tubule. Hypertension 72:361–69
    [Google Scholar]
  91. 91. 
    Mamenko M, Zaika O, Pochynyuk O 2014. Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling. Curr. Opin. Nephrol. Hypertens. 23:122–9
    [Google Scholar]
  92. 92. 
    Nasrallah R, Zimpelmann J, Eckert D, Ghossein J, Geddes S et al. 2018. PGE2 EP1 receptor inhibits vasopressin-dependent water reabsorption and sodium transport in mouse collecting duct. Lab. Investig. 98:360–70
    [Google Scholar]
  93. 93. 
    Gumz ML, Rabinowitz L. 2013. Role of circadian rhythms in potassium homeostasis. Semin. Nephrol. 33:229–36
    [Google Scholar]
  94. 94. 
    Wilson DK, Sica DA, Miller SB 1999. Effects of potassium on blood pressure in salt-sensitive and salt-resistant black adolescents. Hypertension 34:181–86
    [Google Scholar]
  95. 95. 
    Guo TS, Dai Y, Ren KY, Mu JJ, Ren J et al. 2017. Effects of salt loading and potassium supplement on the circadian blood pressure profile in salt-sensitive Chinese patients. Blood Press. Monit. 22:307–13
    [Google Scholar]
  96. 96. 
    Agarwal R. 2007. Relationship between circadian blood pressure variation and circadian protein excretion in CKD. Am. J. Physiol. Ren. Physiol. 293:F655–59
    [Google Scholar]
  97. 97. 
    Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L 1989. Circadian rhythm of glomerular filtration rate in normal individuals. Clin. Sci. 77:105–11
    [Google Scholar]
  98. 98. 
    Bankir L, Bochud M, Maillard M, Bovet P, Gabriel A, Burnier M 2008. Nighttime blood pressure and nocturnal dipping are associated with daytime urinary sodium excretion in African subjects. Hypertension 51:891–98
    [Google Scholar]
  99. 99. 
    Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ et al. 2018. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 71:e128
    [Google Scholar]
  100. 100. 
    Kario K. 2018. Nocturnal hypertension: new technology and evidence. Hypertension 71:997–1009
    [Google Scholar]
  101. 101. 
    de la Sierra A, Gorostidi M, Banegas JR, Segura J, de la Cruz JJ, Ruilope LM 2014. Nocturnal hypertension or nondipping: Which is better associated with the cardiovascular risk profile. Am. J. Hypertens. 27:680–87
    [Google Scholar]
  102. 102. 
    Salles GF, Reboldi G, Fagard RH, Cardoso CR, Pierdomenico SD et al. 2016. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: the ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension 67:693–700
    [Google Scholar]
  103. 103. 
    Harshfield GA, Treiber FA, Wilson ME, Kapuku GK, Davis HC 2002. A longitudinal study of ethnic differences in ambulatory blood pressure patterns in youth. Am. J. Hypertens. 15:525–30
    [Google Scholar]
  104. 104. 
    Li Y, Staessen JA, Lu L, Li LH, Wang GL, Wang JG 2007. Is isolated nocturnal hypertension a novel clinical entity? Findings from a Chinese population study. Hypertension 50:333–39
    [Google Scholar]
  105. 105. 
    Li Y, Wang JG. 2013. Isolated nocturnal hypertension: a disease masked in the dark. Hypertension 61:278–83
    [Google Scholar]
  106. 106. 
    Cuspidi C, Meani S, Valerio C, Negri F, Sala C et al. 2008. Body mass index, nocturnal fall in blood pressure and organ damage in untreated essential hypertensive patients. Blood Press. Monit. 13:318–24
    [Google Scholar]
  107. 107. 
    Nabe B, Lies A, Pankow W, Kohl FV, Lohmann FW 1995. Determinants of circadian blood pressure rhythm and blood pressure variability in obstructive sleep apnoea. J. Sleep Res. 4:97–101
    [Google Scholar]
  108. 108. 
    Suzuki M, Guilleminault C, Otsuka K, Shiomi T 1996. Blood pressure “dipping” and “non-dipping” in obstructive sleep apnea syndrome patients. Sleep 19:382–87
    [Google Scholar]
  109. 109. 
    Chau NP, Mallion JM, de Gaudemaris R, Ruche E, Siche JP et al. 1989. Twenty-four-hour ambulatory blood pressure in shift workers. Circulation 80:341–47
    [Google Scholar]
  110. 110. 
    Smolensky MH, Haus E. 2001. Circadian rhythms and clinical medicine with applications to hypertension. Am. J. Hypertens. 14:280S–90S
    [Google Scholar]
  111. 111. 
    Brook RD, Rajagopalan S. 2018. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Soc. Hypertens. 12:238
    [Google Scholar]
  112. 112. 
    Fukuda M, Munemura M, Usami T, Nakao N, Takeuchi O et al. 2004. Nocturnal blood pressure is elevated with natriuresis and proteinuria as renal function deteriorates in nephropathy. Kidney Int 65:621–25
    [Google Scholar]
  113. 113. 
    Tamura K, Kanaoka T, Ohsawa M, Haku S, Azushima K et al. 2011. Emerging concept of anti-hypertensive therapy based on ambulatory blood pressure profile in chronic kidney disease. Am. J. Cardiovasc. Dis. 1:236–43
    [Google Scholar]
  114. 114. 
    Wang C, Deng WJ, Gong WY, Zhang J, Tang H et al. 2015. High prevalence of isolated nocturnal hypertension in Chinese patients with chronic kidney disease. J. Am. Heart Assoc. 4:e002025
    [Google Scholar]
  115. 115. 
    Davidson MB, Hix JK, Vidt DG, Brotman DJ 2006. Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch. Intern. Med. 166:846–52
    [Google Scholar]
  116. 116. 
    Garcia-Ortiz L, Gomez-Marcos MA, Martin-Moreiras J, Gonzalez-Elena LJ, Recio-Rodriguez JI et al. 2009. Pulse pressure and nocturnal fall in blood pressure are predictors of vascular, cardiac and renal target organ damage in hypertensive patients (LOD-RISK study). Blood Press. Monit 14:145–51
    [Google Scholar]
  117. 117. 
    Agarwal R, Andersen MJ. 2006. Prognostic importance of ambulatory blood pressure recordings in patients with chronic kidney disease. Kidney Int 69:1175–80
    [Google Scholar]
  118. 118. 
    Kim YS, Davis S, Stok WJ, van Ittersum FJ, van Lieshout JJ 2019. Impaired nocturnal blood pressure dipping in patients with type 2 diabetes mellitus. Hypertens. Res. 42:59–66
    [Google Scholar]
  119. 119. 
    Sturrock ND, George E, Pound N, Stevenson J, Peck GM, Sowter H 2000. Non-dipping circadian blood pressure and renal impairment are associated with increased mortality in diabetes mellitus. Diabet Med 17:360–64
    [Google Scholar]
  120. 120. 
    Mulec H, Blohme G, Kullenberg K, Nyberg G, Björck S 1995. Latent overhydration and nocturnal hypertension in diabetic nephropathy. Diabetologia 38:216–20
    [Google Scholar]
  121. 121. 
    Uzu T, Kazembe FS, Ishikawa K, Nakamura S, Inenaga T, Kimura G 1996. High sodium sensitivity implicates nocturnal hypertension in essential hypertension. Hypertension 28:139–42
    [Google Scholar]
  122. 122. 
    Fujii T, Uzu T, Nishimura M, Takeji M, Kuroda S et al. 1999. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am. J. Kidney Dis. 33:29–35
    [Google Scholar]
  123. 123. 
    Uzu T, Kimura G, Yamauchi A, Kanasaki M, Isshiki K et al. 2006. Enhanced sodium sensitivity and disturbed circadian rhythm of blood pressure in essential hypertension. J. Hypertens. 24:1627–32
    [Google Scholar]
  124. 124. 
    Fukuda M, Mizuno M, Yamanaka T, Motokawa M, Shirasawa Y et al. 2008. Patients with renal dysfunction require a longer duration until blood pressure dips during the night. Hypertension 52:1155–60
    [Google Scholar]
  125. 125. 
    Wei N, Gumz ML, Layton AT 2018. Predicted effect of circadian clock modulation of NHE3 of a proximal tubule cell on sodium transport. Am. J. Physiol. Ren. Physiol. 315:F665–76
    [Google Scholar]
  126. 126. 
    Solocinski K, Richards J, All S, Cheng KY, Khundmiri SJ, Gumz ML 2015. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. Am. J. Physiol. Ren. Physiol. 309:F933–42
    [Google Scholar]
  127. 127. 
    Richards J, Greenlee MM, Jeffers LA, Cheng KY, Guo Let al. 2012. Inhibition of αENaC expression and ENaC activity following blockade of the circadian clock-regulatory kinases CK1δ/ε. Am. J. Physiol. Renal Physiol 303:F91827
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034446
Loading
/content/journals/10.1146/annurev-physiol-021119-034446
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error