1932

Abstract

The bone morphogenetic protein (BMP) pathway is essential for the morphogenesis of multiple organs in the digestive system. Abnormal BMP signaling has also been associated with disease initiation and progression in the gastrointestinal (GI) tract and associated organs. Recent studies using animal models, tissue organoids, and human pluripotent stem cells have significantly expanded our understanding of the roles played by BMPs in the development and homeostasis of GI organs. It is clear that BMP signaling regulates GI function and disease progression that involve stem/progenitor cells and inflammation in a tissue-specific manner. In this review we discuss these new findings with a focus on the esophagus, stomach, and intestine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034500
2020-02-10
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034500.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034500&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Eblaghie MC, Reedy M, Oliver T, Mishina Y, Hogan BL 2006. Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev. Biol. 29167–82
    [Google Scholar]
  2. 2. 
    Weaver M, Dunn NR, Hogan BL 2000. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 1272695–704
    [Google Scholar]
  3. 3. 
    Dudley AT, Lyons KM, Robertson EJ 1995. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 92795–807
    [Google Scholar]
  4. 4. 
    De Santa Barbara P, Williams J, Goldstein AM, Doyle AM, Nielsen C et al. 2005. Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development. Dev. Dyn. 234312–22
    [Google Scholar]
  5. 5. 
    Heldin CH, Miyazono K, ten Dijke P 1997. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390465–71
    [Google Scholar]
  6. 6. 
    Derynck R, Zhang YE. 2003. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425577–84
    [Google Scholar]
  7. 7. 
    Yu PB, Beppu H, Kawai N, Li E, Bloch KD 2005. Bone morphogenetic protein (BMP) type II receptor deletion reveals BMP ligand-specific gain of signaling in pulmonary artery smooth muscle cells. J. Biol. Chem. 28024443–50
    [Google Scholar]
  8. 8. 
    Saltis J. 1996. TGF-β: receptors and cell cycle arrest. Mol. Cell. Endocrinol. 116227–32
    [Google Scholar]
  9. 9. 
    Brown MA, Zhao Q, Baker KA, Naik C, Chen C et al. 2005. Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J. Biol. Chem. 28025111–18
    [Google Scholar]
  10. 10. 
    David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S 2007. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 1091953–61
    [Google Scholar]
  11. 11. 
    Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q et al. 2007. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J. Cell Sci. 120964–72
    [Google Scholar]
  12. 12. 
    Nishitoh H, Ichijo H, Kimura M, Matsumoto T, Makishima F et al. 1996. Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J. Biol. Chem. 27121345–52
    [Google Scholar]
  13. 13. 
    Yamashita H, ten Dijke P, Huylebroeck D, Sampath TK, Andries M et al. 1995. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J. Cell Biol. 130217–26
    [Google Scholar]
  14. 14. 
    Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H et al. 1995. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. PNAS 927632–36
    [Google Scholar]
  15. 15. 
    Chen D, Zhao M, Mundy GR 2004. Bone morphogenetic proteins. Growth Factors 22233–41
    [Google Scholar]
  16. 16. 
    Kawabata M, Chytil A, Moses HL 1995. Cloning of a novel type II serine/threonine kinase receptor through interaction with the type I transforming growth factor-β receptor. J. Biol. Chem. 2705625–30
    [Google Scholar]
  17. 17. 
    Aykul S, Martinez-Hackert E. 2016. Transforming growth factor-β family ligands can function as antagonists by competing for type II receptor binding. J. Biol. Chem. 29110792–804
    [Google Scholar]
  18. 18. 
    Schmierer B, Hill CS. 2007. TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol. 8970–82
    [Google Scholar]
  19. 19. 
    Miyazono K, Kamiya Y, Morikawa M 2010. Bone morphogenetic protein receptors and signal transduction. J. Biochem. 14735–51
    [Google Scholar]
  20. 20. 
    Sieber C, Kopf J, Hiepen C, Knaus P 2009. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20343–55
    [Google Scholar]
  21. 21. 
    Shi Y, Massague J. 2003. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113685–700
    [Google Scholar]
  22. 22. 
    Yanagita M. 2005. BMP antagonists: their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev 16309–17
    [Google Scholar]
  23. 23. 
    Hata A, Lagna G, Massague J, Hemmati-Brivanlou A 1998. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12186–97
    [Google Scholar]
  24. 24. 
    Bai S, Cao X. 2002. A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-β signaling. J. Biol. Chem. 2774176–82
    [Google Scholar]
  25. 25. 
    Bai S, Shi X, Yang X, Cao X 2000. Smad6 as a transcriptional corepressor. J. Biol. Chem. 2758267–70
    [Google Scholar]
  26. 26. 
    Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K 2001. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-β signaling. J. Cell Biol. 1551017–27
    [Google Scholar]
  27. 27. 
    Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T 2003. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol. Biol. Cell 142809–17
    [Google Scholar]
  28. 28. 
    Hill CS. 2016. Transcriptional control by the SMADs. Cold Spring Harb. Perspect. Biol. 8 https://doi.org/10.1101/cshperspect.a022079
    [Crossref] [Google Scholar]
  29. 29. 
    Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K et al. 1999. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 18179–87
    [Google Scholar]
  30. 30. 
    Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I et al. 1995. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 2702008–11
    [Google Scholar]
  31. 31. 
    Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y et al. 1996. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 2721179–82
    [Google Scholar]
  32. 32. 
    Kishimoto K, Matsumoto K, Ninomiya-Tsuji J 2000. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J. Biol. Chem. 2757359–64
    [Google Scholar]
  33. 33. 
    Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S et al. 1997. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J. Biol. Chem. 2728141–44
    [Google Scholar]
  34. 34. 
    Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T, Ishii S 1999. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J. Biol. Chem. 2748949–57
    [Google Scholar]
  35. 35. 
    Monje P, Hernández-Losa J, Lyons RJ, Castellone MD, Gutkind JS 2005. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 28035081–84
    [Google Scholar]
  36. 36. 
    Grapin-Botton A, Melton DA. 2000. Endoderm development: from patterning to organogenesis. Trends Genet 16124–30
    [Google Scholar]
  37. 37. 
    Zorn AM, Wells JM. 2009. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25221–51
    [Google Scholar]
  38. 38. 
    Gregorieff A, Clevers H. 2005. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19877–90
    [Google Scholar]
  39. 39. 
    Hansson M, Olesen DR, Peterslund JM, Engberg N, Kahn M et al. 2009. A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells. Dev. Biol. 330286–304
    [Google Scholar]
  40. 40. 
    Johannesson M, Ståhlberg A, Ameri J, Sand FW, Norrman K, Semb H 2009. FGF4 and retinoic acid direct differentiation of hESCs into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner. PLOS ONE 4e4794
    [Google Scholar]
  41. 41. 
    Kim BM, Buchner G, Miletich I, Sharpe PT, Shivdasani RA 2005. The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev. Cell 8611–22
    [Google Scholar]
  42. 42. 
    Madison BB, Braunstein K, Kuizon E, Portman K, Qiao XT, Gumucio DL 2005. Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development 132279–89
    [Google Scholar]
  43. 43. 
    Roberts DJ. 2000. Molecular mechanisms of development of the gastrointestinal tract. Dev. Dyn. 219109–20
    [Google Scholar]
  44. 44. 
    van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M et al. 2005. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435959–63
    [Google Scholar]
  45. 45. 
    Sherwood RI, Chen TY, Melton DA 2009. Transcriptional dynamics of endodermal organ formation. Dev. Dyn. 23829–42
    [Google Scholar]
  46. 46. 
    Wells JM, Melton DA. 1999. Vertebrate endoderm development. Annu. Rev. Cell Dev. Biol. 15393–410
    [Google Scholar]
  47. 47. 
    Dessimoz J, Opoka R, Kordich JJ, Grapin-Botton A, Wells JM 2006. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech. Dev. 12342–55
    [Google Scholar]
  48. 48. 
    van den Brink GR. 2007. Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol. Rev. 871343–75
    [Google Scholar]
  49. 49. 
    Davis S, Miura S, Hill C, Mishina Y, Klingensmith J 2004. BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning. Dev. Biol. 27047–63
    [Google Scholar]
  50. 50. 
    Tiso N, Filippi A, Pauls S, Bortolussi M, Argenton F 2002. BMP signalling regulates anteroposterior endoderm patterning in zebrafish. Mech. Dev. 11829–37
    [Google Scholar]
  51. 51. 
    McLin VA, Henning SJ, Jamrich M 2009. The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 1362074–91
    [Google Scholar]
  52. 52. 
    Roberts DJ, Smith DM, Goff DJ, Tabin CJ 1998. Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 1252791–801
    [Google Scholar]
  53. 53. 
    Roberts DJ, Johnson RL, Burke AC, Nelson CE, Morgan BA, Tabin C 1995. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 1213163–74
    [Google Scholar]
  54. 54. 
    Smith DM, Nielsen C, Tabin CJ, Roberts DJ 2000. Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary. Development 1273671–81
    [Google Scholar]
  55. 55. 
    Torihashi S, Hattori T, Hasegawa H, Kurahashi M, Ogaeri T, Fujimoto T 2009. The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut. Differentiation 77277–89
    [Google Scholar]
  56. 56. 
    Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R et al. 2007. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 1342521–31
    [Google Scholar]
  57. 57. 
    Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL 2006. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation 74422–37
    [Google Scholar]
  58. 58. 
    Marsh AJ, Wellesley D, Burge D, Ashton M, Browne C et al. 2000. Interstitial deletion of chromosome 17 (del(17)(q22q23.3)) confirms a link with oesophageal atresia. J. Med. Genet. 37701–4
    [Google Scholar]
  59. 59. 
    Li Y, Litingtung Y, Ten Dijke P, Chiang C 2007. Aberrant Bmp signaling and notochord delamination in the pathogenesis of esophageal atresia. Dev. Dyn. 236746–54
    [Google Scholar]
  60. 60. 
    Minoo P, Su G, Drum H, Bringas P, Kimura S 1999. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1−/− mouse embryos. Dev. Biol. 20960–71
    [Google Scholar]
  61. 61. 
    Zhang YC, Jiang M, Kim E, Lin SJ, Liu KC et al. 2017. Development and stem cells of the esophagus. Semin. Cell Dev. Biol. 6625–35
    [Google Scholar]
  62. 62. 
    Jacobs IJ, Ku WY, Que J 2012. Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Dev. Biol. 36954–64
    [Google Scholar]
  63. 63. 
    Que J. 2015. The initial establishment and epithelial morphogenesis of the esophagus: a new model of tracheal-esophageal separation and transition of simple columnar into stratified squamous epithelium in the developing esophagus. Wiley Interdiscip. Rev. Dev. Biol. 4419–30
    [Google Scholar]
  64. 64. 
    Zhang YC, Yang Y, Jiang M, Huang SX, Zhang WW et al. 2018. 3D modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for notch signaling. Cell Stem Cell 23516–29.e5
    [Google Scholar]
  65. 65. 
    Rodriguez P, Da Silva S, Oxburgh L, Wang F, Hogan BL, Que J 2010. BMP signaling in the development of the mouse esophagus and forestomach. Development 1374171–76
    [Google Scholar]
  66. 66. 
    Trisno SL, Philo KED, McCracken KW, Cata EM, Ruiz-Torres S et al. 2018. Esophageal organoids from human pluripotent stem cells delineate Sox2 functions during esophageal specification. Cell Stem Cell 23501–15.e7
    [Google Scholar]
  67. 67. 
    Jiang M, Ku WY, Zhou Z, Dellon ES, Falk GW et al. 2015. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. J. Clin. Investig. 1251557–68
    [Google Scholar]
  68. 68. 
    Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F et al. 2007. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 1322412–21
    [Google Scholar]
  69. 69. 
    Vaughan TL, Fitzgerald RC. 2015. Precision prevention of oesophageal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 12243–48
    [Google Scholar]
  70. 70. 
    Lagergren J, Lagergren P. 2013. Recent developments in esophageal adenocarcinoma. CA Cancer J. Clin. 63232–48
    [Google Scholar]
  71. 71. 
    Edgren G, Adami HO, Weiderpass E, Nyren O 2013. A global assessment of the oesophageal adenocarcinoma epidemic. Gut 621406–14
    [Google Scholar]
  72. 72. 
    Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P 2011. Incidence of adenocarcinoma among patients with Barrett's esophagus. N. Engl. J. Med. 3651375–83
    [Google Scholar]
  73. 73. 
    McDonald SA, Lavery D, Wright NA, Jansen M 2015. Barrett oesophagus: lessons on its origins from the lesion itself. Nat. Rev. Gastroenterol. Hepatol. 1250–60
    [Google Scholar]
  74. 74. 
    Castillo D, Puig S, Iglesias M, Seoane A, de Bolos C et al. 2012. Activation of the BMP4 pathway and early expression of CDX2 characterize non-specialized columnar metaplasia in a human model of Barrett's esophagus. J. Gastrointest. Surg. 16227–37
    [Google Scholar]
  75. 75. 
    Zhou G, Sun YG, Wang HB, Wang WQ, Wang XW, Fang DC 2009. Acid and bile salt up-regulate BMP4 expression in human esophageal epithelium cells. Scand. J. Gastroenterol. 44926–32
    [Google Scholar]
  76. 76. 
    Wang DH, Clemons NJ, Miyashita T, Dupuy AJ, Zhang W et al. 2010. Aberrant epithelial-mesenchymal hedgehog signaling characterizes Barrett's metaplasia. Gastroenterology 1381810–22
    [Google Scholar]
  77. 77. 
    van Baal JWPM, Verbeek RE, Bus P, Fassan M, Souza RF et al. 2013. microRNA-145 in Barrett's oesophagus: regulating BMP4 signalling via GATA6. Gut 62664–75
    [Google Scholar]
  78. 78. 
    Mari L, Milano F, Parikh K, Straub D, Everts V et al. 2014. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep 71197–210
    [Google Scholar]
  79. 79. 
    Lee Y, Urbanska AM, Hayakawa Y, Wang H, Au AS et al. 2017. Gastrin stimulates a cholecystokinin-2-receptor-expressing cardia progenitor cell and promotes progression of Barrett's-like esophagus. Oncotarget 8203–14
    [Google Scholar]
  80. 80. 
    Quante M, Bhagat G, Abrams JA, Marache F, Good P et al. 2012. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 2136–51
    [Google Scholar]
  81. 81. 
    Jiang M, Li HY, Zhang YC, Yang Y, Lu R et al. 2017. Transitional basal cells at the squamous-columnar junction generate Barrett's oesophagus. Nature 550529–33
    [Google Scholar]
  82. 82. 
    Maloum F, Allaire JM, Gagné-Sansfaçon J, Roy E, Belleville K et al. 2011. Epithelial BMP signaling is required for proper specification of epithelial cell lineages and gastric endocrine cells. Am. J. Physiol. Gastrointest. Liver Physiol. 300G1065–79
    [Google Scholar]
  83. 83. 
    Nam KT, O'Neal R, Lee YS, Lee YC, Coffey RJ, Goldenring JR 2012. Gastric tumor development in Smad3-deficient mice initiates from forestomach/glandular transition zone along the lesser curvature. Lab. Investig. 92883–95
    [Google Scholar]
  84. 84. 
    Wang K, Johnson A, Ali SM, Klempner SJ, Bekaii-Saab T et al. 2015. Comprehensive genomic profiling of advanced esophageal squamous cell carcinomas and esophageal adenocarcinomas reveals similarities and differences. Oncologist 201132–39
    [Google Scholar]
  85. 85. 
    Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C et al. 2013. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45478–86
    [Google Scholar]
  86. 86. 
    Raida M, Sarbia M, Clement JH, Adam S, Gabbert HE, Hoffken K 1999. Expression, regulation and clinical significance of bone morphogenetic protein 6 in esophageal squamous-cell carcinoma. Int. J. Cancer 8338–44
    [Google Scholar]
  87. 87. 
    Lau MC, Ng KY, Wong TL, Tong M, Lee TK et al. 2017. FSTL1 promotes metastasis and chemoresistance in esophageal squamous cell carcinoma through NFκB-BMP signaling cross-talk. Cancer Res 775886–99
    [Google Scholar]
  88. 88. 
    Kolterud A, Grosse AS, Zacharias WJ, Walton KD, Kretovich KE et al. 2009. Paracrine Hedgehog signaling in stomach and intestine: new roles for Hedgehog in gastrointestinal patterning. Gastroenterology 137618–28
    [Google Scholar]
  89. 89. 
    Spencer-Dene B, Sala FG, Bellusci S, Gschmeissner S, Stamp G, Dickson C 2006. Stomach development is dependent on fibroblast growth factor 10/fibroblast growth factor receptor 2b-mediated signaling. Gastroenterology 1301233–44
    [Google Scholar]
  90. 90. 
    Shinohara M, Mao M, Keeley TM, El-Zaatari M, Lee HJ et al. 2010. Bone morphogenetic protein signaling regulates gastric epithelial cell development and proliferation in mice. Gastroenterology 1392050–60.e2
    [Google Scholar]
  91. 91. 
    Demitrack ES, Gifford GB, Keeley TM, Horita N, Todisco A et al. 2017. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus. Am. J. Physiol. Gastrointest. Liver Physiol. 312G133–44
    [Google Scholar]
  92. 92. 
    Smith DM, Grasty RC, Theodosiou NA, Tabin CJ, Nascone-Yoder NM 2000. Evolutionary relationships between the amphibian, avian, and mammalian stomachs. Evol. Dev. 2348–59
    [Google Scholar]
  93. 93. 
    Moniot B, Biau S, Faure S, Nielsen CM, Berta P et al. 2004. SOX9 specifies the pyloric sphincter epithelium through mesenchymal-epithelial signals. Development 1313795–804
    [Google Scholar]
  94. 94. 
    Smith DM, Tabin CJ. 1999. BMP signalling specifies the pyloric sphincter. Nature 402748–49
    [Google Scholar]
  95. 95. 
    Phillips RJ, Powley TL. 2007. Innervation of the gastrointestinal tract: patterns of aging. Auton. Neurosci. 1361–19
    [Google Scholar]
  96. 96. 
    Faure S, McKey J, Sagnol S, de Santa Barbara P 2015. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation. Development 142331–42
    [Google Scholar]
  97. 97. 
    Goldenring JR, Nomura S. 2006. Differentiation of the gastric mucosa III. Animal models of oxyntic atrophy and metaplasia. Am. J. Physiol. Gastrointest. Liver Physiol. 291G999–1004
    [Google Scholar]
  98. 98. 
    Yiangou L, Ross ADB, Goh KJ, Vallier L 2018. Human pluripotent stem cell-derived endoderm for modeling development and clinical applications. Cell Stem Cell 22485–99
    [Google Scholar]
  99. 99. 
    McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M et al. 2014. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516400–4
    [Google Scholar]
  100. 100. 
    Maric I, Poljak L, Zoricic S, Bobinac D, Bosukonda D et al. 2003. Bone morphogenetic protein-7 reduces the severity of colon tissue damage and accelerates the healing of inflammatory bowel disease in rats. J. Cell Physiol. 196258–64
    [Google Scholar]
  101. 101. 
    Blessing M, Nanney LB, King LE, Hogan BL 1995. Chemical skin carcinogenesis is prevented in mice by the induced expression of a TGF-β related transgene. Teratogenes. Carcinogenes. Mutagenes. 1511–21
    [Google Scholar]
  102. 102. 
    Maric I, Kucic N, Turk Wensveen T, Smoljan I, Grahovac B et al. 2012. BMP signaling in rats with TNBS-induced colitis following BMP7 therapy. Am. J. Physiol. Gastrointest. Liver Physiol. 302G1151–62
    [Google Scholar]
  103. 103. 
    Wroblewski LE, Peek RM Jr., Wilson KT 2010. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev. 23713–39
    [Google Scholar]
  104. 104. 
    Bleuming SA, Kodach LL, Garcia Leon MJ, Richel DJ, Peppelenbosch MP et al. 2006. Altered bone morphogenetic protein signalling in the Helicobacter pylori-infected stomach. J. Pathol. 209190–97
    [Google Scholar]
  105. 105. 
    Takabayashi H, Shinohara M, Mao M, Phaosawasdi P, El-Zaatari M et al. 2014. Anti-inflammatory activity of bone morphogenetic protein signaling pathways in stomachs of mice. Gastroenterology 147396–406.e7
    [Google Scholar]
  106. 106. 
    Nagasako T, Sugiyama T, Mizushima T, Miura Y, Kato M, Asaka M 2003. Up-regulated Smad5 mediates apoptosis of gastric epithelial cells induced by Helicobacter pylori infection. J. Biol. Chem. 2784821–25
    [Google Scholar]
  107. 107. 
    Ye W, Takabayashi H, Yang Y, Mao M, Hibdon ES et al. 2018. Regulation of gastric Lgr5+ve cell homeostasis by bone morphogenetic protein (BMP) signaling and inflammatory stimuli. Cell. Mol. Gastroenterol. Hepatol. 5523–38
    [Google Scholar]
  108. 108. 
    Barros R, Pereira B, Duluc I, Azevedo M, Mendes N et al. 2008. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J. Pathol. 215411–20
    [Google Scholar]
  109. 109. 
    Camilo V, Barros R, Sousa S, Magalhães AM, Lopes T et al. 2012. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis 331985–92
    [Google Scholar]
  110. 110. 
    Silberg DG, Sullivan J, Kang E, Swain GP, Moffett J et al. 2002. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122689–96
    [Google Scholar]
  111. 111. 
    Mutoh H, Hakamata Y, Sato K, Eda A, Yanaka I et al. 2002. Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem. Biophys. Res. Commun. 294470–79
    [Google Scholar]
  112. 112. 
    Mutoh H, Sakurai S, Satoh K, Tamada K, Kita H et al. 2004. Development of gastric carcinoma from intestinal metaplasia in Cdx2-transgenic mice. Cancer Res 647740–47
    [Google Scholar]
  113. 113. 
    Halldórsdóttir AM, Sigurdardóttrir M, Jónasson JG, Oddsdóttir M, Magnússon J et al. 2003. Spasmolytic polypeptide-expressing metaplasia (SPEM) associated with gastric cancer in Iceland. Dig. Dis. Sci. 48431–41
    [Google Scholar]
  114. 114. 
    Goldenring JR, Nam KT, Wang TC, Mills JC, Wright NA 2010. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology 1382207–10
    [Google Scholar]
  115. 115. 
    Cancer Genome Atlas Res. Netw 2014. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513202–9
    [Google Scholar]
  116. 116. 
    Bleuming SA, He XC, Kodach LL, Hardwick JC, Koopman FA et al. 2007. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice. Cancer Res 678149–55
    [Google Scholar]
  117. 117. 
    Huh WJ, Mysorekar IU, Mills JC 2010. Inducible activation of Cre recombinase in adult mice causes gastric epithelial atrophy, metaplasia, and regenerative changes in the absence of “floxed” alleles. Am. J. Physiol. Gastrointest. Liver Physiol. 299G368–80
    [Google Scholar]
  118. 118. 
    Wen XZ, Miyake S, Akiyama Y, Yuasa Y 2004. BMP-2 modulates the proliferation and differentiation of normal and cancerous gastric cells. Biochem. Biophys. Res. Commun. 316100–6
    [Google Scholar]
  119. 119. 
    Wen XZ, Akiyama Y, Baylin SB, Yuasa Y 2006. Frequent epigenetic silencing of the bone morphogenetic protein 2 gene through methylation in gastric carcinomas. Oncogene 252666–73
    [Google Scholar]
  120. 120. 
    Park Y, Kim JW, Kim DS, Kim EB, Park SJ et al. 2008. The Bone Morphogenesis Protein-2 (BMP-2) is associated with progression to metastatic disease in gastric cancer. Cancer Res. Treat. 40127–32
    [Google Scholar]
  121. 121. 
    Kang MH, Oh SC, Lee HJ, Kang HN, Kim JL et al. 2011. Metastatic function of BMP-2 in gastric cancer cells: the role of PI3K/AKT, MAPK, the NF-κB pathway, and MMP-9 expression. Exp. Cell Res. 3171746–62
    [Google Scholar]
  122. 122. 
    Sier CF, Kubben FJ, Ganesh S, Heerding MM, Griffioen G et al. 1996. Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br. J. Cancer 74413–17
    [Google Scholar]
  123. 123. 
    Walton KD, Whidden M, Kolterud A, Shoffner SK, Czerwinski MJ et al. 2016. Villification in the mouse: Bmp signals control intestinal villus patterning. Development 143427–36
    [Google Scholar]
  124. 124. 
    Karlsson L, Lindahl P, Heath JK, Betsholtz C 2000. Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 1273457–66
    [Google Scholar]
  125. 125. 
    Walton KD, Kolterud A, Czerwinski MJ, Bell MJ, Prakash A et al. 2012. Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi. PNAS 10915817–22
    [Google Scholar]
  126. 126. 
    Ramalho-Santos M, Melton DA, McMahon AP 2000. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 1272763–72
    [Google Scholar]
  127. 127. 
    Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S et al. 2004. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 3031684–86
    [Google Scholar]
  128. 128. 
    Shyer AE, Huycke TR, Lee C, Mahadevan L, Tabin CJ 2015. Bending gradients: how the intestinal stem cell gets its home. Cell 161569–80
    [Google Scholar]
  129. 129. 
    Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H et al. 2011. On the growth and form of the gut. Nature 47657–62
    [Google Scholar]
  130. 130. 
    Nerurkar NL, Mahadevan L, Tabin CJ 2017. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut. PNAS 1142277–82
    [Google Scholar]
  131. 131. 
    Auclair BA, Benoit YD, Rivard N, Mishina Y, Perreault N 2007. Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology 133887–96
    [Google Scholar]
  132. 132. 
    Jenny M, Uhl C, Roche C, Duluc I, Guillermin V et al. 2002. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J 216338–47
    [Google Scholar]
  133. 133. 
    Beumer J, Artegiani B, Post Y, Reimann F, Gribble F et al. 2018. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20909–16
    [Google Scholar]
  134. 134. 
    Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C et al. 2017. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell 2151–64.e6
    [Google Scholar]
  135. 135. 
    Sweet K, Willis J, Zhou XP, Gallione C, Sawada T et al. 2005. Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA 2942465–73
    [Google Scholar]
  136. 136. 
    Chow E, Macrae F. 2005. A review of juvenile polyposis syndrome. J. Gastroenterol. Hepatol. 201634–40
    [Google Scholar]
  137. 137. 
    Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA et al. 2001. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28184–87
    [Google Scholar]
  138. 138. 
    He XC, Zhang JW, Tong WG, Tawfik O, Ross J et al. 2004. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat. Genet. 361117–21
    [Google Scholar]
  139. 139. 
    Batts LE, Polk DB, Dubois RN, Kulessa H 2006. Bmp signaling is required for intestinal growth and morphogenesis. Dev. Dyn. 2351563–70
    [Google Scholar]
  140. 140. 
    Kuhn R, Schwenk F, Aguet M, Rajewsky K 1995. Inducible gene targeting in mice. Science 2691427–29
    [Google Scholar]
  141. 141. 
    Hahn JN, Falck VG, Jirik FR 2011. Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice. J. Clin. Investig. 1214030–42
    [Google Scholar]
  142. 142. 
    Qi Z, Li Y, Zhao B, Xu C, Liu Y et al. 2017. BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nat. Commun. 813824
    [Google Scholar]
  143. 143. 
    Allaire JM, Roy SA, Ouellet C, Lemieux E, Jones C et al. 2016. Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. Int. J. Cancer 1382700–12
    [Google Scholar]
  144. 144. 
    Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, Toth B, Kondo A et al. 2018. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557242–46
    [Google Scholar]
  145. 145. 
    Alberici P, Jagmohan-Changur S, De Pater E, Van Der Valk M, Smits R et al. 2006. Smad4 haploinsufficiency in mouse models for intestinal cancer. Oncogene 251841–51
    [Google Scholar]
  146. 146. 
    Voorneveld PW, Kodach LL, Jacobs RJ, Liv N, Zonnevylle AC et al. 2014. Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology 147196–208.e13
    [Google Scholar]
  147. 147. 
    Zhang Y, Chen X, Qiao M, Zhang BQ, Wang N et al. 2014. Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells. Oncol. Rep. 321013–20
    [Google Scholar]
  148. 148. 
    Lorente-Trigos A, Varnat F, Melotti A, Ruiz i Altaba A 2010. BMP signaling promotes the growth of primary human colon carcinomas in vivo. J. Mol. Cell Biol 2318–32
    [Google Scholar]
  149. 149. 
    Whissell G, Montagni E, Martinelli P, Hernando-Momblona X, Sevillano M et al. 2014. The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nat. Cell Biol. 16695–707
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034500
Loading
/content/journals/10.1146/annurev-physiol-021119-034500
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error