1932

Abstract

Aging, the main risk factor for cardiovascular disease (CVD), is becoming progressively more prevalent in our societies. A better understanding of how aging promotes CVD is therefore urgently needed to develop new strategies to reduce disease burden. Atherosclerosis and heart failure contribute significantly to age-associated CVD-related morbimortality. CVD and aging are both accelerated in patients suffering from Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder caused by the prelamin A mutant progerin. Progerin causes extensive atherosclerosis and cardiac electrophysiological alterations that invariably lead to premature aging and death. This review summarizes the main structural and functional alterations to the cardiovascular system during physiological and premature aging and discusses the mechanisms underlying exaggerated CVD and aging induced by prelamin A and progerin. Because both proteins are expressed in normally aging non-HGPS individuals, and most hallmarks of normal aging occur in progeria, research on HGPS can identify mechanisms underlying physiological aging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021317-121454
2018-02-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physiol/80/1/annurev-physiol-021317-121454.html?itemId=/content/journals/10.1146/annurev-physiol-021317-121454&mimeType=html&fmt=ahah

Literature Cited

  1. D'Agostino RB Sr., Vasan RS, Pencina MJ, Wolf PA, Cobain M. 1.  et al. 2008. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117:743–53 [Google Scholar]
  2. Savji N, Rockman CB, Skolnick AH, Guo Y, Adelman MA. 2.  et al. 2013. Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. J. Am. Coll. Cardiol. 61:1736–43 [Google Scholar]
  3. 3. United Nations (UN) 2002. World population ageing, 1950–2050 Rep., Dep. Econ. Social Aff., Pop. Div UN, New York: http://www.un.org/esa/population/publications/worldageing19502050/
  4. 4. Future Health 2016. The future of health care: deep data, smart sensors, virtual patients, and the Internet-of-Humans. Manifesto 2016. Future Health, Berlin. https://docs.wixstatic.com/ugd/2b9f87_40d29af47a9742498cbbbd484e0174e0.pdf
  5. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K. 5.  et al. 2011. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123:933–44 [Google Scholar]
  6. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 6.  2013. The hallmarks of aging. Cell 153:1194–217 [Google Scholar]
  7. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J. 7.  et al. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–98 [Google Scholar]
  8. De Sandre-Giovannoli A Bernard R, Cau P, Navarro C, Amiel J. 8.  et al. 2003. Lamin A truncation in Hutchinson-Gilford progeria. Science 300:2055 [Google Scholar]
  9. Barrowman J, Wiley PA, Hudon-Miller SE, Hrycyna CA, Michaelis S. 9.  2012. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity. Hum. Mol. Genet. 21:4084–93 [Google Scholar]
  10. Gordon LB, Rothman FG, López-Otín C, Misteli T. 10.  2014. Progeria: a paradigm for translational medicine. Cell 156:400–7 [Google Scholar]
  11. Dorado B, Andrés V. 11.  2017. A-type lamins and cardiovascular disease in premature aging syndromes. Curr. Opin. Cell Biol. 46:17–25 [Google Scholar]
  12. Reddy S, Comai L. 12.  2012. Lamin A, farnesylation and aging. Exp. Cell Res. 318:1–7 [Google Scholar]
  13. Capell BC, Tlougan BE, Orlow SJ. 13.  2009. From the rarest to the most common: insights from progeroid syndromes into skin cancer and aging. J. Investig. Dermatol. 129:2340–50 [Google Scholar]
  14. Olive M, Harten I, Mitchell R, Beers JK, Djabali K. 14.  et al. 2010. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler. Thromb. Vasc. Biol. 30:2301–9 [Google Scholar]
  15. Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T. 15.  et al. 2010. Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 121:2200–10 [Google Scholar]
  16. Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M. 16.  et al. 2011. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J. Clin. Investig. 121:2833–44 [Google Scholar]
  17. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr. 17.  et al. 2013. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 62:e147–239 [Google Scholar]
  18. Ho KK, Pinsky JL, Kannel WB, Levy D. 18.  1993. The epidemiology of heart failure: the Framingham Study. J. Am. Coll. Cardiol. 22:6a–13a [Google Scholar]
  19. Kitzman DW, Gardin JM, Gottdiener JS, Arnold A, Boineau R. 19.  et al. 2001. Importance of heart failure with preserved systolic function in patients ≥65 years of age. Am. J. Cardiol. 87:413–19 [Google Scholar]
  20. Wong J, Chabiniok R, deVecchi A, Dedieu N, Sammut E. 20.  et al. 2016. Age-related changes in intraventricular kinetic energy: a physiological or pathological adaptation?. Am. J. Physiol. Heart Circ. Physiol. 310:H747–55 [Google Scholar]
  21. Lakatta EG, Levy D. 21.  2003. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part II: the aging heart in health: links to heart disease. Circulation 107:346–54 [Google Scholar]
  22. Martos R, Baugh J, Ledwidge M, O'Loughlin C, Conlon C. 22.  et al. 2007. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 115:888–95 [Google Scholar]
  23. Benjamin EJ, Levy D, Anderson KM, Wolf PA, Plehn JF. 23.  et al. 1992. Determinants of Doppler indexes of left ventricular diastolic function in normal subjects (the Framingham Heart Study). Am. J. Cardiol. 70:508–15 [Google Scholar]
  24. Carrick-Ranson G, Hastings JL, Bhella PS, Shibata S, Fujimoto N. 24.  et al. 2012. Effect of healthy aging on left ventricular relaxation and diastolic suction. Am. J. Physiol. Heart Circ. Physiol. 303:H315–22 [Google Scholar]
  25. Swinne CJ, Shapiro EP, Lima SD, Fleg JL. 25.  1992. Age-associated changes in left ventricular diastolic performance during isometric exercise in normal subjects. Am. J. Cardiol. 69:823–26 [Google Scholar]
  26. Lester SJ, Tajik AJ, Nishimura RA, Oh JK, Khandheria BK, Seward JB. 26.  2008. Unlocking the mysteries of diastolic function: deciphering the Rosetta Stone 10 years later. J. Am. Coll. Cardiol. 51:679–89 [Google Scholar]
  27. Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. 27.  2012. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid. Redox Signal. 16:1492–526 [Google Scholar]
  28. Eng J, McClelland RL, Gomes AS, Hundley WG, Cheng S. 28.  et al. 2016. Adverse left ventricular remodeling and age assessed with cardiac MR imaging: the multi-ethnic study of atherosclerosis. Radiology 278:714–22 [Google Scholar]
  29. Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, Castelli WP. 29.  1988. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann. Intern. Med. 108:7–13 [Google Scholar]
  30. Gerstenblith G, Frederiksen J, Yin FC, Fortuin NJ, Lakatta EG, Weisfeldt ML. 30.  1977. Echocardiographic assessment of a normal adult aging population. Circulation 56:273–78 [Google Scholar]
  31. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. 31.  1989. Left ventricular mass and incidence of coronary heart disease in an elderly cohort: the Framingham Heart Study. Ann. Intern. Med. 110:101–7 [Google Scholar]
  32. Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C. 32.  et al. 1995. Gender differences and aging: effects on the human heart. J. Am. Coll. Cardiol. 26:1068–79 [Google Scholar]
  33. Lima JA.33.  2017. The aging human heart. Circ. Cardiovasc. Imaging 10:e005899 [Google Scholar]
  34. Biernacka A, Frangogiannis NG. 34.  2011. Aging and cardiac fibrosis. Aging Dis 2:158–73 [Google Scholar]
  35. Segura AM, Frazier OH, Buja LM. 35.  2014. Fibrosis and heart failure. Heart Fail. Rev. 19:173–85 [Google Scholar]
  36. Horn MA.36.  2015. Cardiac physiology of aging: extracellular considerations. Compr. Physiol. 5:1069–121 [Google Scholar]
  37. Piek A, de Boer RA, Sillje HH. 37.  2016. The fibrosis-cell death axis in heart failure. Heart Fail. Rev. 21:199–211 [Google Scholar]
  38. Spadaccio C, Mozetic P, Nappi F, Nenna A, Sutherland F. 38.  et al. 2016. Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Res. Cardiol. 111:16 [Google Scholar]
  39. Fleg JL, O'Connor F, Gerstenblith G, Becker LC, Clulow J. 39.  et al. 1995. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J. Appl. Physiol. 78:890–900 [Google Scholar]
  40. Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S. 40.  2014. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 6:213–20 [Google Scholar]
  41. Levy S.41.  2002. Atrial fibrillation, the arrhythmia of the elderly, causes and associated conditions. Anadolu Kardiyol. Derg. 2:55–60 [Google Scholar]
  42. Nguyen TN, Hilmer SN, Cumming RG. 42.  2013. Review of epidemiology and management of atrial fibrillation in developing countries. Int. J. Cardiol. 167:2412–20 [Google Scholar]
  43. Moghtadaei M, Jansen HJ, Mackasey M, Rafferty SA, Bogachev O. 43.  et al. 2016. The impacts of age and frailty on heart rate and sinoatrial node function. J. Physiol. 594:7105–26 [Google Scholar]
  44. Taylor JA, Tan CO. 44.  2014. BP regulation VI: elevated sympathetic outflow with human aging: hypertensive or homeostatic?. Eur. J. Appl. Physiol. 114:511–19 [Google Scholar]
  45. Ferrari AU, Radaelli A, Centola M. 45.  2003. Invited review: aging and the cardiovascular system. J. Appl. Physiol. 95:2591–97 [Google Scholar]
  46. Schulman SP, Lakatta EG, Fleg JL, Lakatta L, Becker LC, Gerstenblith G. 46.  1992. Age-related decline in left ventricular filling at rest and exercise. Am. J. Physiol. 263:H1932–38 [Google Scholar]
  47. Lakatta EG, Levy D. 47.  2003. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation 107:139–46 [Google Scholar]
  48. Franklin SS, Gustin W, Wong ND, Larson MG, Weber MA. 48.  et al. 1997. Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation 96:308–15 [Google Scholar]
  49. Sun Z.49.  2015. Aging, arterial stiffness, and hypertension. Hypertension 65:252–56 [Google Scholar]
  50. Veerman DP, Imholz BP, Wieling W, Karemaker JM, van Montfrans GA. 50.  1994. Effects of aging on blood pressure variability in resting conditions. Hypertension 24:120–30 [Google Scholar]
  51. Monahan KD.51.  2007. Effect of aging on baroreflex function in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R3–12 [Google Scholar]
  52. Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG. 52.  2017. The aging cardiovascular system: understanding it at the cellular and clinical levels. J. Am. Coll. Cardiol. 69:1952–67 [Google Scholar]
  53. Vlachopoulos C, Aznaouridis K, Stefanadis C. 53.  2010. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 55:1318–27 [Google Scholar]
  54. Mitchell GF, Guo CY, Benjamin EJ, Larson MG, Keyes MJ. 54.  et al. 2007. Cross-sectional correlates of increased aortic stiffness in the community: the Framingham Heart Study. Circulation 115:2628–36 [Google Scholar]
  55. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ. 55.  et al. 2010. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121:505–11 [Google Scholar]
  56. Wang M, Monticone RE, Lakatta EG. 56.  2014. Proinflammation of aging central arteries: a mini-review. Gerontology 60:519–29 [Google Scholar]
  57. Kohn JC, Lampi MC, Reinhart-King CA. 57.  2015. Age-related vascular stiffening: causes and consequences. Front. Genet. 6:112 [Google Scholar]
  58. Huveneers S, Daemen MJ, Hordijk PL. 58.  2015. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ. Res. 116:895–908 [Google Scholar]
  59. Alenghat FJ.59.  2016. The prevalence of atherosclerosis in those with inflammatory connective tissue disease by race, age, and traditional risk factors. Sci. Rep. 6:20303 [Google Scholar]
  60. Bae JH, Kim WS, Lee MS, Kim KS, Park JB. 60.  et al. 2016. The changes of individual carotid artery wall layer by aging and carotid intima-media thickness value for high risk. Cardiovasc. Ther. 34:397–403 [Google Scholar]
  61. O'Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. 61.  1999. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N. Engl. J. Med. 340:14–22 [Google Scholar]
  62. Libby P, Hansson GK. 62.  2015. Inflammation and immunity in diseases of the arterial tree: players and layers. Circ. Res. 116:307–11 [Google Scholar]
  63. Sanz-González SM, Poch E, Pérez-Roger I, Díez-Juan A, Ivorra C, Andrés V. 63.  2000. Control of vascular smooth muscle cell growth by cyclin-dependent kinase inhibitory proteins and its implication in cardiovascular disease. Front. Biosci. 5:D619–28 [Google Scholar]
  64. Fisher SA.64.  2010. Vascular smooth muscle phenotypic diversity and function. Physiol. Genom. 42a:169–87 [Google Scholar]
  65. Kaplan H, Thompson RC, Trumble BC, Wann LS, Allam AH. 65.  et al. 2017. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389:1730–39 [Google Scholar]
  66. Wissler RW, Strong JP. 66. PDAY Res. Group 1998. Risk factors and progression of atherosclerosis in youth. Am. J. Pathol. 153:1023–33 [Google Scholar]
  67. Allam AH, Thompson RC, Wann LS, Miyamoto MI, Nur el-Din AH. 67.  et al. 2011. Atherosclerosis in ancient Egyptian mummies: the Horus study. JACC Cardiovasc. Imaging 4:315–27 [Google Scholar]
  68. Lin F, Worman HJ. 68.  1993. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268:16321–26 [Google Scholar]
  69. Furukawa K, Inagaki H, Hotta Y. 69.  1994. Identification and cloning of an mRNA coding for a germ cell-specific A-type lamin in mice. Exp. Cell Res. 212:426–30 [Google Scholar]
  70. Machiels BM, Zorenc AH, Endert JM, Kuijpers HJ, van Eys GJ. 70.  et al. 1996. An alternative splicing product of the lamin A/C gene lacks exon 10. J. Biol. Chem. 271:9249–53 [Google Scholar]
  71. Andrés V, González JM. 71.  2009. Role of A-type lamins in signaling, transcription, and chromatin organization. J. Cell Biol. 187:945–57 [Google Scholar]
  72. Gordon LB, Massaro J, D'Agostino RB Sr., Campbell SE, Brazier J. 72.  et al. 2014. Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation 130:27–34 [Google Scholar]
  73. Ullrich NJ, Gordon LB. 73.  2015. Hutchinson-Gilford progeria syndrome. Handb. Clin. Neurol. 132:249–64 [Google Scholar]
  74. Gerhard-Herman M, Smoot LB, Wake N, Kieran MW, Kleinman ME. 74.  et al. 2012. Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome. Hypertension 59:92–97 [Google Scholar]
  75. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC. 75.  et al. 2008. Phenotype and course of Hutchinson-Gilford progeria syndrome. N. Engl. J. Med. 358:592–604 [Google Scholar]
  76. Rivera-Torres J, Calvo CJ, Llach A, Guzmán-Martínez G, Caballero R. 76.  et al. 2016. Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations. PNAS 113:E7250–59 [Google Scholar]
  77. Gordon LB, Harten IA, Patti ME, Lichtenstein AH. 77.  2005. Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson-Gilford Progeria Syndrome. J. Pediatr. 146:336–41 [Google Scholar]
  78. Gordon LB, Kleinman ME, Massaro J, D'Agostino RB Sr, Shappell H. 78.  et al. 2016. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation 134:114–25 [Google Scholar]
  79. Stehbens WE, Delahunt B, Shozawa T, Gilbert-Barness E. 79.  2001. Smooth muscle cell depletion and collagen types in progeric arteries. Cardiovasc. Pathol. 10:133–36 [Google Scholar]
  80. Kovacic JC, Moreno P, Nabel EG, Hachinski V, Fuster V. 80.  2011. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly. Circulation 123:1900–10 [Google Scholar]
  81. Hanumanthappa NB, Madhusudan G, Mahimarangaiah J, Manjunath CN. 81.  2011. Hutchinson-Gilford progeria syndrome with severe calcific aortic valve stenosis. Ann. Pediatr. Cardiol. 4:204–6 [Google Scholar]
  82. Nair K, Ramachandran P, Krishnamoorthy KM, Dora S, Achuthan TJ. 82.  2004. Hutchinson-Gilford progeria syndrome with severe calcific aortic valve stenosis and calcific mitral valve. J. Heart Valve Dis. 13:866–69 [Google Scholar]
  83. Salamat M, Dhar PK, Neagu DL, Lyon JB. 83.  2010. Aortic calcification in a patient with Hutchinson-Gilford progeria syndrome. Pediatr. Cardiol. 31:925–26 [Google Scholar]
  84. Ha JW, Shim WH, Chung NS. 84.  1993. Cardiovascular findings of Hutchinson-Gilford syndrome: a Doppler and two-dimensional echocardiographic study. Yonsei Med. J. 34:352–55 [Google Scholar]
  85. Silvera VM, Gordon LB, Orbach DB, Campbell SE, Machan JT, Ullrich NJ. 85.  2013. Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome. Am. J. Neuroradiol. 34:1091–97 [Google Scholar]
  86. Hennekam RC.86.  2006. Hutchinson-Gilford progeria syndrome: review of the phenotype. Am. J. Med. Genet. A 140:2603–24 [Google Scholar]
  87. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A. 87.  et al. 2012. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. PNAS 109:16666–71 [Google Scholar]
  88. Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y. 88.  et al. 2005. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. PNAS 102:10291–96 [Google Scholar]
  89. Yang SH, Meta M, Qiao X, Frost D, Bauch J. 89.  et al. 2006. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J. Clin. Investig. 116:2115–21 [Google Scholar]
  90. Varga R, Eriksson M, Erdos MR, Olive M, Harten I. 90.  et al. 2006. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. PNAS 103:3250–55 [Google Scholar]
  91. Stehbens WE, Wakefield SJ, Gilbert-Barness E, Olson RE, Ackerman J. 91.  1999. Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc. Pathol. 8:29–39 [Google Scholar]
  92. Osorio FG, Navarro CL, Cadiñanos J, López-Mejía IC, Quiros PM. 92.  et al. 2011. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci. Transl. Med. 3:106ra07 [Google Scholar]
  93. Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acín-Pérez R, Enriquez JA. 93.  et al. 2013. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127:2442–51 [Google Scholar]
  94. Lee JM, Nobumori C, Tu Y, Choi C, Yang SH. 94.  et al. 2016. Modulation of LMNA splicing as a strategy to treat prelamin A diseases. J. Clin. Investig. 126:1592–602 [Google Scholar]
  95. Navarro CL, De Sandre-Giovannoli A Bernard R, Boccaccio I, Boyer A. 95.  et al. 2004. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet. 13:2493–503 [Google Scholar]
  96. Navarro CL, Cadiñanos J, De Sandre-Giovannoli A Bernard R, Courrier S. 96.  et al. 2005. Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum. Mol. Genet. 14:1503–13 [Google Scholar]
  97. Moulson CL, Go G, Gardner JM, van der Wal AC, Smitt JH. 97.  et al. 2005. Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J. Investig. Dermatol. 125:913–19 [Google Scholar]
  98. Agarwal AK, Fryns JP, Auchus RJ, Garg A. 98.  2003. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12:1995–2001 [Google Scholar]
  99. Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C. 99.  et al. 2002. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. PNAS 99:13049–54 [Google Scholar]
  100. Pendás AM, Zhou Z, Cadiñanos J, Freije JM, Wang J. 100.  et al. 2002. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 31:94–99 [Google Scholar]
  101. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC. 101.  et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104 [Google Scholar]
  102. Moulson CL, Fong LG, Gardner JM, Farber EA, Go G. 102.  et al. 2007. Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes. Hum. Mutat. 28:882–89 [Google Scholar]
  103. Reunert J, Wentzell R, Walter M, Jakubiczka S, Zenker M. 103.  et al. 2012. Neonatal progeria: increased ratio of progerin to lamin A leads to progeria of the newborn. Eur. J. Hum. Genet. 20:933–37 [Google Scholar]
  104. Hisama FM, Lessel D, Leistritz D, Friedrich K, McBride KL. 104.  et al. 2011. Coronary artery disease in a Werner syndrome-like form of progeria characterized by low levels of progerin, a splice variant of lamin A. Am. J. Med. Genet. A 155A:3002–6 [Google Scholar]
  105. Denecke J, Brune T, Feldhaus T, Robenek H, Kranz C. 105.  et al. 2006. A homozygous ZMPSTE24 null mutation in combination with a heterozygous mutation in the LMNA gene causes Hutchinson-Gilford progeria syndrome (HGPS): insights into the pathophysiology of HGPS. Hum. Mutat. 27:524–31 [Google Scholar]
  106. Fong LG, Ng JK, Meta M, Coté N, Yang SH. 106.  et al. 2004. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. PNAS 101:18111–16 [Google Scholar]
  107. Yang SH, Chang SY, Ren S, Wang Y, Andres DA. 107.  et al. 2011. Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum. Mol. Genet. 20:436–44 [Google Scholar]
  108. Davies BS, Barnes RH 2nd, Tu Y, Ren S, Andres DA. 108.  et al. 2010. An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria. Hum. Mol. Genet. 19:2682–94 [Google Scholar]
  109. Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH. 109.  et al. 2005. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. PNAS 102:12873–78 [Google Scholar]
  110. Capell BC, Olive M, Erdos MR, Cao K, Faddah DA. 110.  et al. 2008. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. PNAS 105:15902–7 [Google Scholar]
  111. Fong LG, Frost D, Meta M, Qiao X, Yang SH. 111.  et al. 2006. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311:1621–23 [Google Scholar]
  112. Varela I, Pereira S, Ugalde AP, Navarro CL, Suárez MF. 112.  et al. 2008. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat. Med. 14:767–72 [Google Scholar]
  113. Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L. 113.  et al. 1997. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272:14459–64 [Google Scholar]
  114. Kalinowski A, Yaron PN, Qin Z, Shenoy S, Buehler MJ. 114.  et al. 2014. Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome. Biophys. Chem. 195:43–48 [Google Scholar]
  115. Qin Z, Kalinowski A, Dahl KN, Buehler MJ. 115.  2011. Structure and stability of the lamin A tail domain and HGPS mutant. J. Struct. Biol. 175:425–33 [Google Scholar]
  116. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE. 116.  et al. 2004. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. PNAS 101:8963–68 [Google Scholar]
  117. Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T. 117.  2006. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. PNAS 103:10271–76 [Google Scholar]
  118. Lee SJ, Jung YS, Yoon MH, Kang SM, Oh AY. 118.  et al. 2016. Interruption of progerin-lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype. J. Clin. Investig. 126:3879–93 [Google Scholar]
  119. Ibrahim MX, Sayin VI, Akula MK, Liu M, Fong LG. 119.  et al. 2013. Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria. Science 340:1330–33 [Google Scholar]
  120. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR. 120.  et al. 2011. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci. Transl. Med. 3:89ra58 [Google Scholar]
  121. Graziotto JJ, Cao K, Collins FS, Krainc D. 121.  2012. Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders. Autophagy 8:147–51 [Google Scholar]
  122. Leopold JA.122.  2013. Vascular calcification: an age-old problem of old age. Circulation 127:2380–82 [Google Scholar]
  123. Lee SJ, Park SH. 123.  2013. Arterial ageing. Korean Circ. J. 43:73–79 [Google Scholar]
  124. Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PC. 124.  et al. 2014. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24:1909–17 [Google Scholar]
  125. Philip JT, Dahl KN. 125.  2008. Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging. J. Biomech. 41:3164–70 [Google Scholar]
  126. Booth EA, Spagnol ST, Alcoser TA, Dahl KN. 126.  2015. Nuclear stiffening and chromatin softening with progerin expression leads to an attenuated nuclear response to force. Soft Matter 11:6412–18 [Google Scholar]
  127. Verstraeten VL, Ji JY, Cummings KS, Lee RT, Lammerding J. 127.  2008. Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell 7:383–93 [Google Scholar]
  128. Song M, San H, Anderson SA, Cannon RO 3rd, Orlic D. 128.  2014. Shear stress-induced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria. Stem Cell Res. Ther. 5:41 [Google Scholar]
  129. Brassard JA, Fekete N, Garnier A, Hoesli CA. 129.  2016. Hutchinson-Gilford progeria syndrome as a model for vascular aging. Biogerontology 17:129–45 [Google Scholar]
  130. Katsumoto T, Mitsushima A, Kurimura T. 130.  1990. The role of the vimentin intermediate filaments in rat 3Y1 cells elucidated by immunoelectron microscopy and computer-graphic reconstruction. Biol. Cell 68:139–46 [Google Scholar]
  131. Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J. 131.  et al. 2011. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–25 [Google Scholar]
  132. Kinoshita D, Nagasawa A, Shimizu I, Ito TK, Yoshida Y. 132.  et al. 2017. Progerin impairs vascular smooth muscle cell growth via the DNA damage response pathway. Oncotarget 8:34045–56 [Google Scholar]
  133. Zhang H, Xiong ZM, Cao K. 133.  2014. Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1. PNAS 111:E2261–70 [Google Scholar]
  134. Liu Y, Drozdov I, Shroff R, Beltran LE, Shanahan CM. 134.  2013. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ. Res. 112:e99–109 [Google Scholar]
  135. Cobb AM, Larrieu D, Warren DT, Liu Y, Srivastava S. 135.  et al. 2016. Prelamin A impairs 53BP1 nuclear entry by mislocalizing NUP153 and disrupting the Ran gradient. Aging Cell 15:1039–50 [Google Scholar]
  136. Liu B, Wang J, Chan KM, Tjia WM, Deng W. 136.  et al. 2005. Genomic instability in laminopathy-based premature aging. Nat. Med. 11:780–85 [Google Scholar]
  137. Liu B, Wang Z, Ghosh S, Zhou Z. 137.  2013. Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model. Aging Cell 12:316–18 [Google Scholar]
  138. Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z. 138.  2013. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat. Commun. 4:1868 [Google Scholar]
  139. Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH. 139.  2008. DNA damage and ageing: new-age ideas for an age-old problem. Nat. Cell Biol. 10:1241–47 [Google Scholar]
  140. Quirós-González I, Román-García P, Alonso-Montes C, Barrio-Vázquez S, Carrillo-López N. 140.  et al. 2016. Lamin A is involved in the development of vascular calcification induced by chronic kidney failure and phosphorus load. Bone 84:160–68 [Google Scholar]
  141. Scaffidi P, Misteli T. 141.  2008. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol. 10:452–59 [Google Scholar]
  142. Frangos SG, Gahtan V, Sumpio B. 142.  1999. Localization of atherosclerosis: role of hemodynamics. Arch. Surg. 134:1142–49 [Google Scholar]
  143. Rouleau L, Rossi J, Leask RL. 143.  2010. The response of human aortic endothelial cells in a stenotic hemodynamic environment: effect of duration, magnitude, and spatial gradients in wall shear stress. J. Biomech. Eng. 132:071015 [Google Scholar]
  144. Bonello-Palot N, Simoncini S, Robert S, Bourgeois P, Sabatier F. 144.  et al. 2014. Prelamin A accumulation in endothelial cells induces premature senescence and functional impairment. Atherosclerosis 237:45–52 [Google Scholar]
  145. Herraiz-Martínez A, Álvarez-García J, Llach A, Molina CE, Fernandes J. 145.  et al. 2015. Ageing is associated with deterioration of calcium homeostasis in isolated human right atrial myocytes. Cardiovasc. Res. 106:76–86 [Google Scholar]
  146. Jensen PN, Gronroos NN, Chen LY, Folsom AR, deFilippi C. 146.  et al. 2014. Incidence of and risk factors for sick sinus syndrome in the general population. J. Am. Coll. Cardiol. 64:531–38 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021317-121454
Loading
/content/journals/10.1146/annurev-physiol-021317-121454
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error