1932

Abstract

Epithelial Na+ channels (ENaCs) are members of the ENaC/degenerin family of ion channels that evolved to respond to extracellular factors. In addition to being expressed in the distal aspects of the nephron, where ENaCs couple the absorption of filtered Na+ to K+ secretion, these channels are found in other epithelia as well as nonepithelial tissues. This review addresses mechanisms by which ENaC activity is regulated by extracellular factors, including proteases, Na+, and shear stress. It also addresses other factors, including acidic phospholipids and modification of ENaC cytoplasmic cysteine residues by palmitoylation, which enhance channel activity by altering interactions of the channel with the plasma membrane.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021317-121143
2018-02-10
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/physiol/80/1/annurev-physiol-021317-121143.html?itemId=/content/journals/10.1146/annurev-physiol-021317-121143&mimeType=html&fmt=ahah

Literature Cited

  1. Kashlan OB, Kleyman TR. 1.  2011. ENaC structure and function in the wake of a resolved structure of a family member. Am. J. Physiol. Renal Physiol. 301:F684–96 [Google Scholar]
  2. Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. 2.  2015. Collecting duct principal cell transport processes and their regulation. Clin. J. Am. Soc. Nephrol. 10:135–46 [Google Scholar]
  3. Hanukoglu I, Hanukoglu A. 3.  2016. Epithelial sodium channel (ENaC) family: phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579:95–132 [Google Scholar]
  4. Jasti J, Furukawa H, Gonzales EB, Gouaux E. 4.  2007. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449:316–23 [Google Scholar]
  5. Gonzales EB, Kawate T, Gouaux E. 5.  2009. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460:599–604 [Google Scholar]
  6. Baconguis I, Bohlen CJ, Goehring A, Julius D, Gouaux E. 6.  2014. X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na+-selective channel. Cell 156:717–29 [Google Scholar]
  7. Kashlan OB, Adelman JL, Okumura S, Blobner BM, Zuzek Z. 7.  et al. 2011. Constraint-based, homology model of the extracellular domain of the epithelial Na+ channel α subunit reveals a mechanism of channel activation by proteases. J. Biol. Chem. 286:649–60 [Google Scholar]
  8. Kellenberger S, Schild L. 8.  2002. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82:735–67 [Google Scholar]
  9. Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. 9.  2016. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC): IUPHAR Review 19. Br. J. Pharmacol. 173:2671–701 [Google Scholar]
  10. Eladari D, Chambrey R, Picard N, Hadchouel J. 10.  2014. Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell. Mol. Life Sci. 71:2879–95 [Google Scholar]
  11. Kleyman TR, Satlin LM, Hallows KR. 11.  2013. Opening lines of communication in the distal nephron. J. Clin. Investig. 123:4139–41 [Google Scholar]
  12. Sinning A, Radionov N, Trepiccione F, López-Cayuqueo KI, Jayat M. 12.  et al. 2017. Double knockout of the Na+-driven Cl/HCO3 exchanger and Na+/ Cl cotransporter induces hypokalemia and volume depletion. J. Am. Soc. Nephrol. 28:130–39 [Google Scholar]
  13. Subramanya AR, Ellison DH. 13.  2014. Distal convoluted tubule. Clin. J. Am. Soc. Nephrol. 9:2147–63 [Google Scholar]
  14. Hadchouel J, Ellison DH, Gamba G. 14.  2016. Regulation of renal electrolyte transport by WNK and SPAK-OSR1 kinases. Annu. Rev. Physiol. 78:367–89 [Google Scholar]
  15. Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang CL, Ellison DH. 15.  2016. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 89:127–34 [Google Scholar]
  16. Cuevas CA, Su X-T, Wang M-X, Terker AS, Lin D-H. 16.  et al. 2017. Potassium sensing by renal distal tubules requires Kir4.1. J. Am. Soc. Nephrol. 28:1814–25 [Google Scholar]
  17. Pech V, Wall SM, Nanami M, Bao HF, Kim YH. 17.  et al. 2015. Pendrin gene ablation alters ENaC subcellular distribution and open probability. Am. J. Physiol. Renal Physiol. 309:F154–63 [Google Scholar]
  18. Pech V, Pham TD, Hong S, Weinstein AM, Spencer KB. 18.  et al. 2010. Pendrin modulates ENaC function by changing luminal HCO3. J. Am. Soc. Nephrol. 21:1928–41 [Google Scholar]
  19. Gueutin V, Vallet M, Jayat M, Peti-Peterdi J, Cornière N. 19.  et al. 2013. Renal β-intercalated cells maintain body fluid and electrolyte balance. J. Clin. Investig. 123:4219–31 [Google Scholar]
  20. Wall SM, Lazo-Fernandez Y. 20.  2015. The role of pendrin in renal physiology. Annu. Rev. Physiol. 77:363–78 [Google Scholar]
  21. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E. 21.  et al. 2010. The cells and peripheral representation of sodium taste in mice. Nature 464:297–301 [Google Scholar]
  22. Malsure S, Wang Q, Charles RP, Sergi C, Perrier R. 22.  et al. 2014. Colon-specific deletion of epithelial sodium channel causes sodium loss and aldosterone resistance. J. Am. Soc. Nephrol. 25:1453–64 [Google Scholar]
  23. Miller RL, Denny GO, Knuepfer MM, Kleyman TR, Jackson EK. 23.  et al. 2015. Blockade of ENaCs by amiloride induces c-Fos activation of the area postrema. Brain Res 1601:40–51 [Google Scholar]
  24. Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH. 24.  2005. Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289:R1787–97 [Google Scholar]
  25. Leenen FH, Hou X, Wang HW, Ahmad M. 25.  2015. Enhanced expression of epithelial sodium channels causes salt-induced hypertension in mice through inhibition of the α2-isoform of Na+, K+-ATPase. Physiol. Rep. 3:e12383 [Google Scholar]
  26. Wang ZR, Liu HB, Sun YY, Hu QQ, Li YX. 26.  et al. 2017. Dietary salt blunts vasodilation by stimulating epithelial sodium channels in endothelial cells from salt-sensitive rats. Br. J. Pharmacol. In press. https://doi.org/10.1111/bph.13817 [Crossref] [Google Scholar]
  27. Guo D, Liang S, Wang S, Tang C, Yao B. 27.  et al. 2016. Role of epithelial Na+ channels in endothelial function. J. Cell Sci. 129:290–97 [Google Scholar]
  28. Kusche-Vihrog K, Tarjus A, Fels J, Jaisser F. 28.  2014. The epithelial Na+ channel: a new player in the vasculature. Curr. Opin. Nephrol. Hypertens. 23:143–48 [Google Scholar]
  29. Grifoni SC, Chiposi R, McKey SE, Ryan MJ, Drummond HA. 29.  2010. Altered whole kidney blood flow autoregulation in a mouse model of reduced β-ENaC. Am. J. Physiol. Renal Physiol. 298:F285–92 [Google Scholar]
  30. Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA. 30.  et al. 2007. Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the γ-subunit. J. Biol. Chem. 282:6153–60 [Google Scholar]
  31. Carattino MD, Sheng S, Bruns JB, Pilewski JM, Hughey RP, Kleyman TR. 31.  2006. The epithelial Na+ channel is inhibited by a peptide derived from proteolytic processing of its α subunit. J. Biol. Chem. 281:18901–7 [Google Scholar]
  32. Kleyman TR, Carattino MD, Hughey RP. 32.  2009. ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J. Biol. Chem. 284:20447–51 [Google Scholar]
  33. Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q. 33.  et al. 2004. Epithelial sodium channels are activated by furin-dependent proteolysis. J. Biol. Chem. 279:18111–14 [Google Scholar]
  34. Carattino MD, Passero CJ, Steren CA, Maarouf AB, Pilewski JM. 34.  et al. 2008. Defining an inhibitory domain in the α-subunit of the epithelial sodium channel. Am. J. Physiol. Renal Physiol. 294:F47–52 [Google Scholar]
  35. Sheng S, Carattino MD, Bruns JB, Hughey RP, Kleyman TR. 35.  2006. Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition. Am. J. Physiol. Renal Physiol. 290:F1488–96 [Google Scholar]
  36. Passero CJ, Carattino MD, Kashlan OB, Myerburg MM, Hughey RP, Kleyman TR. 36.  2010. Defining an inhibitory domain in the gamma subunit of the epithelial sodium channel. Am. J. Physiol. Renal Physiol. 299:F854–61 [Google Scholar]
  37. Patel AB, Chao J, Palmer LG. 37.  2012. Tissue kallikrein activation of the epithelial Na channel. Am. J. Physiol. Renal Physiol. 303:F540–50 [Google Scholar]
  38. Adebamiro A, Cheng Y, Rao US, Danahay H, Bridges RJ. 38.  2007. A segment of γ ENaC mediates elastase activation of Na+ transport. J. Gen. Physiol. 130:611–29 [Google Scholar]
  39. Caldwell RA, Boucher RC, Stutts MJ. 39.  2005. Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am. J. Physiol. Lung Cell. Mol. Physiol. 288:L813–19 [Google Scholar]
  40. Harris M, Firsov D, Vuagniaux G, Stutts MJ, Rossier BC. 40.  2007. A novel neutrophil elastase inhibitor prevents elastase activation and surface cleavage of the epithelial sodium channel expressed in Xenopus laevis oocytes. J. Biol. Chem. 282:58–64 [Google Scholar]
  41. Kota P, García-Caballero A, Dang H, Gentzsch M, Stutts MJ, Dokholyan NV. 41.  2012. Energetic and structural basis for activation of the epithelial sodium channel by matriptase. Biochemistry 51:3460–69 [Google Scholar]
  42. Passero CJ, Mueller GM, Myerburg MM, Carattino MD, Hughey RP, Kleyman TR. 42.  2012. TMPRSS4-dependent activation of the epithelial sodium channel requires cleavage of the γ-subunit distal to the furin cleavage site. Am. J. Physiol. Renal Physiol. 302:F1–8 [Google Scholar]
  43. Passero CJ, Mueller GM, Rondon-Berrios H, Tofovic SP, Hughey RP, Kleyman TR. 43.  2008. Plasmin activates epithelial Na+ channels by cleaving the γ subunit. J. Biol. Chem. 283:36586–91 [Google Scholar]
  44. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S. 44.  et al. 2009. Plasmin in nephrotic urine activates the epithelial sodium channel. J. Am. Soc. Nephrol. 20:299–310 [Google Scholar]
  45. Tan CD, Hobbs C, Sameni M, Sloane BF, Stutts MJ, Tarran R. 45.  2014. Cathepsin B contributes to Na+ hyperabsorption in cystic fibrosis airway epithelial cultures. J. Physiol. 592:5251–68 [Google Scholar]
  46. Haerteis S, Krappitz M, Bertog M, Krappitz A, Baraznenok V. 46.  et al. 2012. Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflügers Arch 464:353–65 [Google Scholar]
  47. Alli AA, Song JZ, Al-Khalili O, Bao HF, Ma HP. 47.  et al. 2012. Cathepsin B is secreted apically from Xenopus 2F3 cells and cleaves the epithelial sodium channel (ENaC) to increase its activity. J. Biol. Chem. 287:30073–83 [Google Scholar]
  48. Butterworth MB, Zhang L, Heidrich EM, Myerburg MM, Thibodeau PH. 48.  2012. Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa. . J. Biol. Chem. 287:32556–65 [Google Scholar]
  49. Carattino MD, Mueller GM, Palmer LG, Frindt G, Rued AC. 49.  et al. 2014. Prostasin interacts with the epithelial Na+ channel and facilitates cleavage of the γ-subunit by a second protease. Am. J. Physiol. Renal Physiol. 307:F1080–87 [Google Scholar]
  50. Uchimura K, Kakizoe Y, Onoue T, Hayata M, Morinaga J. 50.  et al. 2012. In vivo contribution of serine proteases to the proteolytic activation of γENaC in aldosterone-infused rats. Am. J. Physiol. Renal Physiol. 303:F939–43 [Google Scholar]
  51. Zachar RM, Skjødt K, Marcussen N, Walter S, Toft A. 51.  et al. 2015. The epithelial sodium channel γ-subunit is processed proteolytically in human kidney. J. Am. Soc. Nephrol. 26:95–106 [Google Scholar]
  52. Frindt G, Palmer LG. 52.  2009. Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. Am. J. Physiol. Renal Physiol. 297:F1249–55 [Google Scholar]
  53. Frindt G, Palmer LG. 53.  2015. Acute effects of aldosterone on the epithelial Na channel in rat kidney. Am. J. Physiol. Renal Physiol. 308:F572–78 [Google Scholar]
  54. Picard N, Eladari D, El Moghrabi S, Planes C, Bourgeois S. 54.  et al. 2008. Defective ENaC processing and function in tissue kallikrein-deficient mice. J. Biol. Chem. 283:4602–11 [Google Scholar]
  55. Nielsen MR, Frederiksen-Møller B, Zachar R, Jørgensen JS, Hansen MR. 55.  et al. 2017. Urine exosomes from healthy and hypertensive pregnancies display elevated level of α-subunit and cleaved α- and γ-subunits of the epithelial sodium channel–ENaC. Pflügers Arch 469:1107–119 [Google Scholar]
  56. Reihill JA, Walker B, Hamilton RA, Ferguson TE, Elborn JS. 56.  et al. 2016. Inhibition of protease-epithelial sodium channel signaling improves mucociliary function in cystic fibrosis airways. Am. J. Respir. Crit. Care Med. 194:701–10 [Google Scholar]
  57. Garcia-Caballero A, Dang Y, He H, Stutts MJ. 57.  2008. ENaC proteolytic regulation by channel-activating protease 2. J. Gen. Physiol. 132:521–35 [Google Scholar]
  58. Qi Y, Wang X, Rose KL, MacDonald WH, Zhang B. 58.  et al. 2016. Activation of the endogenous renin-angiotensin-aldosterone system or aldosterone administration increases urinary exosomal sodium channel excretion. J. Am. Soc. Nephrol. 27:646–56 [Google Scholar]
  59. Ray EC, Kleyman TR. 59.  2015. Cutting it out: ENaC processing in the human nephron. J. Am. Soc. Nephrol. 26:1–3 [Google Scholar]
  60. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC. 60.  1997. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–10 [Google Scholar]
  61. Chraibi A, Vallet V, Firsov D, Hess SK, Horisberger JD. 61.  1998. Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J. Gen. Physiol. 111:127–38 [Google Scholar]
  62. Morimoto T, Liu W, Woda C, Carattino MD, Wei Y. 62.  et al. 2006. Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am. J. Physiol. Renal Physiol. 291:F663–69 [Google Scholar]
  63. Nesterov V, Dahlmann A, Bertog M, Korbmacher C. 63.  2008. Trypsin can activate the epithelial sodium channel (ENaC) in microdissected mouse distal nephron. Am. J. Physiol. Renal Physiol. 295:F1052–62 [Google Scholar]
  64. El Moghrabi S, Houillier P, Picard N, Sohet F, Wootla B. 64.  et al. 2010. Tissue kallikrein permits early renal adaptation to potassium load. PNAS 107:13526–31 [Google Scholar]
  65. Leyvraz C, Charles RP, Rubera I, Guitard M, Rotman S. 65.  et al. 2005. The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J. Cell Biol. 170487–96
  66. Adams RL, Bird RJ. 66.  2009. Review article: Coagulation cascade and therapeutics update: relevance to nephrology. Part 1: overview of coagulation, thrombophilias and history of anticoagulants. Nephrology 14:462–70 [Google Scholar]
  67. Wakida N, Kitamura K, Tuyen DG, Maekawa A, Miyoshi T. 67.  et al. 2006. Inhibition of prostasin-induced ENaC activities by PN-1 and regulation of PN-1 expression by TGF-β1 and aldosterone. Kidney Int 70:1432–38 [Google Scholar]
  68. Myerburg MM, Butterworth MB, McKenna EE, Peters KW, Frizzell RA. 68.  et al. 2006. Airway surface liquid volume regulates ENaC by altering the serine protease-protease inhibitor balance: a mechanism for sodium hyperabsorption in cystic fibrosis. J. Biol. Chem. 281:27942–49 [Google Scholar]
  69. Butterworth MB, Zhang L, Liu X, Shanks RM, Thibodeau PH. 69.  2014. Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors. PLOS ONE 9:e100313 [Google Scholar]
  70. Andreasen D, Vuagniaux G, Fowler-Jaeger N, Hummler E, Rossier BC. 70.  2006. Activation of epithelial sodium channels by mouse channel activating proteases (mCAP) expressed in Xenopus oocytes requires catalytic activity of mCAP3 and mCAP2 but not mCAP1. J. Am. Soc. Nephrol. 17:968–76 [Google Scholar]
  71. Hughey RP, Bruns JB, Kinlough CL, Kleyman TR. 71.  2004. Distinct pools of epithelial sodium channels are expressed at the plasma membrane. J. Biol. Chem. 279:48491–94 [Google Scholar]
  72. Frindt G, Ergonul Z, Palmer LG. 72.  2008. Surface expression of epithelial Na channel protein in rat kidney. J. Gen. Physiol. 131:617–27 [Google Scholar]
  73. Knight KK, Wentzlaff DM, Snyder PM. 73.  2008. Intracellular sodium regulates proteolytic activation of the epithelial sodium channel. J. Biol. Chem. 283:27477–82 [Google Scholar]
  74. Heidrich E, Carattino MD, Hughey RP, Pilewski JM, Kleyman TR, Myerburg MM. 74.  2015. Intracellular Na+ regulates epithelial Na+ channel maturation. J. Biol. Chem. 290:11569–77 [Google Scholar]
  75. Komwatana P, Dinudom A, Young JA, Cook DI. 75.  1998. Activators of epithelial Na+ channels inhibit cytosolic feedback control. Evidence for the existence of a G protein-coupled receptor for cytosolic Na+. J. Membr. Biol. 162:225–32 [Google Scholar]
  76. Harvey KF, Dinudom A, Cook DI, Kumar S. 76.  2001. The Nedd4-like protein KIAA0439 is a potential regulator of the epithelial sodium channel. J. Biol. Chem. 276:8597–601 [Google Scholar]
  77. Patel AB, Frindt G, Palmer LG. 77.  2013. Feedback inhibition of ENaC during acute sodium loading in vivo. Am. J. Physiol. Renal Physiol. 304:F222–32 [Google Scholar]
  78. Kashlan OB, Boyd CR, Argyropoulos C, Okumura S, Hughey RP. 78.  et al. 2010. Allosteric inhibition of the epithelial Na+ channel through peptide binding at peripheral finger and thumb domains. J. Biol. Chem. 285:35216–23 [Google Scholar]
  79. Kashlan OB, Kleyman TR. 79.  2012. Epithelial Na+ channel regulation by cytoplasmic and extracellular factors. Exp. Cell Res. 318:1011–19 [Google Scholar]
  80. Zheng H, Liu X, Sharma NM, Li Y, Pliquett RU, Patel KP. 80.  2016. Urinary proteolytic activation of renal epithelial Na+ channels in chronic heart failure. Hypertension 67:197–205 [Google Scholar]
  81. Meltzer JI, Keim HJ, Laragh JH, Sealey JE, Jan KM, Chien S. 81.  1979. Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling. Ann. Intern. Med. 91:688–96 [Google Scholar]
  82. Ray EC, Rondon-Berrios H, Boyd CR, Kleyman TR. 82.  2015. Sodium retention and volume expansion in nephrotic syndrome: implications for hypertension. Adv. Chronic Kidney Dis. 22:179–84 [Google Scholar]
  83. Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N. 83.  et al. 1983. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J. Clin. Investig. 71:91–103 [Google Scholar]
  84. Deschênes G, Wittner M, Stefano A, Jounier S, Doucet A. 84.  2001. Collecting duct is a site of sodium retention in PAN nephrosis: a rationale for amiloride therapy. J. Am. Soc. Nephrol. 12:598–601 [Google Scholar]
  85. Svenningsen P, Uhrenholt TR, Palarasah Y, Skjødt K, Jensen BL, Skøtt O. 85.  2009. Prostasin-dependent activation of epithelial Na+ channels by low plasmin concentrations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R1733–41 [Google Scholar]
  86. Andersen H, Friis UG, Hansen PB, Svenningsen P, Henriksen JE, Jensen BL. 86.  2015. Diabetic nephropathy is associated with increased urine excretion of proteases plasmin, prostasin and urokinase and activation of amiloride-sensitive current in collecting duct cells. Nephrol. Dial. Transplant. 30:781–89 [Google Scholar]
  87. Andersen RF, Buhl KB, Jensen BL, Svenningsen P, Friis UG. 87.  et al. 2013. Remission of nephrotic syndrome diminishes urinary plasmin content and abolishes activation of ENaC. Pediatr. Nephrol. 28:1227–34 [Google Scholar]
  88. Buhl KB, Friis UG, Svenningsen P, Gulaveerasingam A, Ovesen P. 88.  et al. 2012. Urinary plasmin activates collecting duct ENaC current in preeclampsia. Hypertension 60:1346–51 [Google Scholar]
  89. Buhl KB, Oxlund CS, Friis UG, Svenningsen P, Bistrup C. 89.  et al. 2014. Plasmin in urine from patients with type 2 diabetes and treatment-resistant hypertension activates ENaC in vitro. J. Hypertens. 32:1672–77 [Google Scholar]
  90. Oxlund CS, Buhl KB, Jacobsen IA, Hansen MR, Gram J. 90.  et al. 2014. Amiloride lowers blood pressure and attenuates urine plasminogen activation in patients with treatment-resistant hypertension. J. Am. Soc. Hypertens. 8:872–81 [Google Scholar]
  91. Schork A, Woern M, Kalbacher H, Voelter W, Nacken R. 91.  et al. 2016. Association of plasminuria with overhydration in patients with CKD. Clin. J. Am. Soc. Nephrol. 11:761–69 [Google Scholar]
  92. Vassalli JD, Belin D. 92.  1987. Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Lett 214:187–91 [Google Scholar]
  93. Andersen H, Hansen PB, Bistrup C, Nielsen F, Henriksen JE, Jensen BL. 93.  2016. Significant natriuretic and antihypertensive action of the epithelial sodium channel blocker amiloride in diabetic patients with and without nephropathy. J. Hypertens. 34:1621–29 [Google Scholar]
  94. Fuchs W, Larsen EH, Lindemann B. 94.  1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J. Physiol. 267:137–66 [Google Scholar]
  95. Maarouf AB, Sheng N, Chen J, Winarski KL, Okumura S. 95.  et al. 2009. Novel determinants of epithelial sodium channel gating within extracellular thumb domains. J. Biol. Chem. 284:7756–65 [Google Scholar]
  96. Kashlan OB, Blobner BM, Zuzek Z, Tolino M, Kleyman TR. 96.  2015. Na+ inhibits the epithelial Na+ channel by binding to a site in an extracellular acidic cleft. J. Biol. Chem. 290:568–76 [Google Scholar]
  97. Sheng S, Bruns JB, Kleyman TR. 97.  2004. Extracellular histidine residues crucial for Na+ self-inhibition of epithelial Na+ channels. J. Biol. Chem. 279:9743–49 [Google Scholar]
  98. Sheng S, Maarouf AB, Bruns JB, Hughey RP, Kleyman TR. 98.  2007. Functional role of extracellular loop cysteine residues of the epithelial Na+ channel in Na+ self-inhibition. J. Biol. Chem. 282:20180–90 [Google Scholar]
  99. Shi S, Blobner BM, Kashlan OB, Kleyman TR. 99.  2012. Extracellular finger domain modulates the response of the epithelial sodium channel to shear stress. J. Biol. Chem. 287:15439–44 [Google Scholar]
  100. Winarski KL, Sheng N, Chen J, Kleyman TR, Sheng S. 100.  2010. Extracellular allosteric regulatory subdomain within the γ subunit of the epithelial Na+ channel. J. Biol. Chem. 285:26088–96 [Google Scholar]
  101. Ray EC, Chen J, Kelly TN, He J, Hamm LL. 101.  et al. 2016. Human epithelial Na+ channel missense variants identified in the GenSalt study alter channel activity. Am. J. Physiol. Renal Physiol. 311:F908–F14 [Google Scholar]
  102. Edelheit O, Ben-Shahar R, Dascal N, Hanukoglu A, Hanukoglu I. 102.  2014. Conserved charged residues at the surface and interface of epithelial sodium channel subunits–roles in cell surface expression and the sodium self-inhibition response. FEBS J 281:2097–111 [Google Scholar]
  103. Collier DM, Snyder PM. 103.  2011. Identification of epithelial Na+ channel (ENaC) intersubunit Cl inhibitory residues suggests a trimeric αγβ channel architecture. J. Biol. Chem. 286:6027–32 [Google Scholar]
  104. Rauh R, Diakov A, Tzschoppe A, Korbmacher J, Azad AK. 104.  et al. 2010. A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J. Physiol. 588:1211–25 [Google Scholar]
  105. Sheng S, Perry CJ, Kleyman TR. 105.  2004. Extracellular Zn2+ activates epithelial Na+ channels by eliminating Na+ self-inhibition. J. Biol. Chem. 279:31687–96 [Google Scholar]
  106. Collier DM, Snyder PM. 106.  2009. Extracellular protons regulate human ENaC by modulating Na+ self-inhibition. J. Biol. Chem. 284:792–98 [Google Scholar]
  107. Collier DM, Snyder PM. 107.  2009. Extracellular chloride regulates the epithelial sodium channel. J. Biol. Chem. 284:29320–25 [Google Scholar]
  108. Bize V, Horisberger JD. 108.  2007. Sodium self-inhibition of human epithelial sodium channel: selectivity and affinity of the extracellular sodium sensing site. Am. J. Physiol. Renal Physiol. 293:F1137–46 [Google Scholar]
  109. Chen J, Kleyman TR, Sheng S. 109.  2013. Gain-of-function variant of the human epithelial sodium channel. Am. J. Physiol. Renal Physiol. 304:F207–13 [Google Scholar]
  110. Carattino MD, Sheng S, Kleyman TR. 110.  2004. Epithelial Na+ channels are activated by laminar shear stress. J. Biol. Chem. 279:4120–26 [Google Scholar]
  111. Althaus M, Bogdan R, Clauss WG, Fronius M. 111.  2007. Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J 21:2389–99 [Google Scholar]
  112. Satlin LM, Sheng S, Woda CB, Kleyman TR. 112.  2001. Epithelial Na+ channels are regulated by flow. Am. J. Physiol. Renal Physiol. 280:F1010–18 [Google Scholar]
  113. Woda CB, Bragin A, Kleyman TR, Satlin LM. 113.  2001. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am. J. Physiol. Renal Physiol. 280:F786–93 [Google Scholar]
  114. Bugaj V, Sansom SC, Wen D, Hatcher LI, Stockand JD, Mironova E. 114.  2012. Flow-sensitive K+-coupled ATP secretion modulates activity of the epithelial Na+ channel in the distal nephron. J. Biol. Chem. 287:38552–58 [Google Scholar]
  115. Tarran R, Trout L, Donaldson SH, Boucher RC. 115.  2006. Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J. Gen. Physiol. 127:591–604 [Google Scholar]
  116. Hyndman KA, Bugaj V, Mironova E, Stockand JD, Pollock JS. 116.  2015. NOS1-dependent negative feedback regulation of the epithelial sodium channel in the collecting duct. Am. J. Physiol. Renal Physiol. 308:F244–51 [Google Scholar]
  117. Jia G, Habibi J, Aroor AR, Martinez-Lemus LA, DeMarco VG. 117.  et al. 2016. Endothelial mineralocorticoid receptor mediates diet-induced aortic stiffness in females. Circ. Res. 118:935–43 [Google Scholar]
  118. Knoepp F, Ashley Z, Barth D, Kazantseva M, Szczesniak PP. 118.  et al. 2017. Mechanical activation of epithelial Na+ channel relies on an interdependent activity of the extracellular matrix and extracellular N-glycans of αENaC. bioRxiv 102756 https://doi.org/10.1101/102756 [Crossref]
  119. Hamill OP, Martinac B. 119.  2001. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81:685–740 [Google Scholar]
  120. Syntichaki P, Tavernarakis N. 120.  2004. Genetic models of mechanotransduction: the nematode Caenorhabditis elegans. . Physiol. Rev. 84:1097–153 [Google Scholar]
  121. Carattino MD, Liu W, Hill WG, Satlin LM, Kleyman TR. 121.  2007. Lack of a role of membrane-protein interactions in flow-dependent activation of ENaC. Am. J. Physiol. Renal Physiol. 293:F316–24 [Google Scholar]
  122. Shi S, Carattino MD, Kleyman TR. 122.  2012. Role of the wrist domain in the response of the epithelial sodium channel to external stimuli. J. Biol. Chem. 287:44027–35 [Google Scholar]
  123. Shi S, Ghosh DD, Okumura S, Carattino MD, Kashlan OB. 123.  et al. 2011. Base of the thumb domain modulates epithelial sodium channel gating. J. Biol. Chem. 286:14753–61 [Google Scholar]
  124. Yue G, Malik B, Eaton DC. 124.  2002. Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates epithelial sodium channel activity in A6 cells. J. Biol. Chem. 277:11965–69 [Google Scholar]
  125. Ma HP, Eaton DC. 125.  2005. Acute regulation of epithelial sodium channel by anionic phospholipids. J. Am. Soc. Nephrol. 16:3182–87 [Google Scholar]
  126. Pochynyuk O, Staruschenko A, Tong Q, Medina J, Stockand JD. 126.  2005. Identification of a functional phosphatidylinositol 3,4,5-trisphosphate binding site in the epithelial Na+ channel. J. Biol. Chem. 280:37565–71 [Google Scholar]
  127. Pochynyuk O, Bugaj V, Stockand JD. 127.  2008. Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr. Opin. Nephrol. Hypertens. 17:533–40 [Google Scholar]
  128. Wei Y, Lin DH, Kemp R, Yaddanapudi GS, Nasjletti A. 128.  et al. 2004. Arachidonic acid inhibits epithelial Na channel via cytochrome P450 (CYP) epoxygenase-dependent metabolic pathways. J. Gen. Physiol. 124:719–27 [Google Scholar]
  129. Mueller GM, Maarouf AB, Kinlough CL, Sheng N, Kashlan OB. 129.  et al. 2010. Cys palmitoylation of the β subunit modulates gating of the epithelial sodium channel. J. Biol. Chem. 285:30453–62 [Google Scholar]
  130. Mukherjee A, Mueller GM, Kinlough CL, Sheng N, Wang Z. 130.  et al. 2014. Cysteine palmitoylation of the γ subunit has a dominant role in modulating activity of the epithelial sodium channel. J. Biol. Chem. 289:14351–59 [Google Scholar]
  131. Mukherjee A, Wang Z, Kinlough CL, Poland PA, Marciszyn AL. 131.  et al. 2017. Specific palmitoyltransferases associate with and activate the epithelial sodium channel. J. Biol. Chem. 292:4152–63 [Google Scholar]
  132. Nadolski MJ, Linder ME. 132.  2007. Protein lipidation. FEBS J 274:5202–10 [Google Scholar]
  133. Linder ME, Deschênes RJ. 133.  2007. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8:74–84 [Google Scholar]
  134. Shipston MJ.134.  2011. Ion channel regulation by protein palmitoylation. J. Biol. Chem. 286:8709–16 [Google Scholar]
  135. Yeste-Velasco M, Linder ME, Lu YJ. 135.  2015. Protein S-palmitoylation and cancer. Biochim. Biophys. Acta 1856:107–20 [Google Scholar]
  136. Chamberlain LH, Shipston MJ. 136.  2015. The physiology of protein S-acylation. Physiol. Rev. 95:341–76 [Google Scholar]
  137. Shipston MJ.137.  2014. Ion channel regulation by protein S-acylation. J. Gen. Physiol. 143:659–78 [Google Scholar]
  138. Mueller GM, Yan W, Copelovitch L, Jarman S, Wang Z. 138.  et al. 2012. Multiple residues in the distal C terminus of the α-subunit have roles in modulating human epithelial sodium channel activity. Am. J. Physiol. Renal Physiol. 303:F220–28 [Google Scholar]
  139. Gründer S, Firsov D, Chang SS, Jaeger NF, Gautschi I. 139.  et al. 1997. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J 16:899–907 [Google Scholar]
  140. Korycka J, Lach A, Heger E, Boguslawska DM, Wolny M. 140.  et al. 2012. Human DHHC proteins: a spotlight on the hidden player of palmitoylation. Eur. J. Cell Biol. 91:107–17 [Google Scholar]
  141. Tsutsumi R, Fukata Y, Fukata M. 141.  2008. Discovery of protein-palmitoylating enzymes. Pflügers Arch 456:1199–206 [Google Scholar]
  142. Ohno Y, Kihara A, Sano T, Igarashi Y. 142.  2006. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim. Biophys. Acta 1761:474–83 [Google Scholar]
  143. Lee JW, Chou CL, Knepper MA. 143.  2015. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26:2669–77 [Google Scholar]
  144. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL. 144.  et al. 2014. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:371–75 [Google Scholar]
  145. Kashlan OB, Kinlough CL, Myerburg MM, Shi S, Chen J. 145.  et al. 2017. N-linked glycans are required on epithelial Na+ channel subunits for maturation and surface expression. Am. J. Physiol. Renal. Physiol. In press. https://doi.org/10.1152/ajprenal.00195.2017 [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-021317-121143
Loading
/content/journals/10.1146/annurev-physiol-021317-121143
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error