Bacteria represent one of the most evolutionarily successful groups of organisms to inhabit Earth. Their world is awash with mechanical cues, probably the most ancient form of which are osmotic forces. As a result, they have developed highly robust mechanosensors in the form of bacterial mechanosensitive (MS) channels. These channels are essential in osmoregulation, and in this setting, provide one of the simplest paradigms for the study of mechanosensory transduction. We explore the past, present, and future of bacterial MS channels, including the alternate mechanosensory roles that they may play in complex microbial communities. Central to all of these functions is their ability to change conformation in response to mechanical stimuli. We discuss their gating according to the force-from-lipids principle and its applicability to eukaryotic MS channels. This includes the new paradigms emerging for bilayer-mediated channel mechanosensitivity and how this molecular detail may provide advances in both industry and medicine.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Bacterial Mechanosensors

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ingber DE.1.  2006. Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–27 [Google Scholar]
  2. Katta S, Krieg M, Goodman MB. 2.  2015. Feeling force: physical and physiological principles enabling sensory mechanotransduction. Annu. Rev. Cell Dev. Biol. 31:347–71 [Google Scholar]
  3. Persat A, Nadell CD, Kim MK, Ingremeau F, Siryaporn A. 3.  et al. 2015. The mechanical world of bacteria. Cell 161:988–97 [Google Scholar]
  4. Persat A.4.  2017. Bacterial mechanotransduction. Curr. Opin. Microbiol. 36:1–6 [Google Scholar]
  5. Wood JM.5.  2015. Bacterial responses to osmotic challenges. J. Gen. Physiol. 145:381–88 [Google Scholar]
  6. Boer M, Anishkin A, Sukharev S. 6.  2011. Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time. Biochemistry 50:4087–96 [Google Scholar]
  7. Buda R, Liu Y, Yang J, Hegde S, Stevenson K. 7.  et al. 2016. Dynamics of Escherichia coli’s passive response to a sudden decrease in external osmolarity. PNAS 113:E5838–46 [Google Scholar]
  8. Booth IR.8.  2014. Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr. Opin. Microbiol. 18:16–22 [Google Scholar]
  9. Bialecka-Fornal M, Lee HJ, Phillips R. 9.  2015. The rate of osmotic downshock determines the survival probability of bacterial mechanosensitive channel mutants. J. Bacteriol. 197:231–37 [Google Scholar]
  10. Schumann U, Edwards MD, Rasmussen T, Bartlett W, van West P, Booth IR. 10.  2010. YbdG in Escherichia coli is a threshold-setting mechanosensitive channel with MscM activity. PNAS 107:12664–69 [Google Scholar]
  11. Edwards MD, Black S, Rasmussen T, Rasmussen A, Stokes NR. 11.  et al. 2012. Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels 6:272–81 [Google Scholar]
  12. van den Berg J, Galbiati H, Rasmussen A, Miller S, Poolman B. 12.  2016. On the mobility, membrane location and functionality of mechanosensitive channels in Escherichia coli. Sci. Rep. 6:32709 [Google Scholar]
  13. Bialecka-Fornal M, Lee HJ, DeBerg HA, Gandhi CS, Phillips R. 13.  2012. Single-cell census of mechanosensitive channels in living bacteria. PLOS ONE 7:e33077 [Google Scholar]
  14. Grage SL, Keleshian AM, Turdzeladze T, Battle AR, Tay WC. 14.  et al. 2011. Bilayer-mediated clustering and functional interaction of MscL channels. Biophys. J. 100:1252–60 [Google Scholar]
  15. Pruitt BL, Dunn AR, Weis WI, Nelson WJ. 15.  2014. Mechano-transduction: from molecules to tissues. PLOS Biol 12:e1001996 [Google Scholar]
  16. Martinac B, Cox CD. 16.  2017. Mechanosensory transduction: focus on ion channels. Comprehensive Biophysics BD Roitberg Amsterdam: Elsevier https://doi.org/10.1016/B978-0-12-809633-8.08094-8 [Crossref] [Google Scholar]
  17. Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR. 17.  1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–37 [Google Scholar]
  18. Cox CD, Nomura T, Ziegler CS, Campbell AK, Wann KT, Martinac B. 18.  2013. Selectivity mechanism of the mechanosensitive channel MscS revealed by probing channel subconducting states. Nat. Commun. 4:2137 [Google Scholar]
  19. Stokes NR, Murray HD, Subramaniam C, Gourse RL, Louis P. 19.  et al. 2003. A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. PNAS 100:15959–64 [Google Scholar]
  20. Cayley DS, Guttman HJ, Record MT Jr.. 20.  2000. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 78:1748–64 [Google Scholar]
  21. Deng Y, Sun M, Shaevitz JW. 21.  2011. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107:158101 [Google Scholar]
  22. Sun Y, Sun TL, Huang HW. 22.  2014. Physical properties of Escherichia coli spheroplast membranes. Biophys. J. 107:2082–90 [Google Scholar]
  23. Nomura T, Cranfield CG, Deplazes E, Owen DM, Macmillan A. 23.  et al. 2012. Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. PNAS 109:8770–75 [Google Scholar]
  24. Sukharev SI, Sigurdson WJ, Kung C, Sachs F. 24.  1999. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113:525–40 [Google Scholar]
  25. Nomura T, Cox CD, Bavi N, Sokabe M, Martinac B. 25.  2015. Unidirectional incorporation of a bacterial mechanosensitive channel into liposomal membranes. FASEB J 29:4334–45 [Google Scholar]
  26. O'Toole G, Kaplan HB, Kolter R. 26.  2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54:49–79 [Google Scholar]
  27. Donlan RM.27.  2001. Biofilm formation: a clinically relevant microbiological process. Clin. Infect. Dis. 33:1387–92 [Google Scholar]
  28. Thomen P, Robert J, Monmeyran A, Bitbol AF, Douarche C, Henry N. 28.  2017. Bacterial biofilm under flow: first a physical struggle to stay, then a matter of breathing. PLOS ONE 12:e0175197 [Google Scholar]
  29. Castro SL, Nelman-Gonzalez M, Nickerson CA, Ott CM. 29.  2011. Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear culture of Staphylococcus aureus. Appl. Environ. Microbiol 77:6368–78 [Google Scholar]
  30. Oldewurtel ER, Kouzel N, Dewenter L, Henseler K, Maier B. 30.  2015. Differential interaction forces govern bacterial sorting in early biofilms. eLife 4:e10811 [Google Scholar]
  31. O'Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. 31.  2013. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. PNAS 110:17981–86 [Google Scholar]
  32. Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM. 32.  1999. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. PNAS 96:2408–13 [Google Scholar]
  33. Li Q, Hu Y, Chen J, Liu Z, Han J. 33.  et al. 2013. Identification of Salmonella enterica serovar Pullorum antigenic determinants expressed in vivo. Infect. Immun. 81:3119–27 [Google Scholar]
  34. Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Suel GM. 34.  2015. Ion channels enable electrical communication in bacterial communities. Nature 527:59–63 [Google Scholar]
  35. Humphries J, Xiong L, Liu J, Prindle A, Yuan F. 35.  et al. 2017. Species-independent attraction to biofilms through electrical signaling. Cell 168:200–9.e12 [Google Scholar]
  36. Garland CJ, Dora KA. 36.  2017. EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol 219:152–61 [Google Scholar]
  37. Belas R.37.  2014. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 22:517–27 [Google Scholar]
  38. Otto K, Silhavy TJ. 38.  2002. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. PNAS 99:2287–92 [Google Scholar]
  39. Koprowski P, Grajkowski W, Balcerzak M, Filipiuk I, Fabczak H, Kubalski A. 39.  2015. Cytoplasmic domain of MscS interacts with cell division protein FtsZ: a possible non-channel function of the mechanosensitive channel in Escherichia coli. PLOS ONE 10:e0127029 [Google Scholar]
  40. Romantsov T, Battle AR, Hendel JL, Martinac B, Wood JM. 40.  2010. Protein localization in Escherichia coli cells: comparison of the cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J. Bacteriol. 192:912–24 [Google Scholar]
  41. Wilson ME, Jensen GS, Haswell ES. 41.  2011. Two mechanosensitive channel homologs influence division ring placement in Arabidopsis chloroplasts. Plant Cell 23:2939–49 [Google Scholar]
  42. Hamilton ES, Schlegel AM, Haswell ES. 42.  2015. United in diversity: mechanosensitive ion channels in plants. Annu. Rev. Plant Biol. 66:113–37 [Google Scholar]
  43. Lee CP, Maksaev G, Jensen GS, Murcha MW, Wilson ME. 43.  et al. 2016. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant J 88:809–25 [Google Scholar]
  44. van den Berg J, Boersma AJ, Poolman B. 44.  2017. Microorganisms maintain crowding homeostasis. Nat. Rev. Microbiol. 15:309–18 [Google Scholar]
  45. Rowe I, Anishkin A, Kamaraju K, Yoshimura K, Sukharev S. 45.  2014. The cytoplasmic cage domain of the mechanosensitive channel MscS is a sensor of macromolecular crowding. J. Gen. Physiol. 143:543–57 [Google Scholar]
  46. Grajkowski W, Kubalski A, Koprowski P. 46.  2005. Surface changes of the mechanosensitive channel MscS upon its activation, inactivation, and closing. Biophys. J. 88:3050–59 [Google Scholar]
  47. Katz B.47.  1950. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol. 111:261–82 [Google Scholar]
  48. von Békésy G. 48.  1974. Some biophysical experiments from fifty years ago. Annu. Rev. Physiol. 36:1–18 [Google Scholar]
  49. Corey DP, Hudspeth AJ. 49.  1979. Response latency of vertebrate hair cells. Biophys. J. 26:499–506 [Google Scholar]
  50. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. 50.  1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100 [Google Scholar]
  51. Gustin MC, Zhou XL, Martinac B, Kung C. 51.  1988. A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–65 [Google Scholar]
  52. Guharay F, Sachs F. 52.  1984. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. 352:685–701 [Google Scholar]
  53. Martinac B, Buechner M, Delcour AH, Adler J, Kung C. 53.  1987. Pressure-sensitive ion channel in Escherichia coli. PNAS 84:2297–301 [Google Scholar]
  54. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C. 54.  1994. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–68 [Google Scholar]
  55. Martinac B, Adler J, Kung C. 55.  1990. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–63 [Google Scholar]
  56. Delcour A, Martinac B, Adler J, Kung C. 56.  1989. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56:631–36 [Google Scholar]
  57. Berrier C, Coulombe A, Houssin C, Ghazi A. 57.  1989. A patch-clamp study of ion channels of inner and outer membranes of contact zones of E. coli, fused into giant liposomes. FEBS Lett 259:27–32 [Google Scholar]
  58. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM. 58.  et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77 [Google Scholar]
  59. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC. 59.  1998. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–26 [Google Scholar]
  60. Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B. 60.  2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–48 [Google Scholar]
  61. Li Y, Moe PC, Chandrasekaran S, Booth IR, Blount P. 61.  2002. Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J 21:5323–30 [Google Scholar]
  62. Bass RB, Strop P, Barclay M, Rees DC. 62.  2002. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–87 [Google Scholar]
  63. Li J, Guo J, Ou X, Zhang M, Li Y, Liu Z. 63.  2015. Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion. PNAS 112:10726–31 [Google Scholar]
  64. Wang W, Black SS, Edwards MD, Miller S, Morrison EL. 64.  et al. 2008. The structure of an open form of an E. coli mechanosensitive channel at 3.45 Å resolution. Science 321:1179–83 [Google Scholar]
  65. Vasquez V, Sotomayor M, Cortes DM, Roux B, Schulten K, Perozo E. 65.  2008. Three-dimensional architecture of membrane-embedded MscS in the closed conformation. J. Mol. Biol. 378:55–70 [Google Scholar]
  66. Zhang X, Wang J, Feng Y, Ge J, Li W. 66.  et al. 2012. Structure and molecular mechanism of an anion-selective mechanosensitive channel of small conductance. PNAS 109:18180–85 [Google Scholar]
  67. Vásquez V, Sotomayor M, Cordero-Morales J, Schulten K, Perozo E. 67.  2008. A structural mechanism for MscS gating in lipid bilayers. Science 321:1210–14 [Google Scholar]
  68. Pliotas C, Ward R, Branigan E, Rasmussen A, Hagelueken G. 68.  et al. 2012. Conformational state of the MscS mechanosensitive channel in solution revealed by pulsed electron-electron double resonance (PELDOR) spectroscopy. PNAS 109:E2675–82 [Google Scholar]
  69. Pliotas C, Dahl AC, Rasmussen T, Mahendran KR, Smith TK. 69.  et al. 2015. The role of lipids in mechanosensation. Nat. Struct. Mol. Biol. 22:991–98 [Google Scholar]
  70. Bavi N, Cortes DM, Cox CD, Rohde PR, Liu W. 70.  et al. 2016. The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nat. Commun. 7:11984 [Google Scholar]
  71. Ou X, Blount P, Hoffman RJ, Kung C. 71.  1998. One face of a transmembrane helix is crucial in mechanosensitive channel gating. PNAS 95:11471–75 [Google Scholar]
  72. Blount P, Moe PC. 72.  1999. Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol 7:420–24 [Google Scholar]
  73. Yoshimura K, Batiza A, Schroeder M, Blount P, Kung C. 73.  1999. Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys. J. 77:1960–72 [Google Scholar]
  74. Beckstein O, Sansom MS. 74.  2003. Liquid-vapor oscillations of water in hydrophobic nanopores. PNAS 100:7063–68 [Google Scholar]
  75. Aryal P, Abd-Wahab F, Bucci G, Sansom MS, Tucker SJ. 75.  2014. A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel. Nat. Commun. 5:4377 [Google Scholar]
  76. Aryal P, Sansom MS, Tucker SJ. 76.  2015. Hydrophobic gating in ion channels. J. Mol. Biol. 427:121–30 [Google Scholar]
  77. Anishkin A, Sukharev S. 77.  2004. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys. J. 86:2883–95 [Google Scholar]
  78. Wang Y, Liu Y, Deberg HA, Nomura T, Hoffman MT. 78.  et al. 2014. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife 3:e01834 [Google Scholar]
  79. Iscla I, Wray R, Blount P. 79.  2008. On the structure of the N-terminal domain of the MscL channel: helical bundle or membrane interface. Biophys. J. 95:2283–91 [Google Scholar]
  80. Vanegas JM, Arroyo M. 80.  2014. Force transduction and lipid binding in MscL: a continuum-molecular approach. PLOS ONE 9:e113947 [Google Scholar]
  81. Yoshimura K, Nomura T, Sokabe M. 81.  2004. Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys. J. 86:2113–20 [Google Scholar]
  82. Iscla I, Wray R, Blount P. 82.  2011. An in vivo screen reveals protein-lipid interactions crucial for gating a mechanosensitive channel. FASEB J 25:694–702 [Google Scholar]
  83. Sukharev S, Betanzos M, Chiang CS, Guy HR. 83.  2001. The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720–24 [Google Scholar]
  84. Steinbacher S, Bass R, Strop P, Rees DC. 84.  2007. Structures of the prokaryotic mechanosensitive channels MscL and MscS. Mechanosensitive Ion Channels Part A, ed. OP Hamill 1–24 San Diego: Elsevier Academic [Google Scholar]
  85. Corry B, Hurst AC, Pal P, Nomura T, Rigby P, Martinac B. 85.  2010. An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation. J. Gen. Physiol. 136:483–94 [Google Scholar]
  86. Perozo E, Kloda A, Cortes DM, Martinac B. 86.  2002. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol. 9:696–703 [Google Scholar]
  87. Bavi O, Vossoughi M, Naghdabadi R, Jamali Y. 87.  2016. The combined effect of hydrophobic mismatch and bilayer local bending on the regulation of mechanosensitive ion channels. PLOS ONE 11:e0150578 [Google Scholar]
  88. Bavi O, Cox CD, Vossoughi M, Naghdabadi R, Jamali Y, Martinac B. 88.  2016. Influence of global and local membrane curvature on mechanosensitive ion channels: a finite element approach. Membranes 6:14 [Google Scholar]
  89. Bavi O, Vossoughi M, Naghdabadi R, Jamali Y. 89.  2014. The effect of local bending on gating of MscL using a representative volume element and finite element simulation. Channels 8:344–49 [Google Scholar]
  90. Mukherjee N, Jose MD, Birkner JP, Walko M, Ingolfsson HI. 90.  et al. 2014. The activation mode of the mechanosensitive ion channel, MscL, by lysophosphatidylcholine differs from tension-induced gating. FASEB J 28:4292–302 [Google Scholar]
  91. Anishkin A, Akitake B, Kamaraju K, Chiang CS, Sukharev S. 91.  2010. Hydration properties of mechanosensitive channel pores define the energetics of gating. J. Phys. Condens. Matter 22:454120 [Google Scholar]
  92. Nakayama Y, Yoshimura K, Iida H. 92.  2012. Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response. Nat. Commun. 3:1020 [Google Scholar]
  93. Cox CD, Nakayama Y, Nomura T, Martinac B. 93.  2015. The evolutionary ‘tinkering’ of MscS-like channels: generation of structural and functional diversity. Pflügers Arch 467:3–13 [Google Scholar]
  94. Rasmussen A, Rasmussen T, Edwards MD, Schauer D, Schumann U. 94.  et al. 2007. The role of tryptophan residues in the function and stability of the mechanosensitive channel MscS from Escherichia coli. Biochemistry 46:10899–908 [Google Scholar]
  95. Koprowski P, Grajkowski W, Isacoff EY, Kubalski A. 95.  2011. Genetic screen for potassium leaky small mechanosensitive channels (MscS) in Escherichia coli: recognition of cytoplasmic beta domain as a new gating element. J. Biol. Chem. 286:877–88 [Google Scholar]
  96. Machiyama H, Tatsumi H, Sokabe M. 96.  2009. Structural changes in the cytoplasmic domain of the mechanosensitive channel MscS during opening. Biophys. J. 97:1048–57 [Google Scholar]
  97. Cox CD, Wann KT, Martinac B. 97.  2014. Selectivity mechanisms in MscS-like channels: from structure to function. Channels 8:5–12 [Google Scholar]
  98. Edwards MD, Li Y, Kim S, Miller S, Bartlett W. 98.  et al. 2005. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat. Struct. Mol. Biol. 12:113–19 [Google Scholar]
  99. Shaikh S, Cox CD, Nomura T, Martinac B. 99.  2014. Energetics of gating MscS by membrane tension in azolectin liposomes and giant spheroplasts. Channels 8:321–26 [Google Scholar]
  100. Miller S, Bartlett W, Chandrasekaran S, Simpson S, Edwards M, Booth IR. 100.  2003. Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J 22:36–46 [Google Scholar]
  101. Belyy V, Kamaraju K, Akitake B, Anishkin A, Sukharev S. 101.  2010. Adaptive behavior of bacterial mechanosensitive channels is coupled to membrane mechanics. J. Gen. Physiol. 135:641–52 [Google Scholar]
  102. Cetiner U, Rowe I, Schams A, Mayhew C, Rubin D. 102.  et al. 2017. Tension-activated channels in the mechanism of osmotic fitness in Pseudomonas aeruginosa. J. Gen. Physiol. 149:595–609 [Google Scholar]
  103. Sukharev S.103.  2002. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys. J. 83:290–98 [Google Scholar]
  104. Akitake B, Anishkin A, Liu N, Sukharev S. 104.  2007. Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS. Nat. Struct. Mol. Biol. 14:1141–49 [Google Scholar]
  105. Nomura T, Sokabe M, Yoshimura K. 105.  2006. Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys. J. 91:2874–81 [Google Scholar]
  106. Belyy V, Anishkin A, Kamaraju K, Liu N, Sukharev S. 106.  2010. The tension-transmitting ‘clutch’ in the mechanosensitive channel MscS. Nat. Struct. Mol. Biol. 17:451–58 [Google Scholar]
  107. Malcolm HR, Blount P, Maurer JA. 107.  2015. The mechanosensitive channel of small conductance (MscS) functions as a Jack-in-the Box. Biochim. Biophys. Acta 1848:159–66 [Google Scholar]
  108. Aryal P, Jarerattanachat V, Clausen MV, Schewe M, McClenaghan C. 108.  et al. 2017. Bilayer-mediated structural transitions control mechanosensitivity of the TREK-2 K2P channel. Structure 25:708–18.e2 [Google Scholar]
  109. Lee AG.109.  2004. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666:62–87 [Google Scholar]
  110. Cantor RS.110.  1999. Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76:2625–39 [Google Scholar]
  111. Gao Y, Cao E, Julius D, Cheng Y. 111.  2016. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–51 [Google Scholar]
  112. Bavi N, Cox CD, Perozo E, Martinac B. 112.  2017. Toward a structural blueprint for bilayer-mediated channel mechanosensitivity. Channels 11:91–93 [Google Scholar]
  113. Kung C.113.  2005. A possible unifying principle for mechanosensation. Nature 436:647–54 [Google Scholar]
  114. Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V. 114.  et al. 2016. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat. Commun. 7:10366 [Google Scholar]
  115. Doerner JF, Febvay S, Clapham DE. 115.  2012. Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL. Nat. Commun. 3:990 [Google Scholar]
  116. Honoré E, Patel AJ, Chemin J, Suchyna T, Sachs F. 116.  2006. Desensitization of mechano-gated K2P channels. PNAS 103:6859–64 [Google Scholar]
  117. Dong YY, Pike ACW, Mackenzie A, McClenaghan C, Aryal P. 117.  et al. 2015. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347:1256–59 [Google Scholar]
  118. Brohawn SG, Su Z, MacKinnon R. 118.  2014. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. PNAS 111:3614–19 [Google Scholar]
  119. Berrier C, Pozza A, de Lacroix de Lavalette A, Chardonnet S. 119.  et al. 2013. The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension. J. Biol. Chem. 288:27307–14 [Google Scholar]
  120. Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS. 120.  et al. 2016. Piezo1 channels are inherently mechanosensitive. Cell Rep 17:1739–46 [Google Scholar]
  121. Iscla I, Wray R, Eaton C, Blount P. 121.  2015. Scanning MscL channels with targeted post-translational modifications for functional alterations. PLOS ONE 10:e0137994 [Google Scholar]
  122. Zhang W, Cheng LE, Kittelmann M, Li J, Petkovic M. 122.  et al. 2015. Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 62:1391–403 [Google Scholar]
  123. Jin P, Bulkley D, Guo Y, Zhang W, Guo Z. 123.  et al. 2017. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547:118–22 [Google Scholar]
  124. Boulos RA, Man NY, Lengkeek NA, Hammer KA, Foster NF. 124.  et al. 2013. Inspiration from old dyes: tris(stilbene) compounds as potent gram-positive antibacterial agents. Chemistry 19:17980–88 [Google Scholar]
  125. Rowe I, Elahi M, Huq A, Sukharev S. 125.  2013. The mechanoelectrical response of the cytoplasmic membrane of Vibrio cholerae. J. Gen. Physiol. 142:75–85 [Google Scholar]
  126. Kakuda T, Koide Y, Sakamoto A, Takai S. 126.  2012. Characterization of two putative mechanosensitive channel proteins of Campylobacter jejuni involved in protection against osmotic downshock. Vet. Microbiol. 160:53–60 [Google Scholar]
  127. Kloda A, Martinac B. 127.  2002. Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya. Archaea 1:35–44 [Google Scholar]
  128. Lurie-Weinberger MN, Gophna U. 128.  2015. Archaea in and on the human body: health implications and future directions. PLOS Pathog 11:e1004833 [Google Scholar]
  129. Kenthirapalan S, Waters AP, Matuschewski K, Kooij TW. 129.  2016. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite. Nat. Commun. 7:10519 [Google Scholar]
  130. Iscla I, Wray R, Blount P, Larkins-Ford J, Conery AL. 130.  et al. 2015. A new antibiotic with potent activity targets MscL. J. Antibiot. 68:453–62 [Google Scholar]
  131. Wray R, Iscla I, Gao Y, Li H, Wang J, Blount P. 131.  2016. Dihydrostreptomycin directly binds to, modulates, and passes through the MscL channel pore. PLOS Biol 14:e1002473 [Google Scholar]
  132. Iscla I, Wray R, Wei S, Posner B, Blount P. 132.  2014. Streptomycin potency is dependent on MscL channel expression. Nat. Commun. 5:4891 [Google Scholar]
  133. Ponce AM, Vujaskovic Z, Yuan F, Needham D, Dewhirst MW. 133.  2006. Hyperthermia mediated liposomal drug delivery. Int. J. Hyperthermia 22:205–13 [Google Scholar]
  134. Calle D, Yilmaz D, Cerdan S, Kocer A. 134.  2017. Drug delivery from engineered organisms and nanocarriers as monitored by multimodal imaging technologies. Bioengineering 2:198–222 [Google Scholar]
  135. van den Bogaart G, Krasnikov V, Poolman B. 135.  2007. Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. Biophys. J. 92:1233–40 [Google Scholar]
  136. Kocer A, Walko M, Meijberg W, Feringa BL. 136.  2005. A light-actuated nanovalve derived from a channel protein. Science 309:755–58 [Google Scholar]
  137. Pacheco-Torres J, Mukherjee N, Walko M, Lopez-Larrubia P, Ballesteros P. 137.  et al. 2015. Image guided drug release from pH-sensitive ion channel-functionalized stealth liposomes into an in vivo glioblastoma model. Nanomedicine 11:1345–54 [Google Scholar]
  138. Prieto ML, Firouzi K, Khuri-Yakub BT, Maduke M. 138.  2017. Mechanical activation of Piezo1 but not Nav1.2 channels by ultrasound. BioRxiv https://doi.org/10.1101/136994 [Crossref] [Google Scholar]
  139. Kim CK, Adhikari A, Deisseroth K. 139.  2017. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18:222–35 [Google Scholar]
  140. Heureaux J, Chen D, Murray VL, Deng CX, Liu AP. 140.  2014. Activation of a bacterial mechanosensitive channel in mammalian cells by cytoskeletal stress. Cell Mol. Bioeng. 7:307–19 [Google Scholar]
  141. Majumder S, Garamella J, Wang YL, DeNies M, Noireaux V, Liu AP. 141.  2017. Cell-sized mechanosensitive and biosensing compartment programmed with DNA. Chem. Commun. 53:7349–52 [Google Scholar]
  142. Guo J, Sachs F, Meng F. 142.  2014. Fluorescence-based force/tension sensors: a novel tool to visualize mechanical forces in structural proteins in live cells. Antioxid. Redox Signal. 20:986–99 [Google Scholar]
  143. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M. 143.  et al. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–66 [Google Scholar]
  144. Iscla I, Eaton C, Parker J, Wray R, Kovacs Z, Blount P. 144.  2013. Improving the design of a MscL-based triggered nanovalve. Biosensors 3:171–84 [Google Scholar]
  145. Yang LM, Wray R, Parker J, Wilson D, Duran RS, Blount P. 145.  2012. Three routes to modulate the pore size of the MscL channel/nanovalve. ACS Nano 6:1134–41 [Google Scholar]
  146. Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R. 146.  et al. 2014. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16:376–81 [Google Scholar]
  147. Jahed Z, Shams H, Mehrbod M, Mofrad MR. 147.  2014. Mechanotransduction pathways linking the extracellular matrix to the nucleus. Int. Rev. Cell Mol. Biol. 310:171–220 [Google Scholar]
  148. Becker M, Börngen K, Nomura T, Battle AR, Marin K. 148.  et al. 2013. Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichiacoli MscS, and their derivatives. Biochim. Biophys. Acta 1828:1230–40 [Google Scholar]
  149. Nakayama Y, Becker M, Ebrahimian H, Konishi T, Kawasaki H. 149.  et al. 2016. The impact of the C-terminal domain on the gating properties of MscCG from Corynebacterium glutamicum. Biochim. Biophys. Acta 1858:130–38 [Google Scholar]
  150. Nakamura J, Hirano S, Ito H, Wachi M. 150.  2007. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl. Environ. Microbiol. 73:4491–98 [Google Scholar]
  151. Nakayama Y, Yoshimura K, Iida H. 151.  2013. Electrophysiological characterization of the mechanosensitive channel MscCG in Corynebacterium glutamicum. Biophys. J. 105:1366–75 [Google Scholar]
  152. Syeda R, Qiu Z, Dubin AE, Murthy SE, Florendo MN. 152.  et al. 2016. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164:499–511 [Google Scholar]
  153. Reuter M, Hayward NJ, Black SS, Miller S, Dryden DT, Booth IR. 153.  2014. Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper. J. R. Soc. Interface 11:20130850 [Google Scholar]
  154. Bavi N, Nikolaev YA, Bavi O, Ridone P, Martinac AD. 154.  et al. 2017. Principles of mechanosensing at the membrane interface. The Biophysics of Cell Membranes: Biological Consequences RM Epand, J-M Ruysschaert 85–119 Berlin: Springer Nature [Google Scholar]
  155. Akitake A, Anishkin A, Sukharev S. 155.  2005. The “dashpot” mechanism of stretch-dependent gating in MscS. J. Gen. Physiol 125214354 [Google Scholar]
  156. Reddy B, Bavi N, Lu A, Park Y, Perozo E. 156.  2019. Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS. eLife 8e50486 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error