1932

Abstract

Autophagy is an evolutionarily conserved mechanism by which cytoplasmic elements are degraded intracellularly. Autophagy has also emerged as a major regulator of cardiac homeostasis and function. Autophagy preserves cardiac structure and function under baseline conditions and is activated during stress, limiting damage under most conditions. It reduces injury and preserves cardiac function during ischemia. It also reduces chronic ischemic remodeling and mediates the cardiac adaptation to pressure overload by restricting misfolded protein accumulation, mitochondrial dysfunction, and oxidative stress. Impairment of autophagy is involved in the development of diabetes and aging-induced cardiac abnormalities. Autophagy defects contribute to the development of cardiac proteinopathy and doxorubicin-induced cardiomyopathy. However, massive activation of autophagy may be detrimental for the heart in certain stress conditions, such as reperfusion injury. In this review, we discuss recent evidence supporting the important role of autophagy and mitophagy in the regulation of cardiac homeostasis and adaptation to stress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021317-121427
2018-02-10
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physiol/80/1/annurev-physiol-021317-121427.html?itemId=/content/journals/10.1146/annurev-physiol-021317-121427&mimeType=html&fmt=ahah

Literature Cited

  1. Liesa M, Shirihai OS. 1.  2013. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:91–506 [Google Scholar]
  2. Wang ZV, Hill JA. 2.  2015. Protein quality control and metabolism: bidirectional control in the heart. Cell Metab 21:215–26 [Google Scholar]
  3. Mizushima N, Komatsu M. 3.  2011. Autophagy: renovation of cells and tissues. Cell 147:728–41 [Google Scholar]
  4. Choi AM, Ryter SW, Levine B. 4.  2013. Autophagy in human health and disease. N. Engl. J. Med. 368:651–62 [Google Scholar]
  5. Kroemer G.5.  2015. Autophagy: a druggable process that is deregulated in aging and human disease. J. Clin. Investig. 125:1–4 [Google Scholar]
  6. Green DR, Galluzzi L, Kroemer G. 6.  2011. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–12 [Google Scholar]
  7. Sun N, Youle RJ, Finkel T. 7.  2016. The mitochondrial basis of aging. Mol. Cell 61:654–66 [Google Scholar]
  8. Saito T, Sadoshima J. 8.  2015. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ. Res. 116:1477–90 [Google Scholar]
  9. Liu Y, Shoji-Kawata S, Sumpter RM Jr., Wei Y, Ginet V. 9.  et al. 2013. Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. PNAS 110:20364–71 [Google Scholar]
  10. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S. 10.  et al. 2007. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13:619–24 [Google Scholar]
  11. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S. 11.  et al. 2015. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ. Res. 116:264–78 [Google Scholar]
  12. Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J. 12.  et al. 2012. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 125:1134–46 [Google Scholar]
  13. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H. 13.  et al. 2007. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 100:914–22 [Google Scholar]
  14. Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J. 14.  2011. Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circ. Res. 109:502–11 [Google Scholar]
  15. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. 15.  2010. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res. 107:1470–82 [Google Scholar]
  16. Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN. 16.  et al. 2013. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J. Biol. Chem. 288:915–26 [Google Scholar]
  17. Maejima Y, Kyoi S, Zhai P, Liu T, Li H. 17.  et al. 2013. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat. Med. 19:1478–88 [Google Scholar]
  18. Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. 18.  2016. Aging and autophagy in the heart. Circ. Res. 118:1563–76 [Google Scholar]
  19. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S. 19.  et al. 2016. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22:1428–38 [Google Scholar]
  20. Pattison JS, Osinska H, Robbins J. 20.  2011. Atg7 induces basal autophagy and rescues autophagic deficiency in CryABR120G cardiomyocytes. Circ. Res. 109:151–60 [Google Scholar]
  21. Li DL, Wang ZV, Ding G, Tan W, Luo X. 21.  et al. 2016. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation 133:1668–87 [Google Scholar]
  22. Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM. 22.  et al. 2007. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Investig. 117:1782–93 [Google Scholar]
  23. Ohsumi Y.23.  2014. Historical landmarks of autophagy research. Cell Res 24:9–23 [Google Scholar]
  24. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M. 24.  et al. 2010. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90:1383–435 [Google Scholar]
  25. Russell RC, Tian Y, Yuan H, Park HW, Chang YY. 25.  et al. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating Vps34 lipid kinase. Nat. Cell Biol. 15:741–50 [Google Scholar]
  26. Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N. 26.  2016. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354:1036–41 [Google Scholar]
  27. Nair U, Jotwani A, Geng J, Gammoh N, Richerson D. 27.  et al. 2011. SNARE proteins are required for macroautophagy. Cell 146:290–302 [Google Scholar]
  28. Diao J, Liu R, Rong Y, Zhao M, Zhang J. 28.  et al. 2015. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:563–66 [Google Scholar]
  29. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T. 29.  et al. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–63 [Google Scholar]
  30. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S. 30.  et al. 2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169:425–34 [Google Scholar]
  31. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y. 31.  et al. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–89 [Google Scholar]
  32. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA. 32.  et al. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–61 [Google Scholar]
  33. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H. 33.  et al. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:1032–36 [Google Scholar]
  34. Yoshii SR, Kuma A, Akashi T, Hara T, Yamamoto A. 34.  et al. 2016. Systemic analysis of Atg5-null mice rescued from neonatal lethality by transgenic ATG5 expression in neurons. Dev. Cell 39:116–30 [Google Scholar]
  35. Torisu T, Torisu K, Lee IH, Liu J, Malide D. 35.  et al. 2013. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat. Med. 19:1281–87 [Google Scholar]
  36. Goginashvili A, Zhang Z, Erbs E, Spiegelhalter C, Kessler P. 36.  et al. 2015. Insulin secretory granules control autophagy in pancreatic β cells. Science 347:878–82 [Google Scholar]
  37. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK. 37.  et al. 2015. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:354–58 [Google Scholar]
  38. Lu Q, Yao Y, Hu Z, Hu C, Song Q. 38.  et al. 2016. Angiogenic factor AGGF1 activates autophagy with an essential role in therapeutic angiogenesis for heart disease. PLOS Biol 14:e1002529 [Google Scholar]
  39. Maus M, Cuk M, Patel B, Lian J, Ouimet M. 39.  et al. 2017. Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab 25:698–712 [Google Scholar]
  40. Martinez-Lopez N, Singh R. 40.  2015. Autophagy and lipid droplets in the liver. Annu. Rev. Nutr. 35:215–37 [Google Scholar]
  41. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J. 41.  et al. 2013. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51:618–31 [Google Scholar]
  42. Liang N, Zhang C, Dill P, Panasyuk G, Pion D. 42.  et al. 2014. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J. Exp. Med. 211:2249–63 [Google Scholar]
  43. Yu L, Wan F, Dutta S, Welsh S, Liu Z. 43.  et al. 2006. Autophagic programmed cell death by selective catalase degradation. PNAS 103:4952–57 [Google Scholar]
  44. Sciarretta S, Volpe M, Sadoshima J. 44.  2014. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ. Res. 114:549–64 [Google Scholar]
  45. Sciarretta S, Zhai P, Maejima Y, Del Re DP, Nagarajan N. 45.  et al. 2015. mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep 11:125–36 [Google Scholar]
  46. Kim J, Kundu M, Viollet B, Guan KL. 46.  2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132–41 [Google Scholar]
  47. Martina JA, Chen Y, Gucek M, Puertollano R. 47.  2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8:903–14 [Google Scholar]
  48. Riehle C, Wende AR, Sena S, Pires KM, Pereira RO. 48.  et al. 2013. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J. Clin. Investig. 123:5319–33 [Google Scholar]
  49. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y. 49.  et al. 2006. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–68 [Google Scholar]
  50. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. 50.  2007. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–60 [Google Scholar]
  51. Sciarretta S, Zhai P, Shao D, Zablocki D, Nagarajan N. 51.  et al. 2013. Activation of Nox4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the PERK/eIF-2α/ATF4 pathway. Circ. Res. 113:1253–64 [Google Scholar]
  52. Jaishy B, Zhang Q, Chung HS, Riehle C, Soto J. 52.  et al. 2015. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J. Lipid Res. 56:546–61 [Google Scholar]
  53. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F. 53.  et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–33 [Google Scholar]
  54. Godar RJ, Ma X, Liu H, Murphy JT, Weinheimer CJ. 54.  et al. 2015. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury. Autophagy 11:1537–60 [Google Scholar]
  55. Liao X, Zhang R, Lu Y, Prosdocimo DA, Sangwung P. 55.  et al. 2015. Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis. J. Clin. Investig. 125:3461–76 [Google Scholar]
  56. Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M. 56.  et al. 2012. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun. 3:1078 [Google Scholar]
  57. Gupta SK, Foinquinos A, Thum S, Remke J, Zimmer K. 57.  et al. 2016. Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction. J. Am. Coll. Cardiol. 68:1557–71 [Google Scholar]
  58. Marino G, Pietrocola F, Eisenberg T, Kong Y, Malik SA. 58.  et al. 2014. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53:710–25 [Google Scholar]
  59. Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S. 59.  2014. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell 53:521–33 [Google Scholar]
  60. Hsu CP, Hariharan N, Alcendor RR, Oka S, Sadoshima J. 60.  2009. Nicotinamide phosphoribosyltransferase regulates cell survival through autophagy in cardiomyocytes. Autophagy 5:1229–31 [Google Scholar]
  61. Russo SB, Baicu CF, Van Laer A Geng T, Kasiganesan H. 61.  et al. 2012. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Investig. 122:3919–30 [Google Scholar]
  62. Papanicolaou KN, Kikuchi R, Ngoh GA, Coughlan KA, Dominguez I. 62.  et al. 2012. Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ. Res. 111:1012–26 [Google Scholar]
  63. Chen Y, Liu Y, Dorn GW 2nd. 63.  2011. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ. Res. 109:1327–31 [Google Scholar]
  64. Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I. 64.  et al. 2011. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol. Cell. Biol. 31:1309–28 [Google Scholar]
  65. Papanicolaou KN, Ngoh GA, Dabkowski ER, O'Connell KA, Ribeiro RF Jr.. 65.  et al. 2012. Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am. J. Physiol. Heart Circ. Physiol. 302:H167–79 [Google Scholar]
  66. Shen T, Zheng M, Cao C, Chen C, Tang J. 66.  et al. 2007. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J. Biol. Chem. 282:23354–61 [Google Scholar]
  67. Piquereau J, Caffin F, Novotova M, Prola A, Garnier A. 67.  et al. 2012. Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc. Res. 94:408–17 [Google Scholar]
  68. Wai T, Garcia-Prieto J, Baker MJ, Merkwirth C, Benit P. 68.  et al. 2015. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350:aad0116 [Google Scholar]
  69. Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R. 69.  et al. 2015. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21:834–44 [Google Scholar]
  70. Song M, Mihara K, Chen Y, Scorrano L, Dorn GW 2nd. 70.  2015. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21:273–85 [Google Scholar]
  71. Cahill TJ, Leo V, Kelly M, Stockenhuber A, Kennedy NW. 71.  et al. 2015. Resistance of dynamin-related protein 1 oligomers to disassembly impairs mitophagy, resulting in myocardial inflammation and heart failure. J. Biol. Chem. 290:25907–19 [Google Scholar]
  72. Chen H, Ren S, Clish C, Jain M, Mootha V. 72.  et al. 2015. Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. J. Cell Biol. 211:795–805 [Google Scholar]
  73. Franco A, Kitsis RN, Fleischer JA, Gavathiotis E, Kornfeld OS. 73.  et al. 2016. Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature 540:74–79 [Google Scholar]
  74. Zhang H, Wang P, Bisetto S, Yoon Y, Chen Q. 74.  et al. 2017. A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration. Cardiovasc. Res. 113:160–70 [Google Scholar]
  75. Sun N, Yun J, Liu J, Malide D, Liu C. 75.  et al. 2015. Measuring in vivo mitophagy. Mol. Cell 60:685–96 [Google Scholar]
  76. Scott I, Webster BR, Chan CK, Okonkwo JU, Han K, Sack MN. 76.  2014. GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy. J. Biol. Chem. 289:2864–72 [Google Scholar]
  77. Shi G, McQuibban GA. 77.  2017. The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep 18:1458–72 [Google Scholar]
  78. Youle RJ, Narendra DP. 78.  2011. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12:9–14 [Google Scholar]
  79. Chen Y, Dorn GW 2nd. 79.  2013. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340:471–75 [Google Scholar]
  80. Koyano M, Okatsu K, Kosako H, Tamura Y, Go E. 80.  et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–66 [Google Scholar]
  81. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG. 81.  et al. 2012. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2:120080 [Google Scholar]
  82. Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA. 82.  et al. 2013. High-content genome-wide RNAi screens identify regulators of Parkin upstream of mitophagy. Nature 504:291–95 [Google Scholar]
  83. Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E. 83.  et al. 2013. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4:2308 [Google Scholar]
  84. Durcan TM, Tang MY, Perusse JR, Dashti EA, Aguileta MA. 84.  et al. 2014. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 33:2473–91 [Google Scholar]
  85. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. 85.  2010. Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189:671–79 [Google Scholar]
  86. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C. 86.  et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–14 [Google Scholar]
  87. Moore AS, Holzbaur EL. 87.  2016. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. PNAS 113:E3349–58 [Google Scholar]
  88. Richter B, Sliter DA, Herhaus L, Stolz A, Wang C. 88.  et al. 2016. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. PNAS 113:4039–44 [Google Scholar]
  89. Wei Y, Chiang WC, Sumpter R Jr., Mishra P, Levine B. 89.  2017. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168:224–38.e10 [Google Scholar]
  90. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF. 90.  et al. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191:1367–80 [Google Scholar]
  91. Jin SM, Youle RJ. 91.  2013. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9:1750–57 [Google Scholar]
  92. Lin YF, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM. 92.  2016. Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533:416–19 [Google Scholar]
  93. McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA. 93.  2014. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33:282–95 [Google Scholar]
  94. Hammerling BC, Najor RH, Cortez MQ, Shires SE, Leon LJ. 94.  et al. 2017. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat. Commun. 8:14050 [Google Scholar]
  95. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T. 95.  et al. 2015. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6:7527 [Google Scholar]
  96. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH. 96.  et al. 2008. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283:10892–903 [Google Scholar]
  97. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P. 97.  et al. 2010. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51 [Google Scholar]
  98. Wu W, Tian W, Hu Z, Chen G, Huang L. 98.  et al. 2014. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 15:566–75 [Google Scholar]
  99. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T. 99.  et al. 2009. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461:654–58 [Google Scholar]
  100. Hirota Y, Yamashita S, Kurihara Y, Jin X, Aihara M. 100.  et al. 2015. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11:332–43 [Google Scholar]
  101. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D. 101.  et al. 2013. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–41 [Google Scholar]
  102. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK. 102.  et al. 2013. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–38 [Google Scholar]
  103. Zhang C, Cuervo AM. 103.  2008. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 14:959–65 [Google Scholar]
  104. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH. 104.  et al. 2013. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4:2300 [Google Scholar]
  105. Gong G, Song M, Csordas G, Kelly DP, Matkovich SJ, Dorn GW 2nd. 105.  2015. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350:aad2459 [Google Scholar]
  106. Durieux J, Wolff S, Dillin A. 106.  2011. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91 [Google Scholar]
  107. Matsushima S, Kuroda J, Zhai P, Liu T, Ikeda S. 107.  et al. 2016. Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling. J. Clin. Investig. 126:3403–16 [Google Scholar]
  108. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M. 108.  et al. 2005. Autophagy in chronically ischemic myocardium. PNAS 102:13807–12 [Google Scholar]
  109. Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ. 109.  et al. 2012. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125:3170–81 [Google Scholar]
  110. Lu W, Sun J, Yoon JS, Zhang Y, Zheng L. 110.  et al. 2016. Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis. PLOS ONE 11:e0147792 [Google Scholar]
  111. Queliconi BB, Kowaltowski AJ, Gottlieb RA. 111.  2016. Bicarbonate increases ischemia-reperfusion damage by inhibiting mitophagy. PLOS ONE 11:e0167678 [Google Scholar]
  112. Andres AM, Hernandez G, Lee P, Huang C, Ratliff EP. 112.  et al. 2014. Mitophagy is required for acute cardioprotection by simvastatin. Antioxid. Redox Signal. 21:1960–73 [Google Scholar]
  113. Andres AM, Tucker KC, Thomas A, Taylor DJ, Sengstock D. 113.  et al. 2017. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight 2:e89303 [Google Scholar]
  114. Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR. 114.  et al. 2011. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. PNAS 108:4123–28 [Google Scholar]
  115. Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y. 115.  et al. 2016. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 133:1249–63 [Google Scholar]
  116. Kubli DA, Cortez MQ, Moyzis AG, Najor RH, Lee Y, Gustafsson AB. 116.  2015. PINK1 is dispensable for mitochondrial recruitment of Parkin and activation of mitophagy in cardiac myocytes. PLOS ONE 10:e0130707 [Google Scholar]
  117. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T. 117.  et al. 2012. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–55 [Google Scholar]
  118. Nishino I, Fu J, Tanji K, Yamada T, Shimojo S. 118.  et al. 2000. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–10 [Google Scholar]
  119. Kim YC, Park HW, Sciarretta S, Mo JS, Jewell JL. 119.  et al. 2014. Rag GTPases are cardioprotective by regulating lysosomal function. Nat. Commun. 5:4241 [Google Scholar]
  120. Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS. 120.  et al. 2008. Autophagy is an adaptive response in desmin-related cardiomyopathy. PNAS 105:9745–50 [Google Scholar]
  121. Bhuiyan MS, Pattison JS, Osinska H, James J, Gulick J. 121.  et al. 2013. Enhanced autophagy ameliorates cardiac proteinopathy. J. Clin. Investig. 123:5284–97 [Google Scholar]
  122. Gupta MK, McLendon PM, Gulick J, James J, Khalili K, Robbins J. 122.  2016. UBC9-mediated sumoylation favorably impacts cardiac function in compromised hearts. Circ. Res. 118:1894–905 [Google Scholar]
  123. McLendon PM, Ferguson BS, Osinska H, Bhuiyan MS, James J. 123.  et al. 2014. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. PNAS 111:E5178–86 [Google Scholar]
  124. Guan J, Mishra S, Qiu Y, Shi J, Trudeau K. 124.  et al. 2014. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO Mol. Med. 6:1493–507 [Google Scholar]
  125. Muhammad E, Levitas A, Singh SR, Braiman A, Ofir R. 125.  et al. 2015. PLEKHM2 mutation leads to abnormal localization of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction. Hum. Mol. Genet. 24:7227–40 [Google Scholar]
  126. Choi JC, Muchir A, Wu W, Iwata S, Homma S. 126.  et al. 2012. Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci. Transl. Med. 4:144ra02 [Google Scholar]
  127. Saito T, Asai K, Sato S, Hayashi M, Adachi A. 127.  et al. 2016. Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis. Autophagy 12:579–87 [Google Scholar]
  128. Kimura H, Eguchi S, Sasaki J, Kuba K, Nakanishi H. 128.  et al. 2017. Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy. JCI Insight 2:e89462 [Google Scholar]
  129. Sciarretta S, Boppana VS, Umapathi M, Frati G, Sadoshima J. 129.  2015. Boosting autophagy in the diabetic heart: a translational perspective. Cardiovasc. Diagn. Ther. 5:394–402 [Google Scholar]
  130. Li ZL, Woollard JR, Ebrahimi B, Crane JA, Jordan KL. 130.  et al. 2012. Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis. Arterioscler Thromb. Vasc. Biol. 32:1132–41 [Google Scholar]
  131. Rodriguez-Navarro JA, Kaushik S, Koga H, Dall'Armi C, Shui G. 131.  et al. 2012. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. PNAS 109:E705–14 [Google Scholar]
  132. He C, Bassik MC, Moresi V, Sun K, Wei Y. 132.  et al. 2012. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481:511–15 [Google Scholar]
  133. Guo R, Zhang Y, Turdi S, Ren J. 133.  2013. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy. Biochim. Biophys. Acta 1832:1136–48 [Google Scholar]
  134. Xie Z, He C, Zou MH. 134.  2011. AMP-activated protein kinase modulates cardiac autophagy in diabetic cardiomyopathy. Autophagy 7:1254–55 [Google Scholar]
  135. Xu X, Kobayashi S, Chen K, Timm D, Volden P. 135.  et al. 2013. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J. Biol. Chem. 288:18077–92 [Google Scholar]
  136. Kobayashi S, Volden P, Timm D, Mao K, Xu X, Liang Q. 136.  2010. Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J. Biol. Chem. 285:793–804 [Google Scholar]
  137. Chen K, Xu X, Kobayashi S, Timm D, Jepperson T, Liang Q. 137.  2011. Caloric restriction mimetic 2-deoxyglucose antagonizes doxorubicin-induced cardiomyocyte death by multiple mechanisms. J. Biol. Chem. 286:21993–2006 [Google Scholar]
  138. Bartlett JJ, Trivedi PC, Yeung P, Kienesberger PC, Pulinilkunnil T. 138.  2016. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem. J. 473:3769–89 [Google Scholar]
  139. Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M. 139.  et al. 2009. Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation 119:2568–77 [Google Scholar]
  140. He C, Zhu H, Li H, Zou MH, Xie Z. 140.  2013. Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62:1270–81 [Google Scholar]
  141. Kanamori H, Takemura G, Goto K, Maruyama R, Ono K. 141.  et al. 2011. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am. J. Physiol. Heart Circ. Physiol. 300:H2261–71 [Google Scholar]
  142. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. 142.  2007. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 282:5641–52 [Google Scholar]
  143. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z. 143.  et al. 2013. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494:201–6 [Google Scholar]
  144. Kaizuka T, Morishita H, Hama Y, Tsukamoto S, Matsui T. 144.  et al. 2016. An autophagic flux probe that releases an internal control. Mol. Cell 64:835–49 [Google Scholar]
  145. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H. 145.  et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222 [Google Scholar]
  146. Zhang J, Liu J, Huang Y, Chang JY, Liu L. 146.  et al. 2012. FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity. Circ. Res. 110:e29–39 [Google Scholar]
  147. Sin J, Andres AM, Taylor DJ, Weston T, Hiraumi Y. 147.  et al. 2016. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy 12:369–80 [Google Scholar]
  148. Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J. 148.  et al. 2017. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543:205–10 [Google Scholar]
  149. Fu L, Wei CC, Powell PC, Bradley WE, Collawn JF, Dell'Italia LJ. 149.  2015. Volume overload induces autophagic degradation of procollagen in cardiac fibroblasts. J. Mol. Cell. Cardiol. 89:241–50 [Google Scholar]
  150. Kaushik S, Cuervo AM. 150.  2015. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17:759–70 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021317-121427
Loading
/content/journals/10.1146/annurev-physiol-021317-121427
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error