1932

Abstract

Chronic kidney disease (CKD) is a global health epidemic that accelerates cardiovascular disease, increases risk of infection, and causes anemia and bone disease, among other complications that collectively increase risk of premature death. Alterations in calcium and phosphate homeostasis have long been considered nontraditional risk factors for many of the most morbid outcomes of CKD. The discovery of fibroblast growth factor 23 (FGF23), which revolutionized the diagnosis and treatment of rare hereditary disorders of FGF23 excess that cause hypophosphatemic rickets, has also driven major paradigm shifts in our understanding of the pathophysiology and downstream end-organ complications of disordered mineral metabolism in CKD. As research of FGF23 in CKD has rapidly advanced, major new questions about its regulation and effects continuously emerge. These are promoting exciting innovations in laboratory, patient-oriented, and epidemiological research and stimulating clinical trials of new therapies and repurposing of existing ones to target FGF23.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034650
2020-02-10
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034650.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034650&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Wolf M. 2015. Mineral (mal)adaptation to kidney disease—Young Investigator Award Address: American Society of Nephrology Kidney Week 2014. Clin. J. Am. Soc. Nephrol. 10:1875–85
    [Google Scholar]
  2. 2. 
    White KE, Evans WE, O'Riordan JLH, Speer MC, Econs MJet al 2000. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26:345–48
    [Google Scholar]
  3. 3. 
    Brown EM, Pollak M, Seidman CE, Seidman JG, Chou YH et al. 1995. Calcium-ion-sensing cell-surface receptors. N. Engl. J. Med. 333:234–40
    [Google Scholar]
  4. 4. 
    Dusso AS, Brown AJ, Slatopolsky E 2005. Vitamin D. Am. J. Physiol. Ren. Physiol. 289:F8–28
    [Google Scholar]
  5. 5. 
    Moe SM. 2016. Calcium homeostasis in health and in kidney disease. Compr. Physiol. 6:1781–800
    [Google Scholar]
  6. 6. 
    Bergwitz C, Juppner H. 2010. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu. Rev. Med. 61:91–104
    [Google Scholar]
  7. 7. 
    Slatopolsky E, Robson AM, Elkan I, Bricker NS 1968. Control of phosphate excretion in uremic man. J. Clin. Investig. 47:1865–74
    [Google Scholar]
  8. 8. 
    Portale AA, Booth BE, Halloran BP, Morris RC Jr 1984. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J. Clin. Investig. 73:1580–89
    [Google Scholar]
  9. 9. 
    Shimada T, Mizutani S, Muto T, Yoneya T, Hino R et al. 2001. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. PNAS 98:6500–5
    [Google Scholar]
  10. 10. 
    Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T et al. 2003. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med. 348:1656–63
    [Google Scholar]
  11. 11. 
    Hu MC, Shiizaki K, Kuro-o M, Moe OW 2013. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 75:503–33
    [Google Scholar]
  12. 12. 
    Chen G, Liu Y, Goetz R, Fu L, Jayaraman S et al. 2018. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553:461–66
    [Google Scholar]
  13. 13. 
    Wolf M, White KE. 2014. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr. Opin. Nephrol. Hypertens 23:411–19
    [Google Scholar]
  14. 14. 
    Benet-Pagès A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM 2004. FGF23 is processed by proprotein convertases but not by PHEX. Bone 35:455–62
    [Google Scholar]
  15. 15. 
    Benet-Pagès A, Orlik P, Strom TM, Lorenz-Depiereux B 2005. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet. 14:385–90
    [Google Scholar]
  16. 16. 
    Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ et al. 2014. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. PNAS 111:5520–25
    [Google Scholar]
  17. 17. 
    Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y et al. 2004. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Investig. 113:561–68
    [Google Scholar]
  18. 18. 
    Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML et al. 2009. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am. J. Physiol. Ren. Physiol. 297:F282–91
    [Google Scholar]
  19. 19. 
    Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R et al. 2004. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19:429–35
    [Google Scholar]
  20. 20. 
    Ferrari SL, Bonjour JP, Rizzoli R 2005. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90:1519–24
    [Google Scholar]
  21. 21. 
    Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K et al. 2005. Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem 280:2543–49
    [Google Scholar]
  22. 22. 
    Liu S, Tang W, Zhou J, Stubbs JR, Luo Q et al. 2006. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J. Am. Soc. Nephrol. 17:1305–15
    [Google Scholar]
  23. 23. 
    Mirams M, Robinson BG, Mason RS, Nelson AE 2004. Bone as a source of FGF23: regulation by phosphate?. Bone 35:1192–99
    [Google Scholar]
  24. 24. 
    Bon N, Beck-Cormier S, Beck L 2019. Interplay between FGF23, phosphate, and molecules involved in phosphate sensing. Curr. Mol. Biol. Rep. 5:1–7
    [Google Scholar]
  25. 25. 
    Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T 2010. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Ren. Physiol. 299:F882–89
    [Google Scholar]
  26. 26. 
    David V, Dai B, Martin A, Huang J, Han X, Quarles LD 2013. Calcium regulates FGF-23 expression in bone. Endocrinology 154:4469–82
    [Google Scholar]
  27. 27. 
    Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I et al. 2005. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am. J. Physiol. Ren. Physiol. 289:F1088–95
    [Google Scholar]
  28. 28. 
    Gupta A, Winer K, Econs MJ, Marx SJ, Collins MT 2004. FGF-23 is elevated by chronic hyperphosphatemia. J. Clin. Endocrinol. Metab. 89:4489–92
    [Google Scholar]
  29. 29. 
    Eisenberg E. 1965. Effects of serum calcium level and parathyroid extracts on phosphate and calcium excretion in hypoparathyroid patients. J. Clin. Investig. 44:942–46
    [Google Scholar]
  30. 30. 
    Collins MT, Lindsay JR, Jain A, Kelly MH, Cutler CM et al. 2005. Fibroblast growth factor-23 is regulated by 1α,25-dihydroxyvitamin D. J. Bone Miner. Res. 20:1944–50
    [Google Scholar]
  31. 31. 
    Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K et al. 2002. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J. Clin. Endocrinol. Metab. 87:4957–60
    [Google Scholar]
  32. 32. 
    Edmonston D, Wolf M. 2019. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. https://doi.org/10.1038/s41581-019-0189-5
    [Crossref] [Google Scholar]
  33. 33. 
    Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J et al. 2005. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16:2205–15
    [Google Scholar]
  34. 34. 
    Portale AA, Wolf M, Jüppner H, Messinger S, Kumar J et al. 2014. Disordered FGF23 and mineral metabolism in children with CKD. Clin. J. Am. Soc. Nephrol. 9:344–53
    [Google Scholar]
  35. 35. 
    Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K et al. 2010. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int 78:975–80
    [Google Scholar]
  36. 36. 
    Wolf M, Koch TA, Bregman DB 2013. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 28:1793–803
    [Google Scholar]
  37. 37. 
    Wolf M, Chertow GM, Macdougall IC, Kaper R, Krop J, Strauss W 2018. Randomized trial of intravenous iron-induced hypophosphatemia. JCI Insight 3:124486
    [Google Scholar]
  38. 38. 
    Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosoya T et al. 2004. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am. J. Kidney Dis. 44:250–56
    [Google Scholar]
  39. 39. 
    Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T et al. 1997. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51
    [Google Scholar]
  40. 40. 
    Jüppner H, Wolf M. 2012. αKlotho: FGF23 coreceptor and FGF23-regulating hormone. J. Clin. Investig. 122:4336–39
    [Google Scholar]
  41. 41. 
    Smith RC, O'Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL et al. 2012. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J. Clin. Investig. 122:4710–15
    [Google Scholar]
  42. 42. 
    Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J et al. 2011. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–78
    [Google Scholar]
  43. 43. 
    Smith ER, Cai MM, McMahon LP, Holt SG 2012. Biological variability of plasma intact and C-terminal FGF23 measurements. J. Clin. Endocrinol. Metab. 97:3357–65
    [Google Scholar]
  44. 44. 
    Shimada T, Urakawa I, Isakova T, Yamazaki Y, Epstein M et al. 2010. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J. Clin. Endocrinol. Metab. 95:578–85
    [Google Scholar]
  45. 45. 
    Stubbs JR, He N, Idiculla A, Gillihan R, Liu S et al. 2012. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J. Bone Miner. Res. 27:38–46
    [Google Scholar]
  46. 46. 
    Neuburg S, Dussold C, Gerber C, Wang X, Francis C et al. 2018. Genetic background influences cardiac phenotype in murine chronic kidney disease. Nephrol. Dial. Transplant. 33:1129–37
    [Google Scholar]
  47. 47. 
    Deleted in proof
  48. 48. 
    Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC et al. 2011. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. PNAS 108:E1146–55
    [Google Scholar]
  49. 49. 
    David V, Martin A, Isakova T, Spaulding C, Qi L et al. 2016. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 89:135–46
    [Google Scholar]
  50. 50. 
    Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM 2004. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 15:2208–18
    [Google Scholar]
  51. 51. 
    Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL et al. 2005. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 16:520–28
    [Google Scholar]
  52. 52. 
    Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G 2005. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112:2627–33
    [Google Scholar]
  53. 53. 
    Li X, Yang H-Y, Giachelli CM 2006. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res. 98:905–12
    [Google Scholar]
  54. 54. 
    Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H et al. 2008. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359:584–92
    [Google Scholar]
  55. 55. 
    Isakova T, Xie H, Yang W et al. 2011. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305:2432–39
    [Google Scholar]
  56. 56. 
    Isakova T, Cai X, Lee J, Xie D, Wang X et al. 2018. Longitudinal FGF23 trajectories and mortality in patients with CKD. J. Am. Soc. Nephrol. 29:579–90
    [Google Scholar]
  57. 57. 
    Wolf M, Molnar MZ, Amaral AP, Czira ME, Rudas A et al. 2011. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J. Am. Soc. Nephrol. 22:956–66
    [Google Scholar]
  58. 58. 
    Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C et al. 2010. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann. Intern. Med. 152:640–48
    [Google Scholar]
  59. 59. 
    Ix JH, Katz R, Kestenbaum BR, de Boer IH, Chonchol M et al. 2012. Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J. Am. Coll. Cardiol. 60:200–7
    [Google Scholar]
  60. 60. 
    Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL et al. 2011. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J. Am. Soc. Nephrol. 22:1913–22
    [Google Scholar]
  61. 61. 
    Marthi A, Donovan K, Haynes R, Wheeler DC, Baigent C et al. 2018. Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: a meta-analysis. J. Am. Soc. Nephrol. 29:2015–27
    [Google Scholar]
  62. 62. 
    Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY 2004. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351:1296–305
    [Google Scholar]
  63. 63. 
    Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH 2010. FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol. Dial. Transplant. 25:3983–89
    [Google Scholar]
  64. 64. 
    Wright CB, Dong C, Stark M, Silverberg S, Rundek T et al. 2014. Plasma FGF23 and the risk of stroke: the Northern Manhattan Study (NOMAS). Neurology 82:1700–6
    [Google Scholar]
  65. 65. 
    Panwar B, Jenny NS, Howard VJ, Wadley VG, Muntner P et al. 2015. Fibroblast growth factor 23 and risk of incident stroke in community-living adults. Stroke 46:322–28
    [Google Scholar]
  66. 66. 
    Mehta R, Cai X, Lee J, Scialla JJ, Bansal N et al. 2016. Association of fibroblast growth factor 23 with atrial fibrillation in chronic kidney disease, from the Chronic Renal Insufficiency Cohort Study. JAMA Cardiol 1:548–56
    [Google Scholar]
  67. 67. 
    Scialla JJ, Xie H, Rahman M, Anderson AH, Isakova T et al. 2014. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol. 25:349–60
    [Google Scholar]
  68. 68. 
    Taylor EN, Rimm EB, Stampfer MJ, Curhan GC 2011. Plasma fibroblast growth factor 23, parathyroid hormone, phosphorus, and risk of coronary heart disease. Am. Heart J. 161:956–62
    [Google Scholar]
  69. 69. 
    Kestenbaum B, Sachs MC, Hoofnagle AN, Siscovick DS, Ix JH et al. 2014. Fibroblast growth factor-23 and cardiovascular disease in the general population: the Multi-Ethnic Study of Atherosclerosis. Circ. Heart Fail. 7:409–17
    [Google Scholar]
  70. 70. 
    Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A et al. 2011. FGF23 induces left ventricular hypertrophy. J. Clin. Investig. 121:4393–408
    [Google Scholar]
  71. 71. 
    Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K et al. 2009. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119:2545–52
    [Google Scholar]
  72. 72. 
    Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE 2009. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 207:546–51
    [Google Scholar]
  73. 73. 
    Touchberry CD, Green TM, Tchikrizov V, Mannix JE, Mao TF et al. 2013. FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am. J. Physiol. Endocrinol. Metab. 304:E863–73
    [Google Scholar]
  74. 74. 
    Kao YH, Chen YC, Lin YK, Shiu RJ, Chao TF et al. 2014. FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells. Eur. J. Clin. Investig. 44:795–801
    [Google Scholar]
  75. 75. 
    Grabner A, Amaral AP, Schramm K, Singh S, Sloan A et al. 2015. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 22:1020–32
    [Google Scholar]
  76. 76. 
    Leifheit-Nestler M, Haffner D. 2018. Paracrine effects of FGF23 on the heart. Front. Endocrinol. 9:278
    [Google Scholar]
  77. 77. 
    Hao H, Li X, Li Q, Lin H, Chen Z et al. 2016. FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Oncotarget 7:64649–64
    [Google Scholar]
  78. 78. 
    Andrukhova O, Slavic S, Odorfer KI, Erben RG 2015. Experimental myocardial infarction upregulates circulating fibroblast growth factor-23. J. Bone Miner. Res. 30:1831–39
    [Google Scholar]
  79. 79. 
    Richter M, Lautze HJ, Walther T, Braun T, Kostin S, Kubin T 2015. The failing heart is a major source of circulating FGF23 via oncostatin M receptor activation. J. Heart Lung Transplant. 34:1211–14
    [Google Scholar]
  80. 80. 
    Zhang Q, Doucet M, Tomlinson RE, Han X, Quarles LD et al. 2016. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia. Bone Res 4:16011
    [Google Scholar]
  81. 81. 
    Xie J, Cha SK, An SW, Kuro OM, Birnbaumer L, Huang CL 2012. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat. Commun. 3:1238
    [Google Scholar]
  82. 82. 
    Hu MC, Shi M, Cho HJ, Adams-Huet B, Paek J et al. 2015. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J. Am. Soc. Nephrol. 26:1290–302
    [Google Scholar]
  83. 83. 
    Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B et al. 2000. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N. Engl. J. Med. 342:1478–83
    [Google Scholar]
  84. 84. 
    Roos M, Lutz J, Salmhofer H, Luppa P, Knauss A et al. 2008. Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin. Endocrinol. 68:660–65
    [Google Scholar]
  85. 85. 
    Coen G, De Paolis P, Ballanti P, Pierantozzi A, Pisano S et al. 2011. Peripheral artery calcifications evaluated by histology correlate to those detected by CT: relationships with fetuin-A and FGF-23. J. Nephrol. 24:313–21
    [Google Scholar]
  86. 86. 
    Inaba M, Okuno S, Imanishi Y, Yamada S, Shioi A et al. 2006. Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients. Osteoporos. Int. 17:1506–13
    [Google Scholar]
  87. 87. 
    Nasrallah MM, El-Shehaby AR, Salem MM, Osman NA, El Sheikh E, Sharaf El Din UA 2010. Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol. Dial. Transplant. 25:2679–85
    [Google Scholar]
  88. 88. 
    Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang H-Y et al. 2013. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 83:1159–68
    [Google Scholar]
  89. 89. 
    Jimbo R, Kawakami-Mori F, Mu S, Hirohama D, Majtan B et al. 2014. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int 85:1103–11
    [Google Scholar]
  90. 90. 
    Lim K, Lu T-S, Molostvov G, Lee C, Lam FT et al. 2012. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 125:2243–55
    [Google Scholar]
  91. 91. 
    Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R et al. 2004. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem. Biophys. Res. Commun. 314:409–14
    [Google Scholar]
  92. 92. 
    Faul C, Wolf M. 2015. Hunt for the culprit of cardiovascular injury in kidney disease. Cardiovasc. Res. 108:209–11
    [Google Scholar]
  93. 93. 
    Mencke R, Harms G, Mirkovic K, Struik J, Van Ark J et al. 2015. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc. Res. 108:220–31
    [Google Scholar]
  94. 94. 
    Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K et al. 2007. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 18:2600–8
    [Google Scholar]
  95. 95. 
    Scialla JJ, Astor BC, Isakova T, Xie H, Appel LJ, Wolf M 2013. Mineral metabolites and CKD progression in African Americans. J. Am. Soc. Nephrol. 24:125–35
    [Google Scholar]
  96. 96. 
    Rebholz CM, Grams ME, Coresh J, Selvin E, Inker LA et al. 2015. Serum fibroblast growth factor-23 is associated with incident kidney disease. J. Am. Soc. Nephrol. 26:192–200
    [Google Scholar]
  97. 97. 
    Isakova T, Craven TE, Lee J, Scialla JJ, Xie H et al. 2015. Fibroblast growth factor 23 and incident CKD in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 10:29–38
    [Google Scholar]
  98. 98. 
    Wolf M. 2015. The biomarker niche for fibroblast growth factor 23 testing in CKD. J. Am. Soc. Nephrol. 26:7–9
    [Google Scholar]
  99. 99. 
    Astor BC, Muntner P, Levin A, Eustace JA, Coresh J 2002. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988–1994). Arch. Intern. Med. 162:1401–8
    [Google Scholar]
  100. 100. 
    Weiss G, Goodnough LT. 2005. Anemia of chronic disease. N. Engl. J. Med. 352:1011–23
    [Google Scholar]
  101. 101. 
    Mehta R, Cai X, Hodakowski A, Lee J, Leonard M et al. 2017. Fibroblast growth factor 23 and anemia in the Chronic Renal Insufficiency Cohort Study. Clin. J. Am. Soc. Nephrol. 12:1795–803
    [Google Scholar]
  102. 102. 
    Daryadel A, Bettoni C, Haider T, Imenez Silva PH, Schnitzbauer U et al. 2018. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflügers Arch 470:1569–82
    [Google Scholar]
  103. 103. 
    Coe LM, Madathil SV, Casu C, Lanske B, Rivella S, Sitara D 2014. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J. Biol. Chem. 289:9795–810
    [Google Scholar]
  104. 104. 
    Mendoza JM, Isakova T, Ricardo AC, Xie H, Navaneethan SD et al. 2012. Fibroblast growth factor 23 and inflammation in CKD. Clin. J. Am. Soc. Nephrol. 7:1155–62
    [Google Scholar]
  105. 105. 
    Singh S, Grabner A, Yanucil C, Schramm K, Czaya B et al. 2016. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int 90:985–96
    [Google Scholar]
  106. 106. 
    Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S et al. 2008. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 3:1526–33
    [Google Scholar]
  107. 107. 
    Chonchol M, Greene T, Zhang Y, Hoofnagle AN, Cheung AK 2016. Low vitamin D and high fibroblast growth factor 23 serum levels associate with infectious and cardiac deaths in the HEMO Study. J. Am. Soc. Nephrol. 27:227–37
    [Google Scholar]
  108. 108. 
    Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstädt HJ et al. 2016. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J. Clin. Investig. 126:962–74
    [Google Scholar]
  109. 109. 
    Haddad LE, Khzam LB, Hajjar F, Merhi Y, Sirois MG 2011. Characterization of FGF receptor expression in human neutrophils and their contribution to chemotaxis. Am. J. Physiol. Cell Physiol. 301:C1036–45
    [Google Scholar]
  110. 110. 
    Liu PT, Stenger S, Li H, Wenzel L, Tan BH et al. 2006. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–73
    [Google Scholar]
  111. 111. 
    Bacchetta J, Sea JL, Chun RF, Lisse TS, Wesseling-Perry K et al. 2013. Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin D in human monocytes. J. Bone Miner. Res. 28:46–55
    [Google Scholar]
  112. 112. 
    Gruson D, Ferracin B, Ahn SA, Rousseau MF 2015. Comparison of fibroblast growth factor 23, soluble ST2 and Galectin-3 for prognostication of cardiovascular death in heart failure patients. Int. J. Cardiol. 189:185–87
    [Google Scholar]
  113. 113. 
    Poelzl G, Trenkler C, Kliebhan J, Wuertinger P, Seger C et al. 2014. FGF23 is associated with disease severity and prognosis in chronic heart failure. Eur. J. Clin. Investig. 44:1150–58
    [Google Scholar]
  114. 114. 
    Udell JA, Morrow DA, Jarolim P, Sloan S, Hoffman EB et al. 2014. Fibroblast growth factor-23, cardiovascular prognosis, and benefit of angiotensin-converting enzyme inhibition in stable ischemic heart disease. J. Am. Coll. Cardiol. 63:2421–28
    [Google Scholar]
  115. 115. 
    Wohlfahrt P, Melenovsky V, Kotrc M, Benes J, Jabor A et al. 2015. Association of fibroblast growth factor-23 levels and angiotensin-converting enzyme inhibition in chronic systolic heart failure. JACC Heart Fail 3:829–39
    [Google Scholar]
  116. 116. 
    Murugan R, Kellum JA. 2011. Acute kidney injury: What's the prognosis?. Nat. Rev. Nephrol. 7:209–17
    [Google Scholar]
  117. 117. 
    Christov M, Waikar SS, Pereira RC, Havasi A, Leaf DE et al. 2013. Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int 84:776–85
    [Google Scholar]
  118. 118. 
    Leaf DE, Christov M, Jüppner H, Siew E, Ikizler TA et al. 2016. Fibroblast growth factor 23 levels are elevated and associated with severe acute kidney injury and death following cardiac surgery. Kidney Int 89:939–48
    [Google Scholar]
  119. 119. 
    Leaf DE, Jacob KA, Srivastava A, Chen ME, Christov M et al. 2017. Fibroblast growth factor 23 levels associate with AKI and death in critical illness. J. Am. Soc. Nephrol. 28:1877–85
    [Google Scholar]
  120. 120. 
    Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W et al. 2018. Burosumab therapy in children with X-linked hypophosphatemia. N. Engl. J. Med. 378:1987–98
    [Google Scholar]
  121. 121. 
    Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J et al. 2012. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Investig. 122:2543–53
    [Google Scholar]
  122. 122. 
    Isakova T, Gutiérrez OM, Smith K, Epstein M, Keating LK et al. 2010. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol. Dial. Transplant. 26:584–91
    [Google Scholar]
  123. 123. 
    Sigrist M, Tang M, Beaulieu M, Levin A, Espino-Hernandez G et al. 2012. Responsiveness of FGF-23 and mineral metabolism to altered dietary phosphate intake in chronic kidney disease (CKD): results of a randomized trial. Nephrol. Dial. Transplant. 28:161–69
    [Google Scholar]
  124. 124. 
    Isakova T, Barchi-Chung A, Enfield G, Smith K, Vargas G et al. 2013. Effects of dietary phosphate restriction and phosphate binders on FGF23 levels in CKD. Clin. J. Am. Soc. Nephrol. 8:1009–18
    [Google Scholar]
  125. 125. 
    Nishida Y, Taketani Y, Yamanaka-Okumura H, Imamura F, Taniguchi A et al. 2006. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int 70:2141–47
    [Google Scholar]
  126. 126. 
    Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R et al. 2010. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5:519–30
    [Google Scholar]
  127. 127. 
    Isakova T, Ix JH, Sprague SM, Raphael KL, Fried L et al. 2015. Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J. Am. Soc. Nephrol. 26:2328–39
    [Google Scholar]
  128. 128. 
    Moe SM, Chen NX, Seifert MF, Sinders RM, Duan D et al. 2009. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int 75:176–84
    [Google Scholar]
  129. 129. 
    Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS et al. 2011. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6:257–64
    [Google Scholar]
  130. 130. 
    Krieger NS, Culbertson CD, Kyker-Snowman K, Bushinsky DA 2012. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone. Am. J. Physiol. Ren. Physiol. 303:F431–36
    [Google Scholar]
  131. 131. 
    Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA et al. 2010. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy?. Clin. J. Am. Soc. Nephrol. 5:286–91
    [Google Scholar]
  132. 132. 
    Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M et al. 2012. Effects of phosphate binders in moderate CKD. J. Am. Soc. Nephrol. 23:1407–15
    [Google Scholar]
  133. 133. 
    Gonzalez-Parra E, Gonzalez-Casaus ML, Galan A, Martinez-Calero A, Navas V et al. 2011. Lanthanum carbonate reduces FGF23 in chronic kidney disease stage 3 patients. Nephrol. Dial. Transplant. 26:2567–71
    [Google Scholar]
  134. 134. 
    Ix JH, Isakova T, Larive B, Raphael KL, Raj DS et al. 2019. Effects of nicotinamide and lanthanum carbonate on serum phosphate and fibroblast growth factor-23 in CKD: the COMBINE Trial. J. Am. Soc. Nephrol. 30:1096–1108
    [Google Scholar]
  135. 135. 
    Chue CD, Townend JN, Moody WE, Zehnder D, Wall NA et al. 2013. Cardiovascular effects of sevelamer in stage 3 CKD. J. Am. Soc. Nephrol. 24:842–52
    [Google Scholar]
  136. 136. 
    Block GA, Fishbane S, Rodriguez M, Smits G, Shemesh S et al. 2015. A 12-week, double-blind, placebo-controlled trial of ferric citrate for the treatment of iron deficiency anemia and reduction of serum phosphate in patients with CKD Stages 3–5. Am. J. Kidney Dis. 65:728–36
    [Google Scholar]
  137. 137. 
    Shima H, Miya K, Okada K, Minakuchi J, Kawashima S 2018. Sucroferric oxyhydroxide decreases serum phosphorus level and fibroblast growth factor 23 and improves renal anemia in hemodialysis patients. BMC Res. Notes 11:363
    [Google Scholar]
  138. 138. 
    Umanath K, Jalal DI, Greco BA, Umeukeje EM, Reisin E et al. 2015. Ferric citrate reduces intravenous iron and erythropoiesis-stimulating agent use in ESRD. J. Am. Soc. Nephrol. 26:2578–87
    [Google Scholar]
  139. 139. 
    Schiavi SC, Tang W, Bracken C, O'Brien SP, Song W et al. 2012. Npt2b deletion attenuates hyperphosphatemia associated with CKD. J. Am. Soc. Nephrol. 23:1691–700
    [Google Scholar]
  140. 140. 
    Cheng SC, Young DO, Huang Y, Delmez JA, Coyne DW 2008. A randomized, double-blind, placebo-controlled trial of niacinamide for reduction of phosphorus in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 3:1131–38
    [Google Scholar]
  141. 141. 
    Rao M, Steffes M, Bostom A, Ix JH 2014. Effect of niacin on FGF23 concentration in chronic kidney disease. Am. J. Nephrol. 39:484–90
    [Google Scholar]
  142. 142. 
    Block GA, Rosenbaum DP, Yan A, Greasley PJ, Chertow GM, Wolf M 2018. The effects of tenapanor on serum fibroblast growth factor 23 in patients receiving hemodialysis with hyperphosphatemia. Nephrol. Dial. Transplant. 34:339–46
    [Google Scholar]
  143. 143. 
    Saito A, Nikolaidis NM, Amlal H, Uehara Y, Gardner JC et al. 2015. Modeling pulmonary alveolar microlithiasis by epithelial deletion of the Npt2b sodium phosphate cotransporter reveals putative biomarkers and strategies for treatment. Sci. Transl. Med. 7:313ra181
    [Google Scholar]
  144. 144. 
    Spencer AG, Labonte ED, Rosenbaum DP, Plato CF, Carreras CW et al. 2014. Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. Sci. Transl. Med. 6:227ra36
    [Google Scholar]
  145. 145. 
    Finch JL, Tokumoto M, Nakamura H, Yao W, Shahnazari M et al. 2010. Effect of paricalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease. Am. J. Physiol. Ren. Physiol. 298:F1315–22
    [Google Scholar]
  146. 146. 
    Charytan C, Coburn JW, Chonchol M, Herman J, Lien YH et al. 2005. Cinacalcet hydrochloride is an effective treatment for secondary hyperparathyroidism in patients with CKD not receiving dialysis. Am. J. Kidney Dis. 46:58–67
    [Google Scholar]
  147. 147. 
    Wetmore JB, Liu S, Krebill R, Menard R, Quarles LD 2010. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin. J. Am. Soc. Nephrol. 5:110–16
    [Google Scholar]
  148. 148. 
    Koizumi M, Komaba H, Nakanishi S, Fujimori A, Fukagawa M 2012. Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol. Dial. Transplant. 27:784–90
    [Google Scholar]
  149. 149. 
    Sprague SM, Wetmore JB, Gurevich K, Da Roza G, Buerkert J et al. 2015. Effect of cinacalcet and vitamin D analogs on fibroblast growth factor-23 during the treatment of secondary hyperparathyroidism. Clin. J. Am. Soc. Nephrol. 10:1021–30
    [Google Scholar]
  150. 150. 
    Wolf M, Block GA, Chertow GM, Fouqueray B, Tomlin H et al. 2019. Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis. Clin. Kidney J. https://doi.org/10.1093/ckj/sfz034
    [Crossref] [Google Scholar]
  151. 151. 
    Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA et al. 2015. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation 132:27–39
    [Google Scholar]
  152. 152. 
    Middleton JP, Wolf M. 2017. Second chances to improve ESRD outcomes with a second-generation calcimimetic. JAMA 317:139–41
    [Google Scholar]
  153. 153. 
    Chertow GM, Block GA, Correa-Rotter R, Drueke TB, Floege J et al. 2012. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N. Engl. J. Med. 367:2482–94
    [Google Scholar]
  154. 154. 
    Wöhrle S, Henninger C, Bonny O, Thuery A, Beluch N et al. 2013. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J. Bone Miner. Res. 28:899–911
    [Google Scholar]
  155. 155. 
    Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A et al. 2005. Suppression of aging in mice by the hormone Klotho. Science 309:1829–33
    [Google Scholar]
  156. 156. 
    Hu MC, Shi M, Gillings N, Flores B, Takahashi M et al. 2017. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int 91:1104–14
    [Google Scholar]
  157. 157. 
    Grabner A, Faul C. 2016. The role of fibroblast growth factor 23 and Klotho in uremic cardiomyopathy. Curr. Opin. Nephrol. Hypertens 25:314–24
    [Google Scholar]
  158. 158. 
    Bhan I, Shah A, Holmes J, Isakova T, Gutierrez O et al. 2006. Post-transplant hypophosphatemia: Tertiary ‘hyper-phosphatoninism’?. Kidney Int 70:1486–94
    [Google Scholar]
  159. 159. 
    Wolf M, Weir MR, Kopyt N, Mannon RB, Von Visger J et al. 2016. A prospective cohort study of mineral metabolism after kidney transplantation. Transplantation 100:184–93
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034650
Loading
/content/journals/10.1146/annurev-physiol-021119-034650
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error