1932

Abstract

Acidic metabolic waste products accumulate in the tumor microenvironment because of high metabolic activity and insufficient perfusion. In tumors, the acidity of the interstitial space and the relatively well-maintained intracellular pH influence cancer and stromal cell function, their mutual interplay, and their interactions with the extracellular matrix. Tumor pH is spatially and temporally heterogeneous, and the fitness advantage of cancer cells adapted to extracellular acidity is likely particularly evident when they encounter less acidic tumor regions, for instance, during invasion. Through complex effects on genetic stability, epigenetics, cellular metabolism, proliferation, and survival, the compartmentalized pH microenvironment favors cancer development. Cellular selection exacerbates the malignant phenotype, which is further enhanced by acid-induced cell motility, extracellular matrix degradation, attenuated immune responses, and modified cellular and intercellular signaling. In this review, we discuss how the acidity of the tumor microenvironment influences each stage in cancer development, from dysplasia to full-blown metastatic disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034627
2020-02-10
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034627.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034627&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Palmer AS, Miller AJ, Davis C, Greene R 1998. Gas tensions in cardiac lymph as a reflection of the interstitial space of the heart. Angiology 49:735–41
    [Google Scholar]
  2. 2. 
    Niv Y, Fraser GM. 2002. The alkaline tide phenomenon. J. Clin. Gastroenterol. 35:5–8
    [Google Scholar]
  3. 3. 
    Street D, Bangsbo J, Juel C 2001. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J. Physiol. 537:993–98
    [Google Scholar]
  4. 4. 
    Hosseinpour M, Khamechian T, Shahrokh S 2014. Peritoneal potassium and pH measurement in early diagnosis of acute mesenteric ischemia in rats. Arch. Trauma Res. 3:e20957
    [Google Scholar]
  5. 5. 
    Mochizuki S, Taniguchi M, Seki S, Ishiki M, Ozeki T et al. 1988. Acid-base changes in ischemic myocardium and intervention with hypothermia or bicarbonate. Jpn. Circ. J. 52:638–45
    [Google Scholar]
  6. 6. 
    Punnia-Moorthy A. 1987. Evaluation of pH changes in inflammation of the subcutaneous air pouch lining in the rat, induced by carrageenan, dextran and Staphylococcus aureus. J. Oral Pathol. Med 16:36–44
    [Google Scholar]
  7. 7. 
    Boedtkjer E, Bunch L, Pedersen SF 2012. Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: similarities, differences and implications for cancer therapy. Curr. Pharm. Des. 18:1345–71
    [Google Scholar]
  8. 8. 
    Lee S, Axelsen TV, Andersen AP, Vahl P, Pedersen SF, Boedtkjer E 2016. Disrupting Na+,HCO3-cotransporter NBCn1 (Slc4a7) delays murine breast cancer development. Oncogene 35:2112–22
    [Google Scholar]
  9. 9. 
    Vaupel P, Kallinowski F, Okunieff P 1989. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–65
    [Google Scholar]
  10. 10. 
    Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L et al. 2017. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin. Cancer Biol. 43:74–89
    [Google Scholar]
  11. 11. 
    Bahrami A, Hassanian SM, Khazaei M, Hasanzadeh M, Shahidsales S et al. 2018. The therapeutic potential of targeting tumor microenvironment in breast cancer: rational strategies and recent progress. J. Cell. Biochem. 119:111–22
    [Google Scholar]
  12. 12. 
    Stock C, Pedersen SF. 2017. Roles of pH and the Na+/H+ exchanger NHE1 in cancer: from cell biology and animal models to an emerging translational perspective?. Semin. Cancer Biol. 43:5–16
    [Google Scholar]
  13. 13. 
    Andersen AP, Moreira JM, Pedersen SF 2014. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos. Trans. R. Soc. B 369:20130098
    [Google Scholar]
  14. 14. 
    Rohani N, Hao L, Alexis MS, Joughin BA, Krismer K et al. 2019. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res 79:1952–66
    [Google Scholar]
  15. 15. 
    Helmlinger G, Yuan F, Dellian M, Jain RK 1997. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3:177–82
    [Google Scholar]
  16. 16. 
    Griffiths JR. 1991. Are cancer cells acidic. Br. J. Cancer 64:425–27
    [Google Scholar]
  17. 17. 
    Chiche J, Brahimi-Horn MC, Pouyssegur J 2010. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell. Mol. Med. 14:771–94
    [Google Scholar]
  18. 18. 
    Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK 2001. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020–24
    [Google Scholar]
  19. 19. 
    Gillies RJ, Brown JS, Anderson ARA, Gatenby RA 2018. Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat. Rev. Cancer 18:576–85
    [Google Scholar]
  20. 20. 
    Lee S, Mele M, Vahl P, Christiansen PM, Jensen VED, Boedtkjer E 2015. Na+,HCO3-cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane. Pflügers Arch 467:367–77
    [Google Scholar]
  21. 21. 
    Voss NCS, Kold-Petersen H, Henningsen MB, Homilius C, Boedtkjer E 2019. Upregulated Na+/H+-exchange protects human colon cancer tissue against intracellular acidification. BioMed. Res. Int. 2019:3702783
    [Google Scholar]
  22. 22. 
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  23. 23. 
    Gatenby RA, Brown J. 2017. Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer. Biochim. Biophys. Acta Rev. Cancer 1867:162–66
    [Google Scholar]
  24. 24. 
    Morita T, Nagaki T, Fukuda I, Okumura K 1992. Clastogenicity of low pH to various cultured mammalian cells. Mutat. Res. 268:297–305
    [Google Scholar]
  25. 25. 
    Xiao H, Li TK, Yang JM, Liu LF 2003. Acidic pH induces topoisomerase II-mediated DNA damage. PNAS 100:5205–10
    [Google Scholar]
  26. 26. 
    Zhang HY, Hormi-Carver K, Zhang X, Spechler SJ, Souza RF 2009. In benign Barrett's epithelial cells, acid exposure generates reactive oxygen species that cause DNA double-strand breaks. Cancer Res 69:9083–89
    [Google Scholar]
  27. 27. 
    Jayanth VR, Bayne MT, Varnes ME 1994. Effects of extracellular and intracellular pH on repair of potentially lethal damage, chromosome aberrations and DNA double-strand breaks in irradiated plateau-phase A549 cells. Radiat. Res. 139:152–62
    [Google Scholar]
  28. 28. 
    Massonneau J, Ouellet C, Lucien F, Dubois CM, Tyler J, Boissonneault G 2018. Suboptimal extracellular pH values alter DNA damage response to induced double-strand breaks. FEBS Open. Biol. 8:416–25
    [Google Scholar]
  29. 29. 
    Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA 2017. Alternating pH landscapes shape epithelial cancer initiation and progression: focus on pancreatic cancer. Bioessays 39:1600253
    [Google Scholar]
  30. 30. 
    Axelrad JE, Lichtiger S, Yajnik V 2016. Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol. 22:4794–801
    [Google Scholar]
  31. 31. 
    Piconese S, Cammarata I, Barnaba V 2018. Viral hepatitis, inflammation, and cancer: a lesson for autoimmunity. J. Autoimmun. 95:58–68
    [Google Scholar]
  32. 32. 
    Boedtkjer E, Moreira JM, Mele M, Vahl P, Wielenga VT et al. 2013. Contribution of Na+,HCO3-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int. J. Cancer 132:1288–99
    [Google Scholar]
  33. 33. 
    Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK et al. 2009. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat. Genet. 41:585–90
    [Google Scholar]
  34. 34. 
    Kwon TH, Fulton C, Wang W, Kurtz I, Frokiaer J et al. 2002. Chronic metabolic acidosis upregulates rat kidney Na+-HCO3 cotransporters NBCn1 and NBC3 but not NBC1. Am. J. Physiol. Ren. Physiol. 282:F341–51
    [Google Scholar]
  35. 35. 
    Kanaan A, Douglas RM, Alper SL, Boron WF, Haddad GG 2007. Effect of chronic elevated carbon dioxide on the expression of acid-base transporters in the neonatal and adult mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R1294–302
    [Google Scholar]
  36. 36. 
    Rosenberg HKML. 2010. Regulation of electroneutral Na+,HCO3-cotransporter NBCn1 PhD Diss Aarhus Univ.
    [Google Scholar]
  37. 37. 
    Gorbatenko A, Olesen CW, Loebl N, Sigurdsson HH, Bianchi C et al. 2016. Oncogenic p95HER2 regulates Na+–HCO3 cotransporter NBCn1 mRNA stability in breast cancer cells via 3′UTR-dependent processes. Biochem. J. 473:4027–44
    [Google Scholar]
  38. 38. 
    McBrian MA, Behbahan IS, Ferrari R, Su T, Huang TW et al. 2013. Histone acetylation regulates intracellular pH. Mol. Cell 49:310–21
    [Google Scholar]
  39. 39. 
    Corbet C, Draoui N, Polet F, Pinto A, Drozak X et al. 2014. The SIRT1/HIF2α axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res 74:5507–19
    [Google Scholar]
  40. 40. 
    Zhou ZH, Wang QL, Mao LH, Li XQ, Liu P et al. 2019. Chromatin accessibility changes are associated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells. Cell Cycle 18:511–22
    [Google Scholar]
  41. 41. 
    Pavlova NN, Thompson CB. 2016. The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47
    [Google Scholar]
  42. 42. 
    Corbet C, Pinto A, Martherus R, de Jesus JPS, Polet F, Feron O 2018. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab 24:311–23
    [Google Scholar]
  43. 43. 
    Nadtochiy SM, Schafer X, Fu D, Nehrke K, Munger J, Brookes PS 2016. Acidic pH is a metabolic switch for 2-hydroxyglutarate generation and signaling. J. Biol. Chem. 291:20188–97
    [Google Scholar]
  44. 44. 
    Chen JL, Lucas JE, Schroeder T, Mori S, Wu J et al. 2008. The genomic analysis of lactic acidosis and acidosis response in human cancers. PLOS Genet 4:e1000293
    [Google Scholar]
  45. 45. 
    LaMonte G, Tang X, Chen JL, Wu J, Ding CK et al. 2013. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab 1:23
    [Google Scholar]
  46. 46. 
    Kondo A, Yamamoto S, Nakaki R, Shimamura T, Hamakubo T et al. 2017. Extracellular acidic pH activates the sterol regulatory element-binding protein 2 to promote tumor progression. Cell Rep 18:2228–42
    [Google Scholar]
  47. 47. 
    Silberman A, Goldman O, Assayag OB, Jacob A, Rabinovich S et al. 2019. Acid-induced downregulation of ASS1 contributes to the maintenance of intracellular pH in cancer. Cancer Res 79:518–33
    [Google Scholar]
  48. 48. 
    Intlekofer AM, Wang B, Liu H, Shah H, Carmona-Fontaine C et al. 2017. l-2-hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat. Chem. Biol. 13:494–500
    [Google Scholar]
  49. 49. 
    Robergs RA, Ghiasvand F, Parker D 2004. Biochemistry of exercise-induced metabolic acidosis. Am. J. Physiol. Reg. Int. Physiol. 287:R502–16
    [Google Scholar]
  50. 50. 
    Fidelman ML, Seeholzer SH, Walsh KB, Moore RD 1982. Intracellular pH mediates action of insulin on glycolysis in frog skeletal muscle. Am. J. Physiol. 242:C87–93
    [Google Scholar]
  51. 51. 
    Trivedi B, Danforth WH. 1966. Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241:4110–12
    [Google Scholar]
  52. 52. 
    Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K et al. 2011. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. PNAS 108:16663–68
    [Google Scholar]
  53. 53. 
    Boedtkjer E. 2019. Na+,HCO3 cotransporter NBCn1 accelerates breast carcinogenesis. Cancer Metastasis Rev 38:165–78
    [Google Scholar]
  54. 54. 
    Gorbatenko A, Olesen CW, Boedtkjer E, Pedersen SF 2014. Regulation and roles of bicarbonate transporters in cancer. Front. Physiol. 5:130
    [Google Scholar]
  55. 55. 
    Parks SK, Chiche J, Pouyssegur J 2013. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer 13:611–23
    [Google Scholar]
  56. 56. 
    Pouyssegur J, Franchi A, Pages G 2001. pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Found. Symp. 240:186–96
    [Google Scholar]
  57. 57. 
    Lee S, Axelsen TV, Jessen N, Pedersen SF, Vahl P, Boedtkjer E 2018. Na+,HCO3-cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene 37:5569–84
    [Google Scholar]
  58. 58. 
    Franchi A, Silvestre P, Pouysségur J 1981. A genetic approach to the role of energy metabolism in the growth of tumor cells: tumorigenicity of fibroblast mutants deficient either in glycolysis or in respiration. Int. J. Cancer 27:819–27
    [Google Scholar]
  59. 59. 
    Vander Heiden MG, Cantley LC, Thompson CB 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33
    [Google Scholar]
  60. 60. 
    San-Millan I, Brooks GA. 2017. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38:119–33
    [Google Scholar]
  61. 61. 
    Dhup S, Dadhich RK, Porporato PE, Sonveaux P 2012. Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr. Pharm. Des. 18:1319–30
    [Google Scholar]
  62. 62. 
    Wilde BR, Ye Z, Lim TY, Ayer DE 2019. Cellular acidosis triggers human MondoA transcriptional activity by driving mitochondrial ATP production. eLife 8:e40199
    [Google Scholar]
  63. 63. 
    Khacho M, Tarabay M, Patten D, Khacho P, MacLaurin JG et al. 2014. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat. Commun. 5:3550
    [Google Scholar]
  64. 64. 
    Wu H, Ying M, Hu X 2016. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation. Oncotarget 7:40621–29
    [Google Scholar]
  65. 65. 
    Hardee ME, Dewhirst MW, Agarwal N, Sorg BS 2009. Novel imaging provides new insights into mechanisms of oxygen transport in tumors. Curr. Mol. Med. 9:435–41
    [Google Scholar]
  66. 66. 
    Vartanian A, Singh SK, Agnihotri S, Jalali S, Burrell K et al. 2014. GBM's multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro-Oncol 16:1167–75
    [Google Scholar]
  67. 67. 
    Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E et al. 2016. Metabolic heterogeneity in human lung tumors. Cell 164:681–94
    [Google Scholar]
  68. 68. 
    Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J et al. 2008. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Investig. 118:3930–42
    [Google Scholar]
  69. 69. 
    Fox CJ, Hammerman PS, Thompson CB 2005. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5:844–52
    [Google Scholar]
  70. 70. 
    Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC 2008. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J. Leukoc. Biol. 84:949–57
    [Google Scholar]
  71. 71. 
    Altman BJ, Stine ZE, Dang CV 2016. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16:619–34
    [Google Scholar]
  72. 72. 
    Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. 2013. Cellular fatty acid metabolism and cancer. Cell Metab 18:153–61
    [Google Scholar]
  73. 73. 
    Barba I, Cabañas ME, Arus C 1999. The relationship between nuclear magnetic resonance-visible lipids, lipid droplets, and cell proliferation in cultured C6 cells. Cancer Res 59:1861–8
    [Google Scholar]
  74. 74. 
    Menard JA, Christianson HC, Kucharzewska P, Bourseau-Guilmain E, Svensson KJ et al. 2016. Metastasis stimulation by hypoxia and acidosis-induced extracellular lipid uptake is mediated by proteoglycan-dependent endocytosis. Cancer Res 76:4828–40
    [Google Scholar]
  75. 75. 
    Mackenzie CG, Mackenzie JB, Beck P 1961. The effect of pH on growth, protein synthesis, and lipid-rich particles of cultured mammalian cells. J. Biophys. Biochem. Cytol. 9:141–56
    [Google Scholar]
  76. 76. 
    Shyu P Jr., Wong XFA, Crasta K, Thibault G. 2018. Dropping in on lipid droplets: insights into cellular stress and cancer. Biosci. Rep. 38:BSR20180764
    [Google Scholar]
  77. 77. 
    Marino ML, Pellegrini P, Di Lernia G, Djavaheri-Mergny M, Brnjic S et al. 2012. Autophagy is a protective mechanism for human melanoma cells under acidic stress. J. Biol. Chem. 287:30664–76
    [Google Scholar]
  78. 78. 
    Wojtkowiak JW, Rothberg JM, Kumar V, Schramm KJ, Haller E et al. 2012. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res 72:3938–47
    [Google Scholar]
  79. 79. 
    Xie WY, Zhou XD, Li Q, Chen LX, Ran DH 2015. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress. Exp. Cell Res. 339:270–79
    [Google Scholar]
  80. 80. 
    Glunde K, Guggino SE, Solaiyappan M, Pathak AP, Ichikawa Y, Bhujwalla ZM 2003. Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia 5:533–45
    [Google Scholar]
  81. 81. 
    Steffan JJ, Snider JL, Skalli O, Welbourne T, Cardelli JA 2009. Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic 10:737–53
    [Google Scholar]
  82. 82. 
    Damaghi M, Tafreshi NK, Lloyd MC, Sprung R, Estrella V et al. 2015. Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nat. Commun. 6:8752
    [Google Scholar]
  83. 83. 
    Giroux V, Rustgi AK. 2017. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat. Rev. Cancer 17:594–604
    [Google Scholar]
  84. 84. 
    Flinck M, Kramer SH, Pedersen SF 2018. Roles of pH in control of cell proliferation. Acta Physiol 223:e13068
    [Google Scholar]
  85. 85. 
    Putney LK, Barber DL. 2003. Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J. Biol. Chem. 278:44645–49
    [Google Scholar]
  86. 86. 
    Flinck M, Kramer SH, Schnipper J, Andersen AP, Pedersen SF 2018. The acid-base transport proteins NHE1 and NBCn1 regulate cell cycle progression in human breast cancer cells. Cell Cycle 17:1056–67
    [Google Scholar]
  87. 87. 
    Rotin D, Steele-Norwood D, Grinstein S, Tannock I 1989. Requirement of the Na+/H+ exchanger for tumor growth. Cancer Res 49:205–11
    [Google Scholar]
  88. 88. 
    Huang WC, Swietach P, Vaughan-Jones RD, Ansorge O, Glitsch MD 2008. Extracellular acidification elicits spatially and temporally distinct Ca2+ signals. Curr. Biol. 18:781–85
    [Google Scholar]
  89. 89. 
    Wiley SZ, Sriram K, Salmerón C, Insel PA 2019. GPR68: an emerging drug target in cancer. Int. J. Mol. Sci. 20:559
    [Google Scholar]
  90. 90. 
    Zhou ZH, Song JW, Li W, Liu X, Cao L et al. 2017. The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. J. Exp. Clin. Cancer Res. 36:130
    [Google Scholar]
  91. 91. 
    Jenkins GJ, D'Souza FR, Suzen SH, Eltahir ZS, James SA et al. 2007. Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: the potential role of anti-oxidants in Barrett's oesophagus. Carcinogenesis 28:136–42
    [Google Scholar]
  92. 92. 
    Grillo-Hill BK, Choi C, Jimenez-Vidal M, Barber DL 2015. Increased H+ efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. eLife 4:e03270
    [Google Scholar]
  93. 93. 
    Jensen HH, Pedersen GA, Morgen JJ, Parsons M, Pedersen SF, Nejsum LN 2019. The Na+/H+ exchanger NHE1 localizes as clusters to cryptic lamellipodia and accelerates collective epithelial cell migration. J. Physiol. 597:849–67
    [Google Scholar]
  94. 94. 
    Bernards R, Weinberg RA. 2002. Metastasis genes: a progression puzzle. Nature 418:823
    [Google Scholar]
  95. 95. 
    Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P et al. 2008. Acid treatment of melanoma cells selects for invasive phenotypes. Clin. Exp. Metastasis 25:411–25
    [Google Scholar]
  96. 96. 
    Tomlinson IP, Novelli MR, Bodmer WF 1996. The mutation rate and cancer. PNAS 93:14800–3
    [Google Scholar]
  97. 97. 
    Andersen AP, Samsøe-Petersen J, Oernbo EK, Boedtkjer E, Moreira JMA et al. 2018. The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int. J. Cancer 142:2529–42
    [Google Scholar]
  98. 98. 
    Plaks V, Kong N, Werb Z 2015. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells?. Cell Stem Cell 16:225–38
    [Google Scholar]
  99. 99. 
    Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J et al. 2011. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18:829–40
    [Google Scholar]
  100. 100. 
    Filatova A, Seidel S, Böğürcü N, Gräf S, Garvalov BK, Acker T 2016. Acidosis acts through HSP90 in a PHD/VHL-independent manner to promote HIF function and stem cell maintenance in glioma. Cancer Res 76:5845–56
    [Google Scholar]
  101. 101. 
    Hu P, Li S, Tian N, Wu F, Hu Y et al. 2019. Acidosis enhances the self-renewal and mitochondrial respiration of stem cell-like glioma cells through CYP24A1-mediated reduction of vitamin D. Cell Death Dis 10:25
    [Google Scholar]
  102. 102. 
    De Los Angeles A, Ferrari F, Fujiwara Y, Mathieu R, Lee S et al. 2015. Failure to replicate the STAP cell phenomenon. Nature 525:E6–9
    [Google Scholar]
  103. 103. 
    Tian Y, Bresenitz P, Reska A, El Moussaoui L, Beier CP, Grunder S 2017. Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3. Sci. Rep. 7:13674
    [Google Scholar]
  104. 104. 
    Ulmschneider B, Grillo-Hill BK, Benitez M, Azimova DR, Barber DL, Nystul TG 2016. Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation. J. Cell Biol. 215:345–55
    [Google Scholar]
  105. 105. 
    Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H 2015. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers 7:2443–58
    [Google Scholar]
  106. 106. 
    Angelucci C, Maulucci G, Lama G, Proietti G, Colabianchi A et al. 2012. Epithelial-stromal interactions in human breast cancer: effects on adhesion, plasma membrane fluidity and migration speed and directness. PLOS ONE 7:e50804
    [Google Scholar]
  107. 107. 
    Fiaschi T, Giannoni E, Taddei ML, Cirri P, Marini A et al. 2013. Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle 12:1791–801
    [Google Scholar]
  108. 108. 
    Hulikova A, Black N, Hsia L-T, Wilding J, Bodmer WF, Swietach P 2016. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid. PNAS 113:E5344–53
    [Google Scholar]
  109. 109. 
    Swietach P, Patiar S, Supuran CT, Harris AL, Vaughan-Jones RD 2009. The role of carbonic anhydrase 9 in regulating extracellular and intracellular pH in three-dimensional tumor cell growths. J. Biol. Chem. 284:20299–310
    [Google Scholar]
  110. 110. 
    Dovmark TH, Hulikova A, Niederer SA, Vaughan-Jones RD, Swietach P 2018. Normoxic cells remotely regulate the acid-base balance of cells at the hypoxic core of connexin-coupled tumor growths. FASEB J 32:83–96
    [Google Scholar]
  111. 111. 
    Dovmark TH, Saccomano M, Hulikova A, Alves F, Swietach P 2017. Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells. Oncogene 36:4538–50
    [Google Scholar]
  112. 112. 
    Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL et al. 2016. Monocarboxylate transporters in the brain and in cancer. Biochim. Biophys. Acta 1863:2481–97
    [Google Scholar]
  113. 113. 
    Guo S, Deng CX. 2018. Effect of stromal cells in tumor microenvironment on metastasis initiation. Int. J. Biol. Sci. 14:2083–93
    [Google Scholar]
  114. 114. 
    Guido C, Whitaker-Menezes D, Capparelli C, Balliet R, Lin Z et al. 2012. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with “Warburg-like” cancer metabolism and L-lactate production. Cell Cycle 11:3019–35
    [Google Scholar]
  115. 115. 
    Vaughan RA, Garcia-Smith R, Dorsey J, Griffith JK, Bisoffi M, Trujillo KA 2013. Tumor necrosis factor alpha induces Warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells. Int. J. Cancer 133:2504–10
    [Google Scholar]
  116. 116. 
    Vaughan RA, Garcia-Smith R, Trujillo KA, Bisoffi M 2013. Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells. Prostate 73:1538–46
    [Google Scholar]
  117. 117. 
    Apostolopoulou M, Ligon L. 2012. Cadherin-23 mediates heterotypic cell-cell adhesion between breast cancer epithelial cells and fibroblasts. PLOS ONE 7:e33289
    [Google Scholar]
  118. 118. 
    Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P et al. 2014. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33:4203–12
    [Google Scholar]
  119. 119. 
    Groebe K, Vaupel P. 1988. Evaluation of oxygen diffusion distances in human breast cancer xenografts using tumor-specific in vivo data: role of various mechanisms in the development of tumor hypoxia. Int. J. Radiat Oncol. Biol. Phys. 15:691–97
    [Google Scholar]
  120. 120. 
    Döme B, Hendrix MJC, Paku S, Tóvári J, Tímár J 2007. Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am. J. Pathol. 170:1–15
    [Google Scholar]
  121. 121. 
    Froelunde AS, Ohlenbusch M, Hansen KB, Jessen N, Kim S, Boedtkjer E 2018. Murine breast cancer feed arteries are thin-walled with reduced α1A-adrenoceptor expression and attenuated sympathetic vasocontraction. Breast Cancer Res 20:20
    [Google Scholar]
  122. 122. 
    Voss NCS, Kold-Petersen H, Boedtkjer E 2019. Enhanced nitric oxide signaling amplifies vasorelaxation of human colon cancer feed arteries. Am. J. Physiol. Heart Circ. Physiol. 316:H245–54
    [Google Scholar]
  123. 123. 
    Jain RK. 2001. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46:149–68
    [Google Scholar]
  124. 124. 
    Trédan O, Galmarini CM, Patel K, Tannock IF 2007. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99:1441–54
    [Google Scholar]
  125. 125. 
    Donnem T, Hu J, Ferguson M, Adighibe O, Snell C et al. 2013. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment. Cancer Med 2:427–36
    [Google Scholar]
  126. 126. 
    Katayama Y, Uchino J, Chihara Y, Tamiya N, Kaneko Y et al. 2019. Tumor neovascularization and developments in therapeutics. Cancers 11:316
    [Google Scholar]
  127. 127. 
    Huang S, He P, Xu D, Li J, Peng X, Tang Y 2017. Acidic stress induces apoptosis and inhibits angiogenesis in human bone marrow-derived endothelial progenitor cells. Oncol. Lett. 14:5695–702
    [Google Scholar]
  128. 128. 
    Faes S, Uldry E, Planche A, Santoro T, Pythoud C et al. 2016. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies. Oncotarget 7:86026–38
    [Google Scholar]
  129. 129. 
    Pedersen AK, de Melo JML, Morup N, Tritsaris K, Pedersen SF 2017. Tumor microenvironment conditions alter Akt and Na+/H+ exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer. BMC Cancer 17:542
    [Google Scholar]
  130. 130. 
    Burbridge MF, West DC, Atassi G, Tucker GC 1999. The effect of extracellular pH on angiogenesis in vitro. Angiogenesis 3:281–88
    [Google Scholar]
  131. 131. 
    Castañeda-Gill JM, Vishwanatha JK. 2016. Antiangiogenic mechanisms and factors in breast cancer treatment. J. Carcinog. 15:1
    [Google Scholar]
  132. 132. 
    Dass CR, Choong PF. 2008. Cancer angiogenesis: targeting the heel of Achilles. J. Drug Target. 16:449–54
    [Google Scholar]
  133. 133. 
    Stachura J, Wachowska M, Kilarski WW, Güç E, Golab J, Muchowicz A 2016. The dual role of tumor lymphatic vessels in dissemination of metastases and immune response development. Oncoimmunology 5:e1182278
    [Google Scholar]
  134. 134. 
    Moeller AL, Hjortdal V, Boedtkjer DMB, Boedtkjer E 2019. Acidosis inhibits rhythmic contractions of human thoracic ducts. Physiol. Rep. 7:e14074
    [Google Scholar]
  135. 135. 
    Lobov GI, Kubyshkina NA. 2001. Effect of acidosis on contractile function of mesenterial lymphatic vessels in bulls. Bull. Exp. Biol. Med. 132:622–25
    [Google Scholar]
  136. 136. 
    Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ 2006. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–23
    [Google Scholar]
  137. 137. 
    Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J et al. 2009. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69:2260–68
    [Google Scholar]
  138. 138. 
    van den Akker J, Schoorl MJC, Bakker ENTP, vanBavel E 2010. Small artery remodeling: current concepts and questions. J. Vasc. Res. 47:183–202
    [Google Scholar]
  139. 139. 
    Galon J, Mlecnik B, Bindea G, Angell HK, Berger A et al. 2014. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232:199–209
    [Google Scholar]
  140. 140. 
    Ibrahim-Hashim A, Abrahams D, Enriquez-Navas PM, Luddy K, Gatenby RA, Gillies RJ 2017. Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Med 6:1720–29
    [Google Scholar]
  141. 141. 
    Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM et al. 2016. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res 76:1381–90
    [Google Scholar]
  142. 142. 
    Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A et al. 2012. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–56
    [Google Scholar]
  143. 143. 
    Bosticardo M, Ariotti S, Losana G, Bernabei P, Forni G, Novelli F 2001. Biased activation of human T lymphocytes due to low extracellular pH is antagonized by B7/CD28 costimulation. Eur. J. Immunol. 31:2829–38
    [Google Scholar]
  144. 144. 
    Vermeulen M, Giordano M, Trevani AS, Sedlik C, Gamberale R et al. 2004. Acidosis improves uptake of antigens and MHC class I-restricted presentation by dendritic cells. J. Immunol. 172:3196–204
    [Google Scholar]
  145. 145. 
    Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S et al. 2006. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–21
    [Google Scholar]
  146. 146. 
    Nasi A, Fekete T, Krishnamurthy A, Snowden S, Rajnavölgyi E et al. 2013. Dendritic cell reprogramming by endogenously produced lactic acid. J. Immunol. 191:3090–99
    [Google Scholar]
  147. 147. 
    Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G et al. 2016. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24:657–71
    [Google Scholar]
  148. 148. 
    Loeffler DA, Heppner GH, Juneau PL 1991. Natural killer-cell activity under conditions reflective of tumor micro-environment. Int. J. Cancer 48:895–99
    [Google Scholar]
  149. 149. 
    Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T et al. 2018. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J. Clin. Investig. 128:5137–49
    [Google Scholar]
  150. 150. 
    Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ 1996. Acidic pH enhances the invasive behavior of human melanoma cells. Clin. Exp. Metastasis 14:176–86
    [Google Scholar]
  151. 151. 
    Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH et al. 2013. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73:1524–35
    [Google Scholar]
  152. 152. 
    Zhu S, Zhou H-Y, Deng S-C, Deng S-J, He C et al. 2017. ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca2+/RhoA pathway. Cell Death Dis 8:e2806
    [Google Scholar]
  153. 153. 
    Peppicelli S, Bianchini F, Torre E, Calorini L 2014. Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clin. Exp. Metastasis 31:423–33
    [Google Scholar]
  154. 154. 
    Boussadia Z, Lamberti J, Mattei F, Pizzi E, Puglisi R et al. 2018. Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules. J. Exp. Clin. Cancer Res. 37:245
    [Google Scholar]
  155. 155. 
    Hofschröer V, Koch KA, Ludwig FT, Friedl P, Oberleithner H et al. 2017. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells. Sci. Rep. 7:42369
    [Google Scholar]
  156. 156. 
    Defamie N, Chepied A, Mesnil M 2014. Connexins, gap junctions and tissue invasion. FEBS Lett 588:1331–38
    [Google Scholar]
  157. 157. 
    Boedtkjer E, Kim S, Aalkjaer C 2013. Endothelial alkalinisation inhibits gap junction communication and endothelium-derived hyperpolarisations in mouse mesenteric arteries. J. Physiol. 591:1447–61
    [Google Scholar]
  158. 158. 
    Swietach P, Rossini A, Spitzer KW, Vaughan-Jones RD 2007. H+ ion activation and inactivation of the ventricular gap junction: a basis for spatial regulation of intracellular pH. Circ. Res. 100:1045–54
    [Google Scholar]
  159. 159. 
    Spray DC, Harris AL, Bennett MV 1981. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211:712–15
    [Google Scholar]
  160. 160. 
    Busco G, Cardone RA, Greco MR, Bellizzi A, Colella M et al. 2010. NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. FASEB J 24:3903–15
    [Google Scholar]
  161. 161. 
    Kong SC, Nohr-Nielsen A, Zeeberg K, Reshkin SJ, Hoffmann EK et al. 2016. Monocarboxylate transporters MCT1 and MCT4 regulate migration and invasion of pancreatic ductal adenocarcinoma cells. Pancreas 45:1036–47
    [Google Scholar]
  162. 162. 
    Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E 2004. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J. Biol. Chem. 279:26991–7007
    [Google Scholar]
  163. 163. 
    Cotter K, Capecci J, Sennoune S, Huss M, Maier M et al. 2015. Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells. J. Biol. Chem. 290:3680–92
    [Google Scholar]
  164. 164. 
    Brisson L, Reshkin SJ, Gore J, Roger S 2012. pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur. J. Cell Biol. 91:847–60
    [Google Scholar]
  165. 165. 
    Bailey KM, Wojtkowiak JW, Cornnell HH, Ribeiro MC, Balagurunathan Y et al. 2014. Mechanisms of buffer therapy resistance. Neoplasia 16:354–64
    [Google Scholar]
  166. 166. 
    Boedtkjer E, Bentzon JF, Dam VS, Aalkjaer C 2016. Na+,HCO3-cotransporter NBCn1 increases pHi gradients, filopodia and migration of smooth muscle cells and promotes arterial remodeling. Cardiovasc. Res. 111:227–39
    [Google Scholar]
  167. 167. 
    Schwab A, Rossmann H, Klein M, Dieterich P, Gassner B et al. 2005. Functional role of Na+-HCO3 cotransport in migration of transformed renal epithelial cells. J. Physiol. 568:445–58
    [Google Scholar]
  168. 168. 
    Stock C, Mueller M, Kraehling H, Mally S, Noel J et al. 2007. pH nanoenvironment at the surface of single melanoma cells. Cell Physiol. Biochem. 20:679–86
    [Google Scholar]
  169. 169. 
    Harrison RK, Chang B, Niedzwiecki L, Stein RL 1992. Mechanistic studies on the human matrix metalloproteinase stromelysin. Biochemistry 31:10757–62
    [Google Scholar]
  170. 170. 
    Srivastava J, Barreiro G, Groscurth S, Gingras AR, Goult BT et al. 2008. Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. PNAS 105:14436–41
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034627
Loading
/content/journals/10.1146/annurev-physiol-021119-034627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error