1932

Abstract

The link between inappropriate salt retention in the kidney and hypertension is well recognized. However, growing evidence suggests that the immune system can play surprising roles in sodium homeostasis, such that the study of inflammatory cells and their secreted effectors has provided important insights into salt sensitivity. As part of the innate immune system, myeloid cells have diverse roles in blood pressure regulation, ranging from prohypertensive actions in the kidney, vasculature, and brain, to effects in the skin that attenuate blood pressure elevation. In parallel, T lymphocyte subsets, as key constituents of the adaptive immune compartment, have variable effects on renal sodium handling and the hypertensive response, accruing from the functions of the cytokines that they produce. Conversely, salt can directly modulate the phenotypes of myeloid and T cells, illustrating bidirectional regulatory mechanisms through which sodium and the immune system coordinately impact blood pressure. This review details the complex interplay between myeloid cells, T cells, and salt in the pathogenesis of essential hypertension.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021317-121134
2018-02-10
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/physiol/80/1/annurev-physiol-021317-121134.html?itemId=/content/journals/10.1146/annurev-physiol-021317-121134&mimeType=html&fmt=ahah

Literature Cited

  1. Mills KT, Bundy JD, Kelly TN, Reed J, Kearney PM. 1.  et al. 2016. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134:441–50 [Google Scholar]
  2. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF. 2. GBD 2013 Risk Factors Collab., et al. 2015. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupation, and metabolic risk factors or clusters of risk in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386:2287–323 [Google Scholar]
  3. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ. 3.  et al. 2015. Heart disease and stroke statistics—2016 update. A report from the American Heart Association. Circulation 133:e38–360 [Google Scholar]
  4. Coffman TM.4.  2011. Under pressure: the search for the essential mechanisms of hypertension. Nat. Med. 17:1402–9 [Google Scholar]
  5. Oh YS, Appel LJ, Galis ZS, Hafler DA, He J. 5.  et al. 2016. National Heart, Lung, and Blood Institute Working Group report on salt in human health and sickness: building on the current scientific evidence. Hypertension 68:281–88 [Google Scholar]
  6. O'Donnell M, Mente A, Yusuf S. 6.  2015. Sodium intake and cardiovascular health. Circ. Res. 116:1046–57 [Google Scholar]
  7. Whelton PK, Appel LJ, Sacco RL, Anderson CAM, Antman EM. 7.  et al. 2012. Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 126:2880–89 [Google Scholar]
  8. Joe B.8.  2015. Dr Lewis Kitchener Dahl, the Dahl rats, and the “inconvenient truth” about the genetics of hypertension. Hypertension 65:963–69 [Google Scholar]
  9. Dahl L.9.  1972. Salt and hypertension. Am. J. Clin. Nutr. 25:231–44 [Google Scholar]
  10. Guyton AC.10.  1991. Blood pressure control—special role of the kidneys and body fluids. Science 252:1813–16 [Google Scholar]
  11. Guyton AC, Coleman TG, Cowley AW Jr., Scheel KW, Manning RD Jr., Norman RA Jr.. 11.  1972. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am. J. Med. 52:584–94 [Google Scholar]
  12. He J, Gu D, Chen J, Jaquish CE, Rao DC. 12.  et al. 2009. Gender difference in blood pressure responses to dietary sodium intervention in the GenSalt study. J. Hypertens. 27:48–54 [Google Scholar]
  13. Chen J, Gu D, Huang J, Rao DC, Jaquish CE. 13.  et al. 2009. Metabolic syndrome and salt sensitivity of blood pressure in non-diabetic people in China: a dietary intervention study. Lancet 373:829–35 [Google Scholar]
  14. Schmidlin O, Forman A, Sebastian A, Morris RC Jr.. 14.  2007. Sodium-selective salt sensitivity: its occurrence in blacks. Hypertension 50:1085–92 [Google Scholar]
  15. Wright JT Jr., Rahman M, Scarpa A, Fatholahi M, Griffin V. 15.  et al. 2003. Determinants of salt sensitivity in black and white normotensive and hypertensive women. Hypertension 42:1087–92 [Google Scholar]
  16. Boddi M, Poggesi L, Coppo M, Zarone N, Sacchi S. 16.  et al. 1998. Human vascular renin-angiotensin system and its functional changes in relation to different sodium intakes. Hypertension 31:836–42 [Google Scholar]
  17. Mattson DL, James L, Berdan EA, Meister CJ. 17.  2006. Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension 48:149–56 [Google Scholar]
  18. Crowley SD, Song YS, Lin EE, Griffiths R, Kim HS, Ruiz P. 18.  2010. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1089–97 [Google Scholar]
  19. Norlander AE, Saleh MA, Kamat NV, Ko B, Gnecco J. 19.  et al. 2016. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension 68:167–74 [Google Scholar]
  20. Rudemiller NP, Crowley SD. 20.  2016. Interactions between the immune and the renin-angiotensin systems in hypertension. Hypertension 68:289–96 [Google Scholar]
  21. McMaster WG, Kirabo A, Madhur MS, Harrison DG. 21.  2015. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 116:1022–33 [Google Scholar]
  22. Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG, Ehmke H. 22.  2016. Immune mechanisms in arterial hypertension. J. Am. Soc. Nephrol. 27:677–86 [Google Scholar]
  23. Heptinstall R.23.  1954. Renal biospies in hypertension. Br. Heart J. 16:133–41 [Google Scholar]
  24. Sommers SC, Relman AS, Smithwick RH. 24.  1958. Histologic studies of kidney biopsy specimens from patients with hypertension. Am. J. Pathol. 34:685–715 [Google Scholar]
  25. Olsen F.25.  1980. Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol. Microbiol. Scand. C 88:1–6 [Google Scholar]
  26. Rodríguez-Iturbe B, Pons H, Quiroz Y, Gordan K, Rincón J. 26.  et al. 2001. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int 59:2222–32 [Google Scholar]
  27. Muller DN, Shagdarsuren E, Park JK, Dechend R, Mervaala E. 27.  et al. 2002. Immunosuppresive treatment protects against angiotensin II-induced renal damage. Am. J. Pathol. 161:1679–93 [Google Scholar]
  28. Rucker AJ, Crowley SD. 28.  2017. The role of macrophages in hypertension and its complications. Pflügers Arch 469:419–30 [Google Scholar]
  29. Takebayashi S.29.  1969. Ultrastructural studies on glomerular lesions in experimental hypertension. Acta Pathol. Jpn. 19:179–200 [Google Scholar]
  30. Parissis JT, Korovesis S, Giaziatzoglou E, Kalivas P, Katritisis D. 30.  2002. Plasma profiles of peripheral monocyte-related inflammatory markers in patients with arterial hypertension. Correlations with plasma endothelin-1. Int. J. Cardiol. 83:13–21 [Google Scholar]
  31. Dörffel Y, Lätsch C, Stuhlmüller B, Schreiber S, Scholze S. 31.  et al. 1999. Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension 34:113–17 [Google Scholar]
  32. Madej A, Okopień B, Kowalski J, Haberka M, Herman Z. 32.  2005. Plasma concentrations of adhesion molecules and chemokines in patients with essential hypertension. Pharmacol. Rep. 57:878–81 [Google Scholar]
  33. Palomo I, Marín P, Alarcón M, Gubelin G, Viñambre X. 33.  et al. 2003. Patients with essential hypertension present higher levels of sE-selectin and sVCAM-1 than normotensive volunteers. Clin. Exp. Hypertens. 25:517–23 [Google Scholar]
  34. Hahn AWA, Jonas U, Bühler FR, Resink TJ. 34.  1994. Activation of human peripheral monocytes by angiotensin II. FEBS Lett 347:178–80 [Google Scholar]
  35. Kim S, Zingler M, Harrison JK, Scott EW, Cogle CR. 35.  et al. 2016. Angiotensin II regulation of proliferation, differentiation, and engraftment of hematopoietic stem cells. Hypertension 67:574–84 [Google Scholar]
  36. Papaharalambus CA, Griendling KK. 36.  2007. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc. Med. 17:48–54 [Google Scholar]
  37. Ozawa Y, Kobori H, Suzaki Y, Navar L. 37.  2007. Sustained renal interstitial macrophage infiltration following chronic angiotensin II infusions. Am. J. Physiol. Renal Physiol. 292:F330–39 [Google Scholar]
  38. Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M. 38.  et al. 2011. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 124:1370–81 [Google Scholar]
  39. Van Furth R, Cohn ZA. 39.  1968. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128:415–35 [Google Scholar]
  40. Ricardo SD, van Goor H, Eddy AA. 40.  2008. Macrophage diversity in renal injury and repair. J. Clin. Investig. 118:3522–30 [Google Scholar]
  41. Gordon S.41.  2003. Alternative activation of macrophages. Nat. Rev. Immunol. 3:23–35 [Google Scholar]
  42. Sica A, Mantovani A. 42.  2012. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Investig. 122:787–95 [Google Scholar]
  43. Biswas S, Mantovani A. 43.  2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11:889–96 [Google Scholar]
  44. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW. 44.  et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20 [Google Scholar]
  45. Johnson RJ, Alpers CE, Yoshimura A, Lombardi D, Pritzl P. 45.  et al. 1992. Renal injury from angiotensin II-mediated hypertension. Hypertension 19:464–74 [Google Scholar]
  46. Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr.. 46.  et al. 1997. Impaired monocyte migration and reduced type 1 (Th1) cytokine repsonses in C-C chemokine receptor 2 knockout mice. J. Clin. Investig. 100:2552–61 [Google Scholar]
  47. Boring L, Gosling J, Cleary M, Charo IF. 47.  1998. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–97 [Google Scholar]
  48. Liao TD, Yang XP, Liu YH, Shesely EG, Cavasin MA. 48.  et al. 2008. Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension. Hypertension 52:256–63 [Google Scholar]
  49. Jurewicz M, McDermott DH, Sechler JM, Tinckam K, Takakura A. 49.  et al. 2007. Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation. J. Am. Soc. Nephrol. 18:1093–102 [Google Scholar]
  50. Nataraj C, Oliverio MI, Mannon RB, Mannon PJ, Audoly LP. 50.  et al. 1999. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J. Clin. Investig. 104:1693–701 [Google Scholar]
  51. Burson JM, Aguilera G, Gross KW, Sigmund CD. 51.  1994. Differential expression of angiotensin receptor 1A and 1B in mouse. Am. J. Physiol. 267:E260–67 [Google Scholar]
  52. Crowley SD, Tharaux P-L, Audoly LP, Coffman TM. 52.  2004. Exploring type I angiotensin (AT1) receptor functions through gene targeting. Acta Physiol. Scand. 181:561–70 [Google Scholar]
  53. Ma LJ, Corsa BA, Zhou J, Yang H, Li H. 53.  et al. 2011. Angiotensin type 1 receptor modulates macrophages and renal injury in obesity. Am. J. Physiol. Renal Physiol. 300:F1203–13 [Google Scholar]
  54. Nishida M, Fujinaka H, Matsusaka T, Price J, Kon V. 54.  et al. 2002. Absence of angiotensin II type 1 receptor in bone-marrow derived cells is detrimental in the evolution of renal fibrosis. J. Clin. Investig. 110:1859–68 [Google Scholar]
  55. Crowley SD, Song YS, Sprung G, Griffiths R, Sparks M. 55.  et al. 2010. A role for angiotensin II type 1 receptors on bone marrow-derived cells in the pathogenesis of angiotensin II-dependent hypertension. Hypertension 55:99–108 [Google Scholar]
  56. Cross M, Renkawitz R. 56.  1990. Repetitive sequence involvement in the duplication and divergence of mouse lysozyme genes. EMBO J 9:1283–88 [Google Scholar]
  57. Zhang J, Patel MB, Griffiths R, Dolber PC, Ruiz P. 57.  et al. 2014. Type 1 angiotensin receptors on macrophages ameliorate IL-1 receptor-mediated kidney fibrosis. J. Clin. Investig. 124:2198–203 [Google Scholar]
  58. Mattson DL.58.  2014. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am. J. Physiol. Renal Physiol. 307:F499–508 [Google Scholar]
  59. Ramseyer VD, Hong NJ, Garvin JL. 59.  2012. Tumor necrosis factor α decreases nitric oxide synthase type 3 expression primarily via Rho/Rho kinase in the thick ascending limb. Hypertension 59:1145–50 [Google Scholar]
  60. Zhang J, Patel MB, Griffiths R, Mao A, Song Y. 60.  et al. 2014. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension. Hypertension 64:1275–81 [Google Scholar]
  61. Zhang J, Rudemiller NP, Patel MB, Karlovich NS, Wu M. 61.  et al. 2016. Interleukin-1 receptor activation potentiates salt reabsorption in angiotensin II-induced hypertension via the NKCC2 co-transporter in the nephron. Cell Metab 23:360–68 [Google Scholar]
  62. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R. 62.  et al. 2006. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. PNAS 103:17985–90 [Google Scholar]
  63. Crowley SD, Zhang J, Herrera M, Griffiths R, Ruiz P, Coffman TM. 63.  2011. Role of AT1 receptor-mediated salt retention in angiotensin II-dependent hypertension. Am. J. Physiol. Renal Physiol. 301:F1124–40 [Google Scholar]
  64. Stanley ER, Guilbert LJ, Tushinski RJ, Bartelmez SH. 64.  1983. CSF-1—a mononuclear phagocyte lineage-specific hemopoietic growth factor. J. Cell. Biochem. 21:151–59 [Google Scholar]
  65. Warren MK, Ralph P. 65.  1986. Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J. Immunol. 137:2281–85 [Google Scholar]
  66. Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E. 66.  et al. 1994. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84:1737–46 [Google Scholar]
  67. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr., Ahmed-Ansari A, Sell KW. 67.  et al. 1990. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. PNAS 87:4828–32 [Google Scholar]
  68. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S. 68.  et al. 1990. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–44 [Google Scholar]
  69. De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. 69.  2005. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler. Thromb. Vasc. Biol. 25:2106–13 [Google Scholar]
  70. Ko EA, Amiri F, Pandey NR, Javeshghani D, Leibovitz E. 70.  et al. 2007. Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 292:H1789–95 [Google Scholar]
  71. Kossmann S, Hu H, Steven S, Schönfelder T, Fraccarollo D. 71.  et al. 2014. Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J. Biol. Chem. 289:27540–50 [Google Scholar]
  72. Höfer T, Busch K, Klapproth K, Rodewald H-R. 72.  2016. Fate mapping and quantitation of hematopoiesis in vivo. Annu. Rev. Immunol. 34:449–78 [Google Scholar]
  73. Kintscher U, Wakino S, Kim S, Fleck E, Hsueh WA, Law RE. 73.  2001. Angiotensin II induces migration and Pyk2/paxillin phosphorylation of human monocytes. Hypertension 37:587–93 [Google Scholar]
  74. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V. 74.  et al. 2009. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–16 [Google Scholar]
  75. Alonso J, Sánchez de Miguel L, Montón M, Casado S, López-Farré A. 75.  1997. Endothelial cytosolic proteins bind to the 3′ untranslated region of endothelial nitric oxide synthase mRNA: regulation by tumor necrosis factor alpha. Mol. Cell. Biol. 17:5719–26 [Google Scholar]
  76. Landry DB, Couper LL, Bryant SR, Lindner V. 76.  1997. Activation of the NF-kappaB and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am. J. Pathol. 151:1085–95 [Google Scholar]
  77. Neumann P, Gertzberg N, Johnson A. 77.  2004. TNF-α induces a decrease in eNOS promoter activity. Am. J. Physiol. Lung Cell. Mol. Physiol. 286:L452–59 [Google Scholar]
  78. Sun H-X, Zeng D-Y, Li R, Pang R-P, Yang H. 78.  et al. 2012. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 60:1407–14 [Google Scholar]
  79. Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M. 79.  et al. 2005. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112:2677–85 [Google Scholar]
  80. Dikalova A, Clempus R, Lassègue B, Cheng G, McCoy J. 80.  et al. 2005. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112:2668–76 [Google Scholar]
  81. Sag CM, Schnelle M, Zhang J, Murdoch CE, Kossmann S. 81.  et al. 2017. Distinct regulatory effects of myeloid cell and endothelial cell NAPDH oxidase 2 on blood pressure. Circulation 135:2163–77 [Google Scholar]
  82. Xue B, Thunhorst RL, Yu Y, Guo F, Beltz TG. 82.  et al. 2016. Central renin–angiotensin system activation and inflammation induced by high-fat diet sensitize angiotensin II–elicited hypertension. Hypertension 67:163–70 [Google Scholar]
  83. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ. 83.  et al. 2006. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–21 [Google Scholar]
  84. Hanoun M, Maryanovich M, Arnal-Estapé A, Frenette PS. 84.  2015. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 86:360–73 [Google Scholar]
  85. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. 85.  2008. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–47 [Google Scholar]
  86. Afan AM, Broome CS, Nicholls SE, Whetton AD, Miyan JA. 86.  1997. Bone marrow innervation regulates cellular retention in the murine haemopoietic system. Br. J. Haematol. 98:569–77 [Google Scholar]
  87. Santisteban MM, Kim S, Pepine CJ, Raizada MK. 87.  2016. Brain–gut–bone marrow axis: implications for hypertension and related therapeutics. Circ. Res. 118:1327–36 [Google Scholar]
  88. Harwani SC, Chapleau MW, Legge KL, Ballas ZK, Abboud FM. 88.  2012. Neurohormonal modulation of the innate immune system is proinflammatory in the prehypertensive spontaneously hypertensive rat, a genetic model of essential hypertension. Circ. Res. 111:1190–97 [Google Scholar]
  89. Xiao L, Kirabo A, Wu J, Saleh MA, Zhu L. 89.  et al. 2015. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II–induced hypertension. Circ. Res. 117:547–57 [Google Scholar]
  90. Zaldivia MTK, Rivera J, Hering D, Marusic P, Sata Y. 90.  et al. 2017. Renal denervation reduces monocyte activation and monocyte–platelet aggregate formation: an anti-inflammatory effect relevant for cardiovascular risk. Hypertension 69:323–31 [Google Scholar]
  91. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P. 91.  et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45 [Google Scholar]
  92. Shen XZ, Li Y, Li L, Shah KH, Bernstein KE. 92.  et al. 2015. Microglia participate in neurogenic regulation of hypertension. Hypertension 66:309–16 [Google Scholar]
  93. Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ. 93.  et al. 2010. Brain microglial cytokines in neurogenic hypertension. Hypertension 56:297–303 [Google Scholar]
  94. Santisteban MM, Ahmari N, Carvajal JM, Zingler MB, Qi Y. 94.  et al. 2015. Involvement of bone marrow cells and neuroinflammation in hypertension. Circ. Res. 117:178–91 [Google Scholar]
  95. Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. 95.  2014. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension 63:572–79 [Google Scholar]
  96. Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H. 96.  et al. 2016. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Investig. 126:4674–89 [Google Scholar]
  97. Toney GM, Stocker SD. 97.  2010. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease. J. Physiol. 588:3375–84 [Google Scholar]
  98. Adams JM, Bardgett ME, Stocker SD. 98.  2009. Ventral lamina terminalis mediates enhanced cardiovascular responses of rostral ventrolateral medulla neurons during increased dietary salt. Hypertension 54:308–14 [Google Scholar]
  99. Jantsch J, Schatz V, Friedrich D, Schröeder A, Kopp C. 99.  et al. 2015. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab 21:493–501 [Google Scholar]
  100. Sriramula S, Haque M, Majid DSA, Francis J. 100.  2008. Involvement of tumor necrosis factor-α in angiotensin II-mediated effects of salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51:1345–51 [Google Scholar]
  101. Wiig H, Schröeder A, Neuhofer W, Jantsch J, Kopp C. 101.  et al. 2013. Immune cells control skin lymphatic electrolye homeostasis and blood pressure. J. Clin. Investig. 123:2803–15 [Google Scholar]
  102. Nikpey E, Karlsen TV, Rakova N, Titze JM, Tenstad O, Wiig H. 102.  2017. High-salt diet causes osmotic gradients and hyperosmolality in skin without affecting interstitial fluid and lymph. Hypertension 69:660–68 [Google Scholar]
  103. Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J. 103.  et al. 2013. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61:635–40 [Google Scholar]
  104. Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M. 104.  et al. 2004. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am. J. Physiol. Heart Circ. Physiol. 287:H203–8 [Google Scholar]
  105. Linz P, Santoro D, Renz W, Rieger J, Ruehle A. 105.  et al. 2014. Skin sodium measured with 23Na MRI at 7.0 T. NMR Biomed 28:54–62 [Google Scholar]
  106. Dahlmann A, Dörfelt K, Eicher F, Linz P, Kopp C. 106.  et al. 2015. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int 87:434–41 [Google Scholar]
  107. Kerjaschki D.107.  2005. The crucial role of macrophages in lymphangiogenesis. J. Clin. Investig. 115:2316–19 [Google Scholar]
  108. Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R. 108.  et al. 2002. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161:947–56 [Google Scholar]
  109. Titze J.109.  2014. Sodium balance is not just a renal affair. Curr. Opin. Nephrol. Hypertens. 23:101–5 [Google Scholar]
  110. Hofmeister LH, Perisic S, Titze J. 110.  2015. Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems?. Pflügers Arch 467:551–58 [Google Scholar]
  111. Machnik A, Dahlmann A, Kopp C, Goss J, Wagner H. 111.  et al. 2010. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension 55:755–61 [Google Scholar]
  112. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T. 112.  et al. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15:545–52 [Google Scholar]
  113. Lankhorst S, Severs D, Markó L, Rakova N, Titze J. 113.  et al. 2017. Salt sensitivity of angiogenesis inhibition–induced blood pressure rise: role of interstitial sodium accumulation?. Hypertension 69:919–26 [Google Scholar]
  114. Lee KM, Danuser R, Stein JV, Graham D, Nibbs RJB, Graham GJ. 114.  2014. The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density. EBMO J 33:2564–80 [Google Scholar]
  115. Zhang M, Yao B, Wang Y, Yang S, Wang S. 115.  et al. 2015. Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension. J. Clin. Investig. 125:4281–94 [Google Scholar]
  116. Helle F, Karlsen TV, Tenstad O, Titze J, Wiig H. 116.  2013. High-salt diet increases hormonal sensitivity in skin pre-capillary resistance vessels. Acta Physiol 207:577–81 [Google Scholar]
  117. Zhou X, Zhang L, Ji W-J, Yuan F, Guo Z-Z. 117.  et al. 2013. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLOS ONE 8:e60332 [Google Scholar]
  118. Binger K, Gebhardt M, Heinig M, Rintisch C, Schroeder A. 118.  et al. 2015. High salt reduces the activation of IL-4 and IL-13 stimulated macrophages. J. Clin. Investig. 125:4223–38 [Google Scholar]
  119. Ip WKE, Medzhitov R. 119.  2015. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6:6931 [Google Scholar]
  120. Zhang W-C, Zheng X-J, Du L-J, Sun J-Y, Shen Z-X. 120.  et al. 2015. High salt primes a specific activation state of macrophages, M(Na). Cell Res 25:893–910 [Google Scholar]
  121. Steinman RM, Cohn ZA. 121.  1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137:1142–62 [Google Scholar]
  122. Birmingham K.122.  2001. Ralph Steinman. Nat. Med. 7:1078 [Google Scholar]
  123. Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS. 123.  2013. Presentation of phagocytosed antigens by MHC class I and II. Traffic 14:135–52 [Google Scholar]
  124. Dixon KB, Davies SS, Kirabo A. 124.  2017. Dendritic cells and isolevuglandins in immunity, inflammation, and hypertension. Am. J. Physiol. Heart Circ. Physiol. 312:H368–74 [Google Scholar]
  125. Chang C-C, Wright A, Punnonen J. 125.  2000. Monocyte-derived CD1a+ and CD1a dendritic cell subsets differ in their cytokine production profiles, susceptibilities to transfection, and capacities to direct Th cell differentiation. J. Immunol. 165:3584–91 [Google Scholar]
  126. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M. 126.  et al. 2000. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165:6037–46 [Google Scholar]
  127. MacDonald KPA, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart D. 127.  2002. Characterization of human blood dendritic cell subsets. Blood 100:4512–20 [Google Scholar]
  128. O'Keeffe M, Mok WH, Radford KJ. 128.  2015. Human dendritic cell subsets and function in health and disease. Cell. Mol. Life Sci. 72:4309–25 [Google Scholar]
  129. Piccioli D, Tavarini S, Borgogni E, Steri V, Nuti S. 129.  et al. 2007. Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood 109:5371–79 [Google Scholar]
  130. Merad M, Sathe P, Helft J, Miller J, Mortha A. 130.  2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604 [Google Scholar]
  131. Vinh A, Chen W, Blinder Y, Weiss D, Taylor WR. 131.  et al. 2010. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 122:2529–37 [Google Scholar]
  132. Itani HA, Xiao L, Saleh MA, Wu J, Pilkinton MA. 132.  et al. 2016. CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ. Res. 118:1233–43 [Google Scholar]
  133. Kirabo A, Fontana V, de Faria APC, Loperena R, Galindo CL. 133.  et al. 2014. DC isoketal-modified proteins activate T cells and promote hypertension. J. Clin. Investig. 124:4642–56 [Google Scholar]
  134. Chessa F, Mathow D, Wang S, Hielscher T, Atzberger A. 134.  et al. 2016. The renal microenvironment modifies dendritic cell phenotype. Kidney Int 89:82–94 [Google Scholar]
  135. Jobin K, Heuser C, Kurts C. 135.  2016. A grain of salt on kidney dendritic cell function in allograft rejection. Kidney Int 89:14–16 [Google Scholar]
  136. Popovic ZV, Embgenbroich M, Chessa F, Nordström V, Bonrouhi M. 136.  et al. 2017. Hyperosmolarity impedes the cross-priming competence of dendritic cells in a TRIF-dependent manner. Sci. Rep. 7:311 [Google Scholar]
  137. Pons H, Ferrebuz A, Quiroz Y, Romero-Vasquez F, Parra G. 137.  et al. 2013. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am. J. Physiol. Renal Physiol. 304:F289–99 [Google Scholar]
  138. Yoshida S, Takeuchi T, Kotani T, Yamamoto N, Hata K. 138.  et al. 2014. Infliximab, a TNF-α inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients. J. Hum. Hypertens. 28:165–69 [Google Scholar]
  139. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. 139.  2006. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J. Am. Soc. Nephrol. 17:S218–25 [Google Scholar]
  140. Mai M, Geiger H, Hilgers KF, Veelken R, Mann JF. 140.  et al. 1993. Early interstitial changes in hypertension-induced renal injury. Hypertension 22:754–65 [Google Scholar]
  141. Nava M, Quiroz Y, Vaziri N, Rodríguez-Iturbe B. 141.  2003. Melatonin reduces renal interstitial inflammation and improves hypertension in spontaneously hypertensive rats. Am. J. Physiol. Renal Physiol. 284:F447–54 [Google Scholar]
  142. Rodríguez-Iturbe B, Quiroz Y, Nava M, Bonet L, Chavez M. 142.  et al. 2002. Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am. J. Physiol. Renal Physiol. 282:F191–201 [Google Scholar]
  143. De Miguel C, Das S, Lund H, Mattson DL. 143.  2010. T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1136–42 [Google Scholar]
  144. Mattson DL, Lund H, Guo C, Rudemiller N, Geurts AM, Jacob H. 144.  2013. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304:R407–14 [Google Scholar]
  145. Rudemiller N, Lund H, Jacob HJ, Geurts AM, Mattson DL. 145.  2014. CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension 63:559–64 [Google Scholar]
  146. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y. 146.  et al. 2010. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55:500–7 [Google Scholar]
  147. Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A. 147.  et al. 2015. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ−/− and interleukin-17A−/− mice. Hypertension 65:569–76 [Google Scholar]
  148. Amador CA, Barrientos V, Peña J, Herrada AA, González M. 148.  et al. 2014. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 63:797–803 [Google Scholar]
  149. Marko L, Kvakan H, Park JK, Qadri F, Spallek B. 149.  et al. 2012. Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension 60:1430–36 [Google Scholar]
  150. Liu Y, Rafferty TM, Rhee SW, Webber JS, Song L. 150.  et al. 2017. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nat. Commun. 8:14037 [Google Scholar]
  151. Hoch NE, Guzik TJ, Chen W, Deans T, Maalouf SA. 151.  et al. 2009. Regulation of T-cell function by endogenously produced angiotensin II. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296:R208–16 [Google Scholar]
  152. Zhang JD, Patel MB, Song YS, Griffiths R, Burchette J. 152.  et al. 2012. A novel role for type 1 angiotensin receptors on T lymphocytes to limit target organ damage in hypertension. Circ. Res. 110:1604–17 [Google Scholar]
  153. Itani HA, McMaster WG Jr., Saleh MA, Nazarewicz RR, Mikolajczyk TP. 153.  et al. 2016. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 68:123–32 [Google Scholar]
  154. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A. 154.  et al. 2007. Role of the T cell in the genesis of angiotensin II-induced hypertension and vascular dysfunction. J. Exp. Med. 204:2449–60 [Google Scholar]
  155. De Miguel C, Guo C, Lund H, Feng D, Mattson DL. 155.  2011. Infiltrating T lymphocytes in the kidney increase oxidative stress and participate in the development of hypertension and renal disease. Am. J. Physiol. Renal Physiol. 300:F734–42 [Google Scholar]
  156. Nguyen H, Chiasson VL, Chatterjee P, Kopriva SE, Young KJ, Mitchell BM. 156.  2013. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc. Res. 97:696–704 [Google Scholar]
  157. Mai J, Nanayakkara G, Lopez-Pastrana J, Li X, Li YF. 157.  et al. 2016. Interleukin-17A promotes aortic endothelial cell activation via transcriptionally and post-translationally activating p38 mitogen-activated protein kinase (MAPK) pathway. J. Biol. Chem. 291:4939–54 [Google Scholar]
  158. Caillon A, Mian MOR, Fraulob-Aquino JC, Huo KG, Barhoumi T. 158.  et al. 2017. Gamma delta T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation 135:2155–62 [Google Scholar]
  159. Kasal DA, Barhoumi T, Li MW, Yamamoto N, Zdanovich E. 159.  et al. 2012. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 59:324–30 [Google Scholar]
  160. Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P. 160.  et al. 2011. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension 57:469–76 [Google Scholar]
  161. Kvakan H, Kleinewietfeld M, Qadri F, Park JK, Fischer R. 161.  et al. 2009. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 119:2904–12 [Google Scholar]
  162. Lima VV, Zemse SM, Chiao CW, Bomfim GF, Tostes RC. 162.  et al. 2016. Interleukin-10 limits increased blood pressure and vascular RhoA/Rho-kinase signaling in angiotensin II-infused mice. Life Sci 145:137–43 [Google Scholar]
  163. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA. 163.  et al. 2011. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101 [Google Scholar]
  164. Olofsson PS, Steinberg BE, Sobbi R, Cox MA, Ahmed MN. 164.  et al. 2016. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat. Biotechnol. 34:1066–71 [Google Scholar]
  165. Trott DW, Thabet SR, Kirabo A, Saleh MA, Itani H. 165.  et al. 2014. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64:1108–15 [Google Scholar]
  166. Ganta CK, Lu N, Helwig BG, Blecha F, Ganta RR. 166.  et al. 2005. Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am. J. Physiol. Heart Circ. Physiol. 289:H1683–91 [Google Scholar]
  167. Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA. 167.  et al. 2010. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ. Res. 107:263–70 [Google Scholar]
  168. Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R. 168.  et al. 2016. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat. Commun. 7:13035 [Google Scholar]
  169. Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. 169.  2004. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation 109:2357–62 [Google Scholar]
  170. Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL. 170.  2004. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ. Res. 95:210–16 [Google Scholar]
  171. Lob HE, Marvar PJ, Guzik TJ, Sharma S, McCann LA. 171.  et al. 2010. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension 55:277–83 [Google Scholar]
  172. Lob HE, Schultz D, Marvar PJ, Davisson RL, Harrison DG. 172.  2013. Role of the NADPH oxidases in the subfornical organ in angiotensin II-induced hypertension. Hypertension 61:382–87 [Google Scholar]
  173. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N. 173.  et al. 2013. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:518–22 [Google Scholar]
  174. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S. 174.  et al. 2013. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496:513–17 [Google Scholar]
  175. Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM. 175.  et al. 2015. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J. Clin. Investig. 125:4212–22 [Google Scholar]
  176. Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM. 176.  et al. 2015. Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension 66:1023–33 [Google Scholar]
  177. Mathis KW, Wallace K, Flynn ER, Maric-Bilkan C, LaMarca B, Ryan MJ. 177.  2014. Preventing autoimmunity protects against the development of hypertension and renal injury. Hypertension 64:792–800 [Google Scholar]
  178. Coffman TM, Crowley SD. 178.  2008. Kidney in hypertension: Guyton redux. Hypertension 51:811–16 [Google Scholar]
  179. Crowley SD, Gurley SB, Oliverio MI, Pazmino AK, Griffiths R. 179.  et al. 2005. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J. Clin. Investig. 115:1092–99 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021317-121134
Loading
/content/journals/10.1146/annurev-physiol-021317-121134
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error