1932

Abstract

The skeleton harbors an array of lineage cells that have an essential role in whole body homeostasis. Adipocytes start the colonization of marrow space early in postnatal life, expanding progressively and influencing other components of the bone marrow through paracrine signaling. In this unique, closed, and hypoxic environment close to the endosteal surface and adjacent to the microvascular space the marrow adipocyte can store or provide energy, secrete adipokines, and target neighboring bone cells. Adipocyte progenitors can also migrate from the bone marrow to populate white adipose tissue, a process that accelerates during weight gain. The marrow adipocyte also has an endocrine role in whole body homeostasis through its varied secretome that targets distant adipose depots, skeletal muscle, and the nervous system. Further insights into the biology of this unique and versatile cell will undoubtedly lead to novel therapeutic approaches to metabolic and age-related disorders such as osteoporosis and diabetes mellitus.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034513
2020-02-10
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034513.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034513&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA 2018. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 110:134–40
    [Google Scholar]
  2. 2. 
    Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J et al. 2014. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508:269–73
    [Google Scholar]
  3. 3. 
    Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T et al. 2017. Bone marrow adipocytes. Adipocyte 6:193–204
    [Google Scholar]
  4. 4. 
    Emery JL, Follett GF. 1964. Regression of bone-marrow haemopoiesis from the terminal digits in the foetus and infant. Br. J. Haematol. 10:485–89
    [Google Scholar]
  5. 5. 
    Kyle RA, Pease GL. 1965. Hematologic aspects of arsenic intoxication. N. Engl. J. Med. 273:18–23
    [Google Scholar]
  6. 6. 
    Berlier JL, Rethnam M, Majeed ABBA, Suda T 2019. Modification of the bone marrow MSC population in a xenograft model of early multiple myeloma. Biochem. Biophys. Res. Commun. 508:1175–81
    [Google Scholar]
  7. 7. 
    Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B 2007. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–80
    [Google Scholar]
  8. 8. 
    Fazeli PK, Faje A, Bredella MA, Polineni S, Russell S et al. 2019. Changes in marrow adipose tissue with short-term changes in weight in premenopausal women with anorexia nervosa. Eur. J. Endocrinol. 180:189–99
    [Google Scholar]
  9. 9. 
    Rubin MR. 2017. Skeletal fragility in diabetes. Ann. N. Y. Acad. Sci. 1402:18–30
    [Google Scholar]
  10. 10. 
    Falank C, Fairfield H, Reagan MR 2017. Reflections on cancer in the bone marrow: adverse roles of adipocytes. Curr. Mol. Biol. Rep. 3:254–62
    [Google Scholar]
  11. 11. 
    Patsch JM, Li X, Baum T, Yap SP, Karampinos DC et al. 2013. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J. Bone Miner. Res. 28:1721–28
    [Google Scholar]
  12. 12. 
    Fairfield H, Falank C, Farrell M, Vary C, Boucher JM et al. 2019. Development of a 3D bone marrow adipose tissue model. Bone 118:77–88
    [Google Scholar]
  13. 13. 
    Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB et al. 2013. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J. Clin. Endocrinol. Metab. 98:2294–300
    [Google Scholar]
  14. 14. 
    Tabe Y, Yamamoto S, Saitoh K, Sekihara K, Monma N et al. 2017. Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Res 77:1453–64
    [Google Scholar]
  15. 15. 
    Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR et al. 2014. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab 20:368–75
    [Google Scholar]
  16. 16. 
    Lynes MD, Tseng YH. 2018. Deciphering adipose tissue heterogeneity. Ann. N. Y. Acad. Sci. 1411:5–20
    [Google Scholar]
  17. 17. 
    Suchacki KJ, Cawthorn WP. 2018. Molecular interaction of bone marrow adipose tissue with energy metabolism. Curr. Mol. Biol. Rep. 4:41–49
    [Google Scholar]
  18. 18. 
    Cinti S. 2018. Adipose organ development and remodeling. Compr. Physiol. 8:1357–431
    [Google Scholar]
  19. 19. 
    Oral EA, Gorden P, Cochran E, Araújo-Vilar D, Savage DB et al. 2019. Long-term effectiveness and safety of metreleptin in the treatment of patients with partial lipodystrophy. Endocrine 64:500–11
    [Google Scholar]
  20. 20. 
    Kajimura S, Saito M. 2014. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu. Rev. Physiol. 76:225–49
    [Google Scholar]
  21. 21. 
    Seale P, Bjork B, Yang W, Kajimura S, Chin S et al. 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–67
    [Google Scholar]
  22. 22. 
    Yoneshiro T, Shin W, Machida K, Fukano K, Tsubota A et al. 2019. Differentiation of bone marrow-derived cells toward thermogenic adipocytes in white adipose tissue induced by the β3 adrenergic stimulation. FASEB J 33:5196–207
    [Google Scholar]
  23. 23. 
    Lehr S, Hartwig S, Lamers D, Famulla S, Muller S et al. 2012. Identification and validation of novel adipokines released from primary human adipocytes. Mol. Cell. Proteom. 11:M111.010504
    [Google Scholar]
  24. 24. 
    Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R et al. 1987. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–64
    [Google Scholar]
  25. 25. 
    Tavassoli M, Crosby WH. 1970. Bone marrow histogenesis: a comparison of fatty and red marrow. Science 169:291–93
    [Google Scholar]
  26. 26. 
    Meunier P, Aaron J, Edouard C, Vignon G 1971. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin. Orthopaed. Relat. Res. 80:147–54
    [Google Scholar]
  27. 27. 
    de Paula FJ, de Araujo IM, Carvalho AL, Elias J Jr, Salmon CE, Nogueira-Barbosa MH 2015. The relationship of fat distribution and insulin resistance with lumbar spine bone mass in women. PLOS ONE 10:e0129764
    [Google Scholar]
  28. 28. 
    Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR et al. 1996. Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol. Pharmacol. 50:1087–94
    [Google Scholar]
  29. 29. 
    Martin RB, Zissimos SL. 1991. Relationships between marrow fat and bone turnover in ovariectomized and intact rats. Bone 12:123–31
    [Google Scholar]
  30. 30. 
    Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL 2002. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143:2376–84
    [Google Scholar]
  31. 31. 
    Shockley KR, Lazarenko OP, Czernik PJ, Rosen CJ, Churchill GA, Lecka-Czernik B 2009. PPARγ2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J. Cell. Biochem. 106:232–46
    [Google Scholar]
  32. 32. 
    Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL 2005. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226–35
    [Google Scholar]
  33. 33. 
    Liu Y, Strecker S, Wang L, Kronenberg MS, Wang W et al. 2013. Osterix-Cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma. PLOS ONE 8:e71318
    [Google Scholar]
  34. 34. 
    Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M et al. 2015. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160:269–84
    [Google Scholar]
  35. 35. 
    Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS et al. 2013. Marrow fat and bone—new perspectives. J. Clin. Endocrinol. Metab. 98:935–45
    [Google Scholar]
  36. 36. 
    Scheller EL, Troiano N, Vanhoutan JN, Bouxsein MA, Fretz JA et al. 2014. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol 537:123–39
    [Google Scholar]
  37. 37. 
    Doucette CR, Horowitz MC, Berry R, MacDougald OA, Anunciado-Koza R et al. 2015. A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. J. Cell. Physiol. 230:2032–37
    [Google Scholar]
  38. 38. 
    Bornstein S, Moschetta M, Kawano Y, Sacco A, Huynh D et al. 2017. Metformin affects cortical bone mass and marrow adiposity in diet-induced obesity in male mice. Endocrinology 158:3369–85
    [Google Scholar]
  39. 39. 
    Motyl KJ, Dick-de-Paula I, Maloney AE, Lotinun S, Bornstein S et al. 2012. Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain. Bone 50:490–98
    [Google Scholar]
  40. 40. 
    Tencerova M, Figeac F, Ditzel N, Taipaleenmaki H, Nielsen TK, Kassem M 2018. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J. Bone Miner. Res. 33:1154–65
    [Google Scholar]
  41. 41. 
    Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S et al. 2010. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Miner. Res. 25:2078–88
    [Google Scholar]
  42. 42. 
    Hui SK, Sharkey L, Kidder LS, Zhang Y, Fairchild G et al. 2012. The influence of therapeutic radiation on the patterns of bone marrow in ovary-intact and ovariectomized mice. PLOS ONE 7:e42668
    [Google Scholar]
  43. 43. 
    Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S et al. 2015. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 6:7808
    [Google Scholar]
  44. 44. 
    Scheller EL, Khandaker S, Learman BS, Cawthorn WP, Anderson LM et al. 2019. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation. Bone 118:32–41
    [Google Scholar]
  45. 45. 
    Rharass T, Lucas S. 2018. Mechanisms in endocrinology: Bone marrow adiposity and bone, a bad romance. Eur. J. Endocrinol. 179:R165–82
    [Google Scholar]
  46. 46. 
    Bredella MA, Greenblatt LB, Eajazi A, Torriani M, Yu EW 2017. Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone 95:85–90
    [Google Scholar]
  47. 47. 
    de Paula FJA, Rosen CJ 2017. Structure and function of bone marrow adipocytes. Compr. Physiol. 8:315–49
    [Google Scholar]
  48. 48. 
    Trudel G, Payne M, Madler B, Ramachandran N, Lecompte M et al. 2009. Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the Women International Space Simulation for Exploration study. J. Appl. Physiol. 107:540–48
    [Google Scholar]
  49. 49. 
    Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S 2008. Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos. Int. 19:1323–30
    [Google Scholar]
  50. 50. 
    Gerbaix M, Gnyubkin V, Farlay D, Olivier C, Ammann P et al. 2017. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons. Sci. Rep. 7:2659
    [Google Scholar]
  51. 51. 
    Robles H, Park S, Joens MS, Fitzpatrick JAJ, Craft CS, Scheller EL 2019. Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy. Bone 118:89–98
    [Google Scholar]
  52. 52. 
    McGee-Lawrence ME, Carpio LR, Schulze RJ, Pierce JL, McNiven MA et al. 2016. Hdac3 deficiency increases marrow adiposity and induces lipid storage and glucocorticoid metabolism in osteochondroprogenitor cells. J. Bone Miner. Res. 31:116–28
    [Google Scholar]
  53. 53. 
    Wang L, Huang J, Moore DC, Song Y, Ehrlich MG, Yang W 2019. SHP2 regulates intramembranous ossification by modifying the TGFβ and BMP2 signaling pathway. Bone 120:327–35
    [Google Scholar]
  54. 54. 
    Wend K, Wend P, Drew BG, Hevener AL, Miranda-Carboni GA, Krum SA 2013. ERα regulates lipid metabolism in bone through ATGL and perilipin. J. Cell. Biochem. 114:1306–14
    [Google Scholar]
  55. 55. 
    Rooney AM, van der Meulen MCH 2017. Mouse models to evaluate the role of estrogen receptor α in skeletal maintenance and adaptation. Ann. N. Y. Acad. Sci. 1410:85–92
    [Google Scholar]
  56. 56. 
    Zhao JW, Gao ZL, Mei H, Li YL, Wang Y 2011. Differentiation of human mesenchymal stem cells: the potential mechanism for estrogen-induced preferential osteoblast versus adipocyte differentiation. Am. J. Med. Sci. 341:460–68
    [Google Scholar]
  57. 57. 
    Beekman KM, Veldhuis-Vlug AG, den Heijer M, Maas M, Oleksik AM et al. 2019. The effect of raloxifene on bone marrow adipose tissue and bone turnover in postmenopausal women with osteoporosis. Bone 118:62–68
    [Google Scholar]
  58. 58. 
    Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE et al. 2017. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 546:107–12
    [Google Scholar]
  59. 59. 
    Zaidi M, Lizneva D, Kim SM, Sun L, Iqbal J et al. 2018. FSH, bone mass, body fat, and biological aging. Endocrinology 159:3503–14
    [Google Scholar]
  60. 60. 
    Kim SW, Pajevic PD, Selig M, Barry KJ, Yang JY et al. 2012. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J. Bone Miner. Res. 27:2075–84
    [Google Scholar]
  61. 61. 
    de Paula FJ, Rosen CJ 2010. Back to the future: revisiting parathyroid hormone and calcitonin control of bone remodeling. Horm. Metab. Res. 42:299–306
    [Google Scholar]
  62. 62. 
    Turner RT, Iwaniec UT. 2011. Low dose parathyroid hormone maintains normal bone formation in adult male rats during rapid weight loss. Bone 48:726–32
    [Google Scholar]
  63. 63. 
    Maridas DE, Rendina-Ruedy E, Helderman RC, DeMambro VE, Brooks D et al. 2019. Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton. FASEB J 33:2885–98
    [Google Scholar]
  64. 64. 
    Fan Y, Hanai JI, Le PT, Bi R, Maridas D et al. 2017. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab 25:661–72
    [Google Scholar]
  65. 65. 
    Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A et al. 2001. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J. Clin. Investig. 107:277–86
    [Google Scholar]
  66. 66. 
    Cain CJ, Valencia JT, Ho S, Jordan K, Mattingly A et al. 2016. Increased Gs signaling in osteoblasts reduces bone marrow and whole-body adiposity in male mice. Endocrinology 157:1481–94
    [Google Scholar]
  67. 67. 
    Ishizuya T, Yokose S, Hori M, Noda T, Suda T et al. 1997. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J. Clin. Investig. 99:2961–70
    [Google Scholar]
  68. 68. 
    Rickard DJ, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ et al. 2006. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone 39:1361–72
    [Google Scholar]
  69. 69. 
    Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F 2014. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLOS ONE 9:e85161
    [Google Scholar]
  70. 70. 
    Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W et al. 2016. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab 23:315–23
    [Google Scholar]
  71. 71. 
    Ko FC, Martins JS, Reddy P, Bragdon B, Hussein AI et al. 2016. Acute phosphate restriction impairs bone formation and increases marrow adipose tissue in growing mice. J. Bone Miner. Res. 31:2204–14
    [Google Scholar]
  72. 72. 
    Cohen SL, Halaas JL, Friedman JM, Chait BT, Bennett L et al. 1996. Human leptin characterization. Nature 382:589
    [Google Scholar]
  73. 73. 
    Bennett BD, Solar GP, Yuan JQ, Mathias J, Thomas GR, Matthews W 1996. A role for leptin and its cognate receptor in hematopoiesis. Curr. Biol. 6:1170–80
    [Google Scholar]
  74. 74. 
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF et al. 2000. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207
    [Google Scholar]
  75. 75. 
    de Paula FJ, Rosen CJ 2013. Bone remodeling and energy metabolism: new perspectives. Bone Res 1:72–84
    [Google Scholar]
  76. 76. 
    Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hartzell D, Baile CA 2005. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J. Bone Miner. Res. 20:994–1001
    [Google Scholar]
  77. 77. 
    Ambati S, Li Q, Rayalam S, Hartzell DL, Della-Fera MA et al. 2010. Central leptin versus ghrelin: effects on bone marrow adiposity and gene expression. Endocrine 37:115–23
    [Google Scholar]
  78. 78. 
    Veldhuis-Vlug AG, Rosen CJ. 2018. Clinical implications of bone marrow adiposity. J. Intern. Med. 283:121–39
    [Google Scholar]
  79. 79. 
    Baron R, Kneissel M. 2013. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19:179–92
    [Google Scholar]
  80. 80. 
    Li X, Zhang Y, Kang H, Liu W, Liu P et al. 2005. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280:19883–87
    [Google Scholar]
  81. 81. 
    Fairfield H, Falank C, Harris E, Demambro V, McDonald M et al. 2018. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J. Cell. Physiol. 233:1156–67
    [Google Scholar]
  82. 82. 
    Carvalho AL, DeMambro VE, Guntur AR, Le P, Nagano K et al. 2018. High fat diet attenuates hyperglycemia, body composition changes, and bone loss in male streptozotocin-induced type 1 diabetic mice. J. Cell. Physiol. 233:1585–600
    [Google Scholar]
  83. 83. 
    de Araujo IM, Salmon CE, Nahas AK, Nogueira-Barbosa MH, Elias J Jr, de Paula FJ 2017. Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus. Eur. J. Endocrinol. 176:21–30
    [Google Scholar]
  84. 84. 
    Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ et al. 2011. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity 19:49–53
    [Google Scholar]
  85. 85. 
    Spangrude GJ, Heimfeld S, Weissman IL 1988. Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62
    [Google Scholar]
  86. 86. 
    Szade K, Gulati GS, Chan CKF, Kao KS, Miyanishi M et al. 2018. Where hematopoietic stem cells live: the bone marrow niche. Antioxid. Redox Signal. 29:191–204
    [Google Scholar]
  87. 87. 
    Metzger D, Chambon P. 2001. Site- and time-specific gene targeting in the mouse. Methods 24:71–80
    [Google Scholar]
  88. 88. 
    Chen JC, Hoey DA, Chua M, Bellon R, Jacobs CR 2016. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J 30:1504–11
    [Google Scholar]
  89. 89. 
    Nagy A. 2000. Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109
    [Google Scholar]
  90. 90. 
    Branda CS, Dymecki SM. 2004. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6:7–28
    [Google Scholar]
  91. 91. 
    Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ 2002. Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33:77–80
    [Google Scholar]
  92. 92. 
    Sanchez-Gurmaches J, Hsiao WY, Guertin DA 2015. Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Rep 4:541–50
    [Google Scholar]
  93. 93. 
    Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–68
    [Google Scholar]
  94. 94. 
    Kalajzic Z, Li H, Wang LP, Jiang X, Lamothe K et al. 2008. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone 43:501–10
    [Google Scholar]
  95. 95. 
    Bianco P, Robey PG, Saggio I, Riminucci M 2010. “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum. Gene Ther. 21:1057–66
    [Google Scholar]
  96. 96. 
    Gronthos S, Simmons PJ, Graves SE, Robey PG 2001. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 28:174–81
    [Google Scholar]
  97. 97. 
    Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM et al. 2017. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20:771–84.e6
    [Google Scholar]
  98. 98. 
    Rodeheffer MS, Birsoy K, Friedman JM 2008. Identification of white adipocyte progenitor cells in vivo. Cell 135:240–49
    [Google Scholar]
  99. 99. 
    Gavin KM, Gutman JA, Kohrt WM, Wei Q, Shea KL et al. 2016. De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue. FASEB J 30:1096–108
    [Google Scholar]
  100. 100. 
    Kawai M, de Paula FJ, Rosen CJ 2012. New insights into osteoporosis: the bone-fat connection. J. Intern. Med. 272:317–29
    [Google Scholar]
  101. 101. 
    Takeshita S, Fumoto T, Naoe Y, Ikeda K 2014. Age-related marrow adipogenesis is linked to increased expression of RANKL. J. Biol. Chem. 289:16699–710
    [Google Scholar]
  102. 102. 
    Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M et al. 2009. Increased bone marrow fat in anorexia nervosa. J. Clin. Endocrinol. Metab. 94:2129–36
    [Google Scholar]
  103. 103. 
    Maurice F, Dutour A, Vincentelli C, Abdesselam I, Bernard M et al. 2018. Active Cushing syndrome patients have increased ectopic fat deposition and bone marrow fat content compared to cured patients and healthy subjects: a pilot 1H-MRS study. Eur. J. Endocrinol. 179:307–17
    [Google Scholar]
  104. 104. 
    de Paula FJ, Dick-de-Paula I, Bornstein S, Rostama B, Le P et al. 2011. VDR haploinsufficiency impacts body composition and skeletal acquisition in a gender-specific manner. Calcif. Tissue Int. 89:179–91
    [Google Scholar]
  105. 105. 
    Bredella MA, Fazeli PK, Daley SM, Miller KK, Rosen CJ et al. 2014. Marrow fat composition in anorexia nervosa. Bone 66:199–204
    [Google Scholar]
  106. 106. 
    Mendonça ML, Batista SL, Nogueira-Barbosa MH, Salmon CE, Paula FJ 2016. Primary hyperparathyroidism: the influence of bone marrow adipose tissue on bone loss and of osteocalcin on insulin resistance. Clinics 71:464–69
    [Google Scholar]
  107. 107. 
    Yu EW, Greenblatt L, Eajazi A, Torriani M, Bredella MA 2017. Marrow adipose tissue composition in adults with morbid obesity. Bone 97:38–42
    [Google Scholar]
  108. 108. 
    Machann J, Stefan N, Wagner R, Bongers M, Schleicher E et al. 2017. Intra- and interindividual variability of fatty acid unsaturation in six different human adipose tissue compartments assessed by 1H-MRS in vivo at 3 T. NMR Biomed 30:e3744
    [Google Scholar]
  109. 109. 
    Carvalho AL, Massaro B, Silva LTPE, Salmon CEG, Fukada SY et al. 2019. Emerging aspects of the body composition, bone marrow adipose tissue and skeletal phenotypes in type 1 diabetes mellitus. J. Clin. Densitom. 22:420–28
    [Google Scholar]
  110. 110. 
    Baum T, Yap SP, Dieckmeyer M, Ruschke S, Eggers H et al. 2015. Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. J. Magnet. Reson. Imag. 42:1018–23
    [Google Scholar]
  111. 111. 
    Parreiras ESLT, de Araujo IM, Elias J Jr, Nogueira-Barbosa MH, Suen VMM et al. 2018. Short bowel syndrome: influence of nutritional therapy and incretin GLP1 on bone marrow adipose tissue. Ann. N. Y. Acad. Sci. 1415:47–56
    [Google Scholar]
  112. 112. 
    Cawthorn WP, Scheller EL, Parlee SD, Pham HA, Learman BS et al. 2016. Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology 157:508–21
    [Google Scholar]
  113. 113. 
    Fazeli PK, Bredella MA, Freedman L, Thomas BJ, Breggia A et al. 2012. Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J. Bone Miner. Res. 27:1864–71
    [Google Scholar]
  114. 114. 
    Chandy KG, DeCoursey TE, Cahalan MD, Gupta S 1985. Electroimmunology: the physiologic role of ion channels in the immune system. J. Immunol. 135:787s–91s
    [Google Scholar]
  115. 115. 
    Gat-Yablonski G, Phillip M. 2015. Nutritionally-induced catch-up growth. Nutrients 7:517–51
    [Google Scholar]
  116. 116. 
    Caers J, Deleu S, Belaid Z, De Raeve H, Van Valckenborgh E et al. 2007. Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia 21:1580–84
    [Google Scholar]
  117. 117. 
    Paula FJ, Rosen CJ. 2010. Obesity, diabetes mellitus and last but not least, osteoporosis. Arq. Bras. Endocrinol. Metabol. 54:150–57
    [Google Scholar]
  118. 118. 
    Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J 2010. Obesity and fractures in postmenopausal women. J. Bone Miner. Res. 25:292–97
    [Google Scholar]
  119. 119. 
    Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM et al. 2011. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J. Bone Miner. Res. 26:496–502
    [Google Scholar]
  120. 120. 
    Laharrague P, Larrouy D, Fontanilles AM, Truel N, Campfield A et al. 1998. High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J 12:747–52
    [Google Scholar]
  121. 121. 
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–32
    [Google Scholar]
  122. 122. 
    Harris RB. 2014. Direct and indirect effects of leptin on adipocyte metabolism. Biochim. Biophys. Acta 1842:414–23
    [Google Scholar]
  123. 123. 
    Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ 2016. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18:782–96
    [Google Scholar]
  124. 124. 
    Laharrague P, Truel N, Fontanilles AM, Corberand JX, Penicaud L, Casteilla L 2000. Regulation by cytokines of leptin expression in human bone marrow adipocytes. Horm. Metab. Res. 32:381–85
    [Google Scholar]
  125. 125. 
    Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N et al. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7:941–46
    [Google Scholar]
  126. 126. 
    Liu C, Feng X, Li Q, Wang Y, Li Q, Hua M 2016. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine 86:100–9
    [Google Scholar]
  127. 127. 
    Qiao L, Lee B, Kinney B, Yoo HS, Shao J 2011. Energy intake and adiponectin gene expression. Am. J. Physiol. Endocrinol. Metab. 300:E809–16
    [Google Scholar]
  128. 128. 
    Behre CJ, Gummesson A, Jernas M, Lystig TC, Fagerberg B et al. 2007. Dissociation between adipose tissue expression and serum levels of adiponectin during and after diet-induced weight loss in obese subjects with and without the metabolic syndrome. Metab. Clin. Exp. 56:1022–28
    [Google Scholar]
  129. 129. 
    Okazaki R, Inoue D, Shibata M, Saika M, Kido S et al. 2002. Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) α or β. Endocrinology 143:2349–56
    [Google Scholar]
  130. 130. 
    Dang ZC, van Bezooijen RL, Karperien M, Papapoulos SE, Lowik CW 2002. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J. Bone Miner. Res. 17:394–405
    [Google Scholar]
  131. 131. 
    Zhu ZN, Jiang YF, Ding T 2014. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 68:115–23
    [Google Scholar]
  132. 132. 
    Schwartz AV, Chen H, Ambrosius WT, Sood A, Josse RG et al. 2015. Effects of TZD use and discontinuation on fracture rates in ACCORD bone study. J. Clin. Endocrinol. Metab. 100:4059–66
    [Google Scholar]
  133. 133. 
    Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR et al. 2006. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355:2427–43
    [Google Scholar]
  134. 134. 
    Hou Y, Cao X, Hu X, Li X, Shi X et al. 2018. CMHX008, a PPARγ partial agonist, enhances insulin sensitivity with minor influences on bone loss. Genes Dis 5:290–29
    [Google Scholar]
  135. 135. 
    Singhal V, Misra M, Klibanski A 2014. Endocrinology of anorexia nervosa in young people: recent insights. Curr. Opin. Endocrinol. Diabetes Obes. 21:64–70
    [Google Scholar]
  136. 136. 
    Grinspoon S, Thomas E, Pitts S, Gross E, Mickley D et al. 2000. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann. Intern. Med. 133:790–4
    [Google Scholar]
  137. 137. 
    Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV et al. 2010. Bone marrow changes in adolescent girls with anorexia nervosa. J. Bone Miner. Res. 25:298–304
    [Google Scholar]
  138. 138. 
    Heath H 3rd, Melton LJ 3rd, Chu CP 1980. Diabetes mellitus and risk of skeletal fracture. N. Engl. J. Med. 303:567–70
    [Google Scholar]
  139. 139. 
    Janghorbani M, Van Dam RM, Willett WC, Hu FB 2007. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am. J. Epidemiol. 166:495–505
    [Google Scholar]
  140. 140. 
    Doucette CR, Rosen CJ. 2014. Inducible models of bone loss. Curr. Protoc. Mouse Biol. 4:165–80
    [Google Scholar]
  141. 141. 
    Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR 2015. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol. Cell. Endocrinol. 410:35–41
    [Google Scholar]
  142. 142. 
    Napoli N, Conte C, Pedone C, Strotmeyer ES, Barbour KE et al. 2019. Effect of insulin resistance on BMD and fracture risk in older adults. J. Clin. Endocrinol. Metab. 104:3303–10
    [Google Scholar]
  143. 143. 
    Lima JG, Nobrega LHC, Lima NN, Dos Santos MCF, Baracho MFP et al. 2017. Normal bone density and trabecular bone score, but high serum sclerostin in congenital generalized lipodystrophy. Bone 101:21–25
    [Google Scholar]
  144. 144. 
    Ermetici F, Briganti S, Delnevo A, Cannao P, Leo GD et al. 2018. Bone marrow fat contributes to insulin sensitivity and adiponectin secretion in premenopausal women. Endocrine 59:410–18
    [Google Scholar]
  145. 145. 
    Zhu L, Xu Z, Li G, Wang Y, Li X et al. 2019. Marrow adiposity as an indicator for insulin resistance in postmenopausal women with newly diagnosed type 2 diabetes—an investigation by chemical shift-encoded water-fat MRI. Eur. J. Radiol. 113:158–64
    [Google Scholar]
  146. 146. 
    Russell M, Mendes N, Miller KK, Rosen CJ, Lee H et al. 2010. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J. Clin. Endocrinol. Metab. 95:1247–55
    [Google Scholar]
  147. 147. 
    Bastos CM, Araujo IM, Nogueira-Barbosa MH, Salmon CEG, de Paula FJA, Troncon LEA 2017. Reduced bone mass and preserved marrow adipose tissue in patients with inflammatory bowel diseases in long-term remission. Osteoporos. Int. 28:2167–76
    [Google Scholar]
  148. 148. 
    Slade JM, Coe LM, Meyer RA, McCabe LR 2012. Human bone marrow adiposity is linked with serum lipid levels not T1-diabetes. J. Diabetes Complicat. 26:1–9
    [Google Scholar]
  149. 149. 
    Maciel JG, de Araujo IM, Carvalho AL, Simao MN, Bastos CM et al. 2017. Marrow fat quality differences by sex in healthy adults. J. Clin. Densitom. 20:106–13
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034513
Loading
/content/journals/10.1146/annurev-physiol-021119-034513
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error