1932

Abstract

In mammals, most cardiomyocytes (CMs) become polyploid (they have more than two complete sets of chromosomes). The purpose of this review is to evaluate assumptions about CM ploidy that are commonly discussed, even if not experimentally demonstrated, and to highlight key issues that are still to be resolved. Topics discussed here include () technical and conceptual difficulties in defining a polyploid CM, () the candidate role of reactive oxygen as a proximal trigger for the onset of polyploidy, () the relationship between polyploidization and other aspects of CM maturation, () recent insights related to the regenerative role of the subpopulation of CMs that are not polyploid, and () speculations as to why CMs become polyploid at all. New approaches to experimentally manipulate CM ploidy may resolve some of these long-standing and fundamental questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034618
2020-02-10
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034618.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034618&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Øvrebo JI, Edgar BA. 2018. Polyploidy in tissue homeostasis and regeneration. Development 145:dev156034
    [Google Scholar]
  2. 2. 
    Lazzeri E, Angelotti ML, Conte C, Anders HJ, Romagnani P 2019. Surviving acute organ failure: cell polyploidization and progenitor proliferation. Trends Mol. Med. 25:366–81
    [Google Scholar]
  3. 3. 
    Brodsky WY, Arefyeva AM, Uryvaeva IV 1980. Mitotic polyploidization of mouse heart myocytes during the first postnatal week. Cell Tissue Res 210:133–44
    [Google Scholar]
  4. 4. 
    Kellerman S, Moore JA, Zierhut W, Zimmer HG, Campbell J, Gerdes AM 1992. Nuclear DNA content and nucleation patterns in rat cardiac myocytes from different models of cardiac hypertrophy. J. Mol. Cell. Cardiol. 24:497–505
    [Google Scholar]
  5. 5. 
    Li F, Wang X, Capasso JM, Gerdes AM 1996. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 28:1737–46
    [Google Scholar]
  6. 6. 
    Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ 1996. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. Heart Circ. Physiol. 271:H2183–89
    [Google Scholar]
  7. 7. 
    Laflamme MA, Murry CE. 2011. Heart regeneration. Nature 473:326–35
    [Google Scholar]
  8. 8. 
    Mollova M, Bersell K, Walsh S, Savla J, Das LT et al. 2013. Cardiomyocyte proliferation contributes to heart growth in young humans. PNAS 110:1446–51
    [Google Scholar]
  9. 9. 
    Xavier-Vidal R, Mandarim-de-Lacerda CA. 1995. Cardiomyocyte proliferation and hypertrophy in the human fetus: quantitative study of the myocyte nuclei. Bull. Assoc. Anat. 79:27–31
    [Google Scholar]
  10. 10. 
    Gräbner W, Pfitzer P. 1974. Number of nuclei in isolated myocardial cells of pigs. Virchows Arch. B 15:279–94
    [Google Scholar]
  11. 11. 
    Patterson M, Barske L, Van Handel B, Rau CD, Gan PH et al. 2017. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat. Genet. 49:1346–53
    [Google Scholar]
  12. 12. 
    Buckingham M, Meilhac S, Zaffran S 2005. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6:826–35
    [Google Scholar]
  13. 13. 
    Günthel M, Barnett P, Christoffels VM 2018. Development, proliferation, and growth of the mammalian heart. Mol. Ther. 26:1599–609
    [Google Scholar]
  14. 14. 
    Li P, Cavallero S, Gu Y, Chen THP, Hughes J et al. 2011. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 138:1795–805
    [Google Scholar]
  15. 15. 
    Walsh S, Ponten A, Fleischmann BK, Jovinge S 2010. Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovasc. Res. 86:365–73
    [Google Scholar]
  16. 16. 
    Sucov HM. 1998. Molecular insights into cardiac development. Annu. Rev. Physiol. 60:287–308
    [Google Scholar]
  17. 17. 
    Kim MY, Eiby YA, Lumbers ER, Wright LL, Gibson KJ et al. 2014. Effects of glucocorticoid exposure on growth and structural maturation of the heart of the preterm piglet. PLOS ONE 9:e93407
    [Google Scholar]
  18. 18. 
    Schmid G, Pfitzer P. 1985. Mitoses and binucleated cells in perinatal human hearts. Virchows Arch. B 48:59–67
    [Google Scholar]
  19. 19. 
    Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ 2007. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J. Appl. Physiol. 102:1130–42
    [Google Scholar]
  20. 20. 
    Alkass K, Panula J, Westman M, Wu TD, Guerquin-Kern JL, Bergmann O 2015. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163:1026–36
    [Google Scholar]
  21. 21. 
    Beltrami CA, Di Loreto C, Finato N, Yan SM 1997. DNA content in end-stage heart failure. Adv. Clin. Pathol. 1:59–73
    [Google Scholar]
  22. 22. 
    Swynghedauw B, Delcayre C. 1982. Biology of cardiac overload. Pathobiol. Annu. 12:137–83
    [Google Scholar]
  23. 23. 
    Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H et al. 2019. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364:184–88
    [Google Scholar]
  24. 24. 
    Anatskaya OV, Vinogradov AE, Kudryavtsev BN 2001. Cardiomyocyte ploidy levels in birds with different growth rates. J. Exp. Zool. 289:48–58
    [Google Scholar]
  25. 25. 
    Kikuchi K, Poss KD. 2012. Cardiac regenerative capacity and mechanisms. Annu. Rev. Cell Dev. Biol. 28:719–41
    [Google Scholar]
  26. 26. 
    Huang CF, Chen YC, Yeh HI, Chen SA 2012. Mononucleated and binucleated cardiomyocytes in left atrium and pulmonary vein have different electrical activity and calcium dynamics. Prog. Biophys. Mol. Biol. 108:64–73
    [Google Scholar]
  27. 27. 
    Raulf A, Horder H, Tarnawski L, Geisen C, Ottersbach A et al. 2015. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status. Basic Res. Cardiol. 110:33
    [Google Scholar]
  28. 28. 
    Gerdes AM, Onodera T, Tamura T, Said S, Bohlmeyer TJ et al. 1998. New method to evaluate myocyte remodeling from formalin-fixed biopsy and autopsy material. J. Cardiac Fail. 4:343–48
    [Google Scholar]
  29. 29. 
    Stukenberg PT, Burke DJ. 2015. Connecting the microtubule attachment status of each kinetochore to cell cycle arrest through the spindle assembly checkpoint. Chromosoma 124:463–80
    [Google Scholar]
  30. 30. 
    Vitale I, Galluzzi L, Castedo M, Kroemer G 2011. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12:385–92
    [Google Scholar]
  31. 31. 
    Zebrowski DC, Vergarajauregui S, Wu CC, Piatkowski T, Becker R et al. 2015. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife 4:e05563
    [Google Scholar]
  32. 32. 
    Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ 2005. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ. Res. 96:110–18
    [Google Scholar]
  33. 33. 
    Zhou J, Ahmad F, Parikh S, Hoffman NE, Rajan S et al. 2016. Loss of adult cardiac myocyte GSK-3 leads to mitotic catastrophe resulting in fatal dilated cardiomyopathy. Circ. Res. 118:1208–22
    [Google Scholar]
  34. 34. 
    Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y et al. 2018. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173:104–16
    [Google Scholar]
  35. 35. 
    Chattergoon NN, Giraud GD, Louey S, Stork P, Fowden AL, Thornburg KL 2012. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J 26:397–408
    [Google Scholar]
  36. 36. 
    Chattergoon NN, Louey S, Stork P, Giraud GD, Thornburg KL 2012. Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. Reprod. Sci. 19:642–49
    [Google Scholar]
  37. 37. 
    Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF et al. 2014. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157:565–79
    [Google Scholar]
  38. 38. 
    Dawes GS, Mott JC, Widdicombe JG 1954. The foetal circulation in the lamb. J. Physiol. 126:563–87
    [Google Scholar]
  39. 39. 
    Girard JR, Cuendet GS, Marliss EB, Kervran A, Rieutort M, Assan R 1973. Fuels, hormones, and liver metabolism at term and during the early postnatal period in the rat. J. Clin. Investig. 52:3190–200
    [Google Scholar]
  40. 40. 
    Görs S, Kucia M, Langhammer M, Junghans P, Metges CC 2009. Technical note: milk composition in mice—methodological aspects and effects of mouse strain and lactation day. J. Dairy Sci. 92:632–37
    [Google Scholar]
  41. 41. 
    Barger PM, Kelly DP. 2000. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc. Med. 10:238–45
    [Google Scholar]
  42. 42. 
    Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417:1–13
    [Google Scholar]
  43. 43. 
    Schonfeld P, Wojtczak L. 2008. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic. Biol. Med. 45:231–41
    [Google Scholar]
  44. 44. 
    Boquien CY. 2018. Human milk: an ideal food for nutrition of preterm newborn. Front. Pediatr. 6:295
    [Google Scholar]
  45. 45. 
    Portman MA. 2008. Thyroid hormone regulation of heart metabolism. Thyroid 18:217–25
    [Google Scholar]
  46. 46. 
    Orgeig S, Crittenden TA, Marchant C, McMillen IC, Morrison JL 2010. Intrauterine growth restriction delays surfactant protein maturation in the sheep fetus. Am. J. Physiol. Lung Cell. Mol. Physiol. 298:L575–83
    [Google Scholar]
  47. 47. 
    Soothill PW, Nicolaides KH, Rodeck CH, Campbell S 1986. Effect of gestational age on fetal and intervillous blood gas and acid-base values in human pregnancy. Fetal Ther 1:168–75
    [Google Scholar]
  48. 48. 
    Murray TV, Smyrnias I, Schnelle M, Mistry RK, Zhang M et al. 2015. Redox regulation of cardiomyocyte cell cycling via an ERK1/2 and c-Myc-dependent activation of cyclin D2 transcription. J. Mol. Cell. Cardiol. 79:54–68
    [Google Scholar]
  49. 49. 
    Buggisch M, Ateghang B, Ruhe C, Strobel C, Lange S et al. 2007. Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J. Cell Sci. 120:885–94
    [Google Scholar]
  50. 50. 
    Ponnusamy M, Li PF, Wang K 2017. Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cell. Mol. Life Sci. 74:1019–34
    [Google Scholar]
  51. 51. 
    Leone M, Musa G, Engel FB 2018. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression. Cardiovasc. Res. 114:1115–31
    [Google Scholar]
  52. 52. 
    Vagnozzi RJ, Gatto GJ Jr., Kallander LS, Hoffman NE, Mallilankaraman K et al. 2013. Inhibition of the cardiomyocyte-specific kinase TNNI3K limits oxidative stress, injury, and adverse remodeling in the ischemic heart. Sci. Transl. Med. 5:207ra141
    [Google Scholar]
  53. 53. 
    Kannan S, Kwon C. 2018. Regulation of cardiomyocyte maturation during critical perinatal window. J. Physiol. https://doi.org/10.1113/JP276754
    [Crossref] [Google Scholar]
  54. 54. 
    Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG et al. 2017. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. PNAS 114:E8372–81
    [Google Scholar]
  55. 55. 
    Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L et al. 2017. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121:1323–30
    [Google Scholar]
  56. 56. 
    Gay MS, Dasgupta C, Li Y, Kanna A, Zhang L 2016. Dexamethasone induces cardiomyocyte terminal differentiation via epigenetic repression of cyclin D2 gene. J. Pharmacol. Exp. Ther. 358:190–98
    [Google Scholar]
  57. 57. 
    Gonzalez-Rosa JM, Sharpe M, Field D, Soonpa MH, Field LJ et al. 2018. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev. Cell 44:433–46
    [Google Scholar]
  58. 58. 
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L et al. 2013. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–36
    [Google Scholar]
  59. 59. 
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F et al. 2009. Evidence for cardiomyocyte renewal in humans. Science 324:98–102
    [Google Scholar]
  60. 60. 
    Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R 2014. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. PNAS 111:8850–55
    [Google Scholar]
  61. 61. 
    Oberpriller JO, Oberpriller JC. 1974. Response of the adult newt ventricle to injury. J. Exp. Zool. 187:249–53
    [Google Scholar]
  62. 62. 
    Poss KD, Wilson LG, Keating MT 2002. Heart regeneration in zebrafish. Science 298:2188–90
    [Google Scholar]
  63. 63. 
    Robledo M. 1956. Myocardial regeneration in young rats. Am. J. Pathol. 32:1215–39
    [Google Scholar]
  64. 64. 
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA et al. 2011. Transient regenerative potential of the neonatal mouse heart. Science 331:1078–80
    [Google Scholar]
  65. 65. 
    Zhu W, Zhang E, Zhao M, Chong Z, Fan C et al. 2018. Regenerative potential of neonatal porcine hearts. Circulation 138:2809–16
    [Google Scholar]
  66. 66. 
    Ye L, D'Agostino G, Loo SJ, Wang CX, Su LP et al. 2018. Early regenerative capacity in the porcine heart. Circulation 138:2798–808
    [Google Scholar]
  67. 67. 
    Westaby S, Archer N, Myerson SG 2008. Cardiac development after salvage partial left ventriculectomy in an infant with anomalous left coronary artery from the pulmonary artery. J. Thorac. Cardiovasc. Surg. 136:784–85
    [Google Scholar]
  68. 68. 
    Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W et al. 2016. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res. 118:216–21
    [Google Scholar]
  69. 69. 
    Notari M, Ventura-Rubio A, Bedford-Guaus SJ, Jorba I, Mulero L et al. 2018. The local microenvironment limits the regenerative potential of the mouse neonatal heart. Sci. Adv. 4:eaao5553
    [Google Scholar]
  70. 70. 
    Ikenishi A, Okayama H, Iwamoto N, Yoshitome S, Tane S et al. 2012. Cell cycle regulation in mouse heart during embryonic and postnatal stages. Dev. Growth Differ. 54:731–38
    [Google Scholar]
  71. 71. 
    Bersell K, Arab S, Haring B, Kuhn B 2009. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–70
    [Google Scholar]
  72. 72. 
    Chen X, Wilson RM, Kubo H, Berretta RM, Harris DM et al. 2007. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ. Res. 100:536–44
    [Google Scholar]
  73. 73. 
    Herdrich BJ, Danzer E, Davey MG, Allukian M, Englefield V et al. 2010. Regenerative healing following foetal myocardial infarction. Eur. J. Cardiothorac. Surg. 38:691–98
    [Google Scholar]
  74. 74. 
    White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ 1987. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51
    [Google Scholar]
  75. 75. 
    Taylor GJ, Humphries JO, Mellits ED, Pitt B, Schulze RA et al. 1980. Predictors of clinical course, coronary anatomy and left ventricular function after recovery from acute myocardial infarction. Circulation 62:960–70
    [Google Scholar]
  76. 76. 
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–91
    [Google Scholar]
  77. 77. 
    Dewey FE, Murray MF, Overton JD, Habegger L, Leader JB et al. 2016. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR Study. Science 354:aaf6814
    [Google Scholar]
  78. 78. 
    D'Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y et al. 2015. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17:627–38
    [Google Scholar]
  79. 79. 
    Wang WE, Li L, Xia X, Fu W, Liao Q et al. 2017. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 136:834–48
    [Google Scholar]
  80. 80. 
    Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S et al. 2015. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 523:226–30
    [Google Scholar]
  81. 81. 
    Gaubatz JW. 1986. DNA damage during aging of mouse myocardium. J. Mol. Cell. Cardiol. 18:1317–20
    [Google Scholar]
  82. 82. 
    Zhang S, Zhou K, Luo X, Li L, Tu HC et al. 2018. The polyploid state plays a tumor-suppressive role in the liver. Dev. Cell 44:447–59
    [Google Scholar]
  83. 83. 
    Vivien CJ, Hudson JE, Porrello ER 2016. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen. Med. 1:16012
    [Google Scholar]
  84. 84. 
    Anatskaya OV, Vinogradov AE. 2002. Myocyte ploidy in heart chambers of birds with different locomotor activity. J. Exp. Zool. 293:427–41
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034618
Loading
/content/journals/10.1146/annurev-physiol-021119-034618
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error