1932

Abstract

At the most fundamental level, the bowel facilitates absorption of small molecules, regulates fluid and electrolyte flux, and eliminates waste. To successfully coordinate this complex array of functions, the bowel relies on the enteric nervous system (ENS), an intricate network of more than 500 million neurons and supporting glia that are organized into distinct layers or plexi within the bowel wall. Neuron and glial diversity, as well as neurotransmitter and receptor expression in the ENS, resembles that of the central nervous system. The most carefully studied ENS functions include control of bowel motility, epithelial secretion, and blood flow, but the ENS also interacts with enteroendocrine cells, influences epithelial proliferation and repair, modulates the intestinal immune system, and mediates extrinsic nerve input. Here, we review the many different cell types that communicate with the ENS, integrating data about ENS function into a broader view of human health and disease. In particular, we focus on exciting new literature highlighting relationships between the ENS and its lesser-known interacting partners.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021317-121515
2019-02-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-021317-121515.html?itemId=/content/journals/10.1146/annurev-physiol-021317-121515&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Furness JB. 2006. The Enteric Nervous System Malden, MA: Blackwell
  2. 2.  Vanner S, Greenwood-Van Meerveld B, Mawe G, Shea-Donohue T, Verdu EF et al. 2016. Fundamentals of neurogastroenterology: basic science. Gastroenterology 150:1280–91
    [Google Scholar]
  3. 3.  Furness JB. 2016. Integrated neural and endocrine control of gastrointestinal function. Adv. Exp. Med. Biol. 891:159–73
    [Google Scholar]
  4. 4.  Furness JB, Callaghan BP, Rivera LR, Cho HJ 2014. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817:39–71
    [Google Scholar]
  5. 5.  Furness JB. 2012. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9:286–94
    [Google Scholar]
  6. 6.  Sanders KM, Kito Y, Hwang SJ, Ward SM 2016. Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology 31:316–26
    [Google Scholar]
  7. 7.  Sanders KM, Koh SD, Ro S, Ward SM 2012. Regulation of gastrointestinal motility—insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 9:633–45
    [Google Scholar]
  8. 8.  Sanders KM, Hwang SJ, Ward SM 2010. Neuroeffector apparatus in gastrointestinal smooth muscle organs. J. Physiol. 588:4621–39
    [Google Scholar]
  9. 9.  Beckett EA, Horiguchi K, Khoyi M, Sanders KM, Ward SM 2002. Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sld mice. J. Physiol. 543:871–87
    [Google Scholar]
  10. 10.  Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M et al. 2013. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat. Commun. 4:1630
    [Google Scholar]
  11. 11.  Huizinga JD, Liu LW, Fitzpatrick A, White E, Gill S et al. 2008. Deficiency of intramuscular ICC increases fundic muscle excitability but does not impede nitrergic innervation. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G589–94
    [Google Scholar]
  12. 12.  Groneberg D, Lies B, König P, Jäger R, Seidler B et al. 2013. Cell-specific deletion of nitric oxide-sensitive guanylyl cyclase reveals a dual pathway for nitrergic neuromuscular transmission in the murine fundus. Gastroenterology 145:188–96
    [Google Scholar]
  13. 13.  Lies B, Gil V, Groneberg D, Seidler B, Saur D et al. 2014. Interstitial cells of Cajal mediate nitrergic inhibitory neurotransmission in the murine gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 307:G98–106
    [Google Scholar]
  14. 14.  Kurahashi M, Mutafova-Yambolieva V, Koh SD, Sanders KM 2014. Platelet-derived growth factor receptor-α-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am. J. Physiol. Cell Physiol. 307:C561–70
    [Google Scholar]
  15. 15.  Kurahashi M, Zheng H, Dwyer L, Ward SM, Koh SD, Sanders KM 2011. A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J. Physiol. 589:697–710
    [Google Scholar]
  16. 16.  Peri LE, Sanders KM, Mutafova-Yambolieva VN 2013. Differential expression of genes related to purinergic signaling in smooth muscle cells, PDGFRα-positive cells, and interstitial cells of Cajal in the murine colon. Neurogastroenterol. Motil. 25:e609–20
    [Google Scholar]
  17. 17.  Iino S, Horiguchi K, Nojyo Y 2008. Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 152:437–48
    [Google Scholar]
  18. 18.  Shahi PK, Choi S, Jeong YJ, Park CG, So I, Jun JY 2014. Basal cGMP regulates the resting pacemaker potential frequency of cultured mouse colonic interstitial cells of Cajal. Naunyn-Schmiedeberg's Arch. Pharmacol. 387:641–48
    [Google Scholar]
  19. 19.  Baker SA, Drumm BT, Cobine CA, Keef KD, Sanders KM 2018. Inhibitory neural regulation of the Ca2+ transients in intramuscular interstitial cells of Cajal in the small intestine. Front. Physiol. 9:328
    [Google Scholar]
  20. 20.  Hagen BM, Bayguinov O, Sanders KM 2006. VIP and PACAP regulate localized Ca2+ transients via cAMP-dependent mechanism. Am. J. Physiol. Cell Physiol. 291:C375–85
    [Google Scholar]
  21. 21.  Baker SA, Drumm BT, Skowronek KE, Rembetski BE, Peri LE et al. 2018. Excitatory neuronal responses of Ca2+ transients in interstitial cells of Cajal in the small intestine. eNeuro 5: https://doi.org/10.1523/ENEURO.0080-18.2018
    [Crossref] [Google Scholar]
  22. 22.  Zhu MH, Sung IK, Zheng H, Sung TS, Britton FC et al. 2011. Muscarinic activation of Ca2+-activated Cl current in interstitial cells of Cajal. J. Physiol. 589:4565–82
    [Google Scholar]
  23. 23.  So KY, Kim SH, Sohn HM, Choi SJ, Parajuli SP et al. 2009. Carbachol regulates pacemaker activities in cultured interstitial cells of Cajal from the mouse small intestine. Mol. Cells 27:525–31
    [Google Scholar]
  24. 24.  Unno T, Matsuyama H, Izumi Y, Yamada M, Wess J, Komori S 2006. Roles of M2 and M3 muscarinic receptors in cholinergic nerve-induced contractions in mouse ileum studied with receptor knockout mice. Br. J. Pharmacol. 149:1022–30
    [Google Scholar]
  25. 25.  Lecci A, Capriati A, Altamura M, Maggi CA 2006. Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human. Auton. Neurosci. 126–127:232–49
    [Google Scholar]
  26. 26.  Huizinga JD, Martz S, Gil V, Wang XY, Jimenez M, Parsons S 2011. Two independent networks of interstitial cells of Cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front. Neurosci. 5:93
    [Google Scholar]
  27. 27.  Kugler EM, Michel K, Zeller F, Demir IE, Ceyhan GO et al. 2015. Mechanical stress activates neurites and somata of myenteric neurons. Front. Cell Neurosci. 9:342
    [Google Scholar]
  28. 28.  Li Z, Chalazonitis A, Huang YY, Mann JJ, Margolis KG et al. 2011. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 31:8998–9009
    [Google Scholar]
  29. 29.  Heredia DJ, Gershon MD, Koh SD, Corrigan RD, Okamoto T, Smith TK 2013. Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J. Physiol. 591:5939–57
    [Google Scholar]
  30. 30.  Kendig DM, Grider JR 2015. Serotonin and colonic motility. Neurogastroenterol. Motil. 27:899–905
    [Google Scholar]
  31. 31.  Rao M, Rastelli D, Dong L, Chiu S, Setlik W et al. 2017. Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153:1068–81.e7
    [Google Scholar]
  32. 32.  McClain J, Grubišić V, Fried D, Gomez-Suarez RA, Leinninger GM et al. 2014. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology 146:497–507.e1
    [Google Scholar]
  33. 33.  Bassotti G, Villanacci V, Antonelli E, Morelli A, Salerni B 2007. Enteric glial cells: New players in gastrointestinal motility?. Lab. Investig. 87:628–32
    [Google Scholar]
  34. 34.  Heuckeroth RO. 2018. Hirschsprung disease—integrating basic science and clinical medicine to improve outcomes. Nat. Rev. Gastroenterol. Hepatol. 15:152–67
    [Google Scholar]
  35. 35.  Antonucci A, Fronzoni L, Cogliandro L, Cogliandro RF, Caputo C et al. 2008. Chronic intestinal pseudo-obstruction. World J. Gastroenterol. 14:2953–61
    [Google Scholar]
  36. 36.  Ravenscroft G, Pannell S, O'Grady G, Ong R, Ee HC et al. 2018. Variants in ACTG2 underlie a substantial number of Australasian patients with primary chronic intestinal pseudo-obstruction. Neurogastroenterol. Motil. 2018:e13371
    [Google Scholar]
  37. 37.  Di Nardo G, Di Lorenzo C, Lauro A, Stanghellini V, Thapar N et al. 2017. Chronic intestinal pseudo-obstruction in children and adults: diagnosis and therapeutic options. Neurogastroenterol. Motil. 29:e12945
    [Google Scholar]
  38. 38.  Bertrand PP, Kunze WA, Furness JB, Bornstein JC 2000. The terminals of myenteric intrinsic primary afferent neurons of the guinea-pig ileum are excited by 5-hydroxytryptamine acting at 5-hydroxytryptamine-3 receptors. Neuroscience 101:459–69
    [Google Scholar]
  39. 39.  Vanner S, Macnaughton WK 2004. Submucosal secretomotor and vasodilator reflexes. Neurogastroenterol. Motil. 16:Suppl. 139–43
    [Google Scholar]
  40. 40.  Reed DE, Vanner SJ 2003. Long vasodilator reflexes projecting through the myenteric plexus in guinea-pig ileum. J. Physiol. 553:911–24
    [Google Scholar]
  41. 41.  Weber E, Neunlist M, Schemann M, Frieling T 2001. Neural components of distension-evoked secretory responses in the guinea-pig distal colon. J. Physiol. 536:741–51
    [Google Scholar]
  42. 42.  Mazzuoli-Weber G, Schemann M 2015. Mechanosensitivity in the enteric nervous system. Front. Cell Neurosci. 9:408
    [Google Scholar]
  43. 43.  Vanner S, Surprenant A 1996. Neural reflexes controlling intestinal microcirculation. Am. J. Physiol. 271:G223–30
    [Google Scholar]
  44. 44.  Vanner S, Surprenant A 1991. Cholinergic and noncholinergic submucosal neurons dilate arterioles in guinea pig colon. Am. J. Physiol. 261:G136–44
    [Google Scholar]
  45. 45.  Stead RH, Tomioka M, Quinonez G, Simon GT, Felten SY, Bienenstock J 1987. Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. PNAS 84:2975–79
    [Google Scholar]
  46. 46.  Downard CD, Grant SN, Matheson PJ, Guillaume AW, Debski R et al. 2011. Altered intestinal microcirculation is the critical event in the development of necrotizing enterocolitis. J. Pediatr. Surg. 46:1023–28
    [Google Scholar]
  47. 47.  Zhou Y, Yang J, Watkins DJ, Boomer LA, Matthews MA et al. 2013. Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy. Stem Cell Res. Ther. 4:157
    [Google Scholar]
  48. 48.  Nowicki PT, Caniano DA, Hammond S, Giannone PJ, Besner GE et al. 2007. Endothelial nitric oxide synthase in human intestine resected for necrotizing enterocolitis. J. Pediatr. 150:40–45
    [Google Scholar]
  49. 49.  Hatoum OA, Binion DG, Otterson MF, Gutterman DD 2003. Acquired microvascular dysfunction in inflammatory bowel disease: loss of nitric oxide-mediated vasodilation. Gastroenterology 125:58–69
    [Google Scholar]
  50. 50.  Xue J, Askwith C, Javed NH, Cooke HJ 2007. Autonomic nervous system and secretion across the intestinal mucosal surface. Auton. Neurosci. 133:55–63
    [Google Scholar]
  51. 51.  Banks MR, Farthing MJ 2002. Fluid and electrolyte transport in the small intestine. Curr. Opin. Gastroenterol. 18:176–81
    [Google Scholar]
  52. 52.  Grubišić V, Gulbransen BD 2017. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. J. Physiol. 595:3409–24
    [Google Scholar]
  53. 53.  Lane R, Baldwin D 1997. Selective serotonin reuptake inhibitor-induced serotonin syndrome: review. J. Clin. Psychopharmacol. 17:208–21
    [Google Scholar]
  54. 54.  Jones SL, Blikslager AT 2002. Role of the enteric nervous system in the pathophysiology of secretory diarrhea. J. Vet. Intern. Med. 16:222–28
    [Google Scholar]
  55. 55.  Eklund S, Jodal M, Lundgren O 1985. The enteric nervous system participates in the secretory response to the heat stable enterotoxins of Escherichia coli in rats and cats. Neuroscience 14:673–81
    [Google Scholar]
  56. 56.  Hernandes L, Zucoloto S, Alvares EP 2000. Effect of myenteric denervation on intestinal epithelium proliferation and migration of suckling and weanling rats. Cell Prolif 33:127–38
    [Google Scholar]
  57. 57.  Hitch MC, Leinicke JA, Wakeman D, Guo J, Erwin CR et al. 2012. Ret heterozygous mice have enhanced intestinal adaptation after massive small bowel resection. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G1143–50
    [Google Scholar]
  58. 58.  Avetisyan M, Wang H, Schill EM, Bery S, Grider JR et al. 2015. Hepatocyte growth factor and MET support mouse enteric nervous system development, the peristaltic response, and intestinal epithelial proliferation in response to injury. J. Neurosci. 35:11543–58
    [Google Scholar]
  59. 59.  Takahashi T, Shiraishi A, Murata J 2018. The coordinated activities of nAChR and Wnt signaling regulate intestinal stem cell function in mice. Int. J. Mol. Sci. 19:738
    [Google Scholar]
  60. 60.  Greig CJ, Cowles RA 2017. Muscarinic acetylcholine receptors participate in small intestinal mucosal homeostasis. J. Pediatr. Surg. 52:1031–34
    [Google Scholar]
  61. 61.  Lundgren O, Jodal M, Jansson M, Ryberg AT, Svensson L 2011. Intestinal epithelial stem/progenitor cells are controlled by mucosal afferent nerves. PLOS ONE 6:e16295
    [Google Scholar]
  62. 62.  Muise ED, Gandotra N, Tackett JJ, Bamdad MC, Cowles RA 2017. Distribution of muscarinic acetylcholine receptor subtypes in the murine small intestine. Life Sci 169:6–10
    [Google Scholar]
  63. 63.  Gross ER, Gershon MD, Margolis KG, Gertsberg ZV, Li Z, Cowles RA 2012. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 143:408–17.e2
    [Google Scholar]
  64. 64.  Bjerknes M, Cheng H 2001. Modulation of specific intestinal epithelial progenitors by enteric neurons. PNAS 98:12497–502
    [Google Scholar]
  65. 65.  Leen JL, Izzo A, Upadhyay C, Rowland KJ, Dube PE et al. 2011. Mechanism of action of glucagon-like peptide-2 to increase IGF-I mRNA in intestinal subepithelial fibroblasts. Endocrinology 152:436–46
    [Google Scholar]
  66. 66.  Puzan M, Hosic S, Ghio C, Koppes A 2018. Enteric nervous system regulation of intestinal stem cell differentiation and epithelial monolayer function. Sci. Rep. 8:6313
    [Google Scholar]
  67. 67.  Cornet A, Savidge TC, Cabarrocas J, Deng WL, Colombel JF et al. 2001. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease?. PNAS 98:13306–11
    [Google Scholar]
  68. 68.  Aube AC, Cabarrocas J, Bauer J, Philippe D, Aubert P et al. 2006. Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption. Gut 55:630–37
    [Google Scholar]
  69. 69.  Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M et al. 2007. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132:1344–58
    [Google Scholar]
  70. 70.  Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA et al. 1998. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93:189–201
    [Google Scholar]
  71. 71.  Van Landeghem L, Mahé MM, Teusan R, Leger J, Guisle I et al. 2009. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions. BMC Genom 10:507
    [Google Scholar]
  72. 72.  von Boyen GB, Schulte N, Pflüger C, Spaniol U, Hartmann C, Steinkamp M 2011. Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol 11:3
    [Google Scholar]
  73. 73.  Xiao WD, Chen W, Sun LH, Wang WS, Zhou SW, Yang H 2011. The protective effect of enteric glial cells on intestinal epithelial barrier function is enhanced by inhibiting inducible nitric oxide synthase activity under lipopolysaccharide stimulation. Mol. Cell Neurosci. 46:527–34
    [Google Scholar]
  74. 74.  Xiao W, Wang W, Chen W, Sun L, Li X et al. 2014. GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation. Mol. Neurobiol. 50:274–89
    [Google Scholar]
  75. 75.  Steinkamp M, Geerling I, Seufferlein T, von Boyen G, Egger B et al. 2003. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology 124:1748–57
    [Google Scholar]
  76. 76.  Zhang DK, He FQ, Li TK, Pang XH, Cui DJ et al. 2010. Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J. Pathol. 222:213–22
    [Google Scholar]
  77. 77.  Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L et al. 2016. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535:440–43
    [Google Scholar]
  78. 78.  Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D 2016. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164:378–91
    [Google Scholar]
  79. 79.  Chalazonitis A, Pham TD, Li Z, Roman D, Guha U et al. 2008. Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J. Comp. Neurol. 509:474–92
    [Google Scholar]
  80. 80.  Fu M, Vohra BPS, Wind D, Heuckeroth RO 2006. BMP signaling regulates murine enteric nervous system precursor migration, neurite fasciculation, and patterning via altered Ncam1 polysialic acid addition. Dev. Biol. 299:137–50
    [Google Scholar]
  81. 81.  Muller PA, Koscso B, Rajani GM, Stevanovic K, Berres ML et al. 2014. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158:300–13
    [Google Scholar]
  82. 82.  Kulkarni S, Micci MA, Leser J, Shin C, Tang SC et al. 2017. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. PNAS 114:E3709–18
    [Google Scholar]
  83. 83.  De Schepper S, Stakenborg N, Matteoli G, Verheijden S, Boeckxstaens GE 2017. Muscularis macrophages: key players in intestinal homeostasis and disease. Cell Immunol 330:142–50
    [Google Scholar]
  84. 84.  Cipriani G, Gibbons SJ, Kashyap PC, Farrugia G 2016. Intrinsic gastrointestinal macrophages: their phenotype and role in gastrointestinal motility. Cell Mol. Gastroenterol. Hepatol. 2:120–30, .e1.
    [Google Scholar]
  85. 85.  Chandrasekharan B, Jeppsson S, Pienkowski S, Belsham DD, Sitaraman SV et al. 2013. Tumor necrosis factor-neuropeptide Y cross talk regulates inflammation, epithelial barrier functions, and colonic motility. Inflamm. Bowel Dis. 19:2535–46
    [Google Scholar]
  86. 86.  Matteoli G, Gomez-Pinilla PJ, Nemethova A, Di Giovangiulio M, Cailotto C et al. 2014. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63:938–48
    [Google Scholar]
  87. 87.  Wang H, Yu M, Ochani M, Amella CA, Tanovic M et al. 2003. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421:384–88
    [Google Scholar]
  88. 88.  de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ et al. 2005. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6:844–51
    [Google Scholar]
  89. 89.  Avetisyan M, Rood JE, Huerta Lopez S, Sengupta R, Wright-Jin E et al. 2018. Muscularis macrophage development in the absence of an enteric nervous system. PNAS 115:4696–701
    [Google Scholar]
  90. 90.  Wehner S, Behrendt FF, Lyutenski BN, Lysson M, Bauer AJ et al. 2007. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 56:176–85
    [Google Scholar]
  91. 91.  The FO, Cailotto C, van der Vliet J, de Jonge WJ, Bennink RJ et al. 2011. Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus. Br. J. Pharmacol. 163:1007–16
    [Google Scholar]
  92. 92.  Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S 2012. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143:1006–16.e4
    [Google Scholar]
  93. 93.  Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM 2014. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol. Motil. 26:98–107
    [Google Scholar]
  94. 94.  Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G et al. 2009. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J. Histochem. Cytochem. 57:1013–23
    [Google Scholar]
  95. 95.  Brun P, Giron MC, Qesari M, Porzionato A, Caputi V et al. 2013. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145:1323–33
    [Google Scholar]
  96. 96.  Reichardt F, Chassaing B, Nezami BG, Li G, Tabatabavakili S et al. 2017. Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and lipopolysaccharide-induced TLR4 signalling. J. Physiol. 595:1831–46
    [Google Scholar]
  97. 97.  Uesaka T, Nagashimada M, Enomoto H 2013. GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors. J. Neurosci. 33:16372–82
    [Google Scholar]
  98. 98.  Grider JR, Heuckeroth RO, Kuemmerle JF, Murthy KS 2010. Augmentation of the ascending component of the peristaltic reflex and substance P release by glial cell line-derived neurotrophic factor. Neurogastroenterol. Motil. 22:779–86
    [Google Scholar]
  99. 99.  McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA 2013. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil. 25:183–e88
    [Google Scholar]
  100. 100.  Lomasney KW, Cryan JF, Hyland NP 2014. Converging effects of a Bifidobacterium and Lactobacillus probiotic strain on mouse intestinal physiology. Am. J. Physiol. Gastrointest. Liver Physiol. 307:G241–47
    [Google Scholar]
  101. 101.  Wang B, Mao YK, Diorio C, Wang L, Huizinga JD et al. 2010. Lactobacillus reuteri ingestion and IKCa channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol. Motil. 22:98–107.e33
    [Google Scholar]
  102. 102.  Rolig AS, Mittge EK, Ganz J, Troll JV, Melancon E et al. 2017. The enteric nervous system promotes intestinal health by constraining microbiota composition. PLOS Biol 15:e2000689
    [Google Scholar]
  103. 103.  Hyland NP, Cryan JF 2016. Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. Dev. Biol. 417:182–87
    [Google Scholar]
  104. 104.  Kabouridis PS, Pachnis V 2015. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J. Clin. Investig. 125:956–64
    [Google Scholar]
  105. 105.  Chiocchetti R, Mazzuoli G, Albanese V, Mazzoni M, Clavenzani P et al. 2008. Anatomical evidence for ileal Peyer's patches innervation by enteric nervous system: a potential route for prion neuroinvasion?. Cell Tissue Res 332:185–94
    [Google Scholar]
  106. 106.  Vulchanova L, Casey MA, Crabb GW, Kennedy WR, Brown DR 2007. Anatomical evidence for enteric neuroimmune interactions in Peyer's patches. J. Neuroimmunol. 185:64–74
    [Google Scholar]
  107. 107.  Stanisz AM, Befus D, Bienenstock J 1986. Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes from Peyer's patches, mesenteric lymph nodes, and spleen. J. Immunol. 136:152–56
    [Google Scholar]
  108. 108.  Farzi A, Reichmann F, Holzer P 2015. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol 213:603–27
    [Google Scholar]
  109. 109.  Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D et al. 2005. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J. Exp. Med. 202:1527–38
    [Google Scholar]
  110. 110.  Gonzalez-Rey E, Fernandez-Martin A, Chorny A, Delgado M 2006. Vasoactive intestinal peptide induces CD4+, CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum 54:864–76
    [Google Scholar]
  111. 111.  Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Ganea D, Delgado M 2006. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood 107:3632–38
    [Google Scholar]
  112. 112.  Delgado M, Gonzalez-Rey E, Ganea D 2005. The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J. Immunol. 175:7311–24
    [Google Scholar]
  113. 113.  Abad C, Cheung-Lau G, Coute-Monvoisin AC, Waschek JA 2015. Vasoactive intestinal peptide-deficient mice exhibit reduced pathology in trinitrobenzene sulfonic acid-induced colitis. Neuroimmunomodulation 22:203–12
    [Google Scholar]
  114. 114.  Abad C, Tan YV, Cheung-Lau G, Nobuta H, Waschek JA 2012. VIP deficient mice exhibit resistance to lipopolysaccharide induced endotoxemia with an intrinsic defect in proinflammatory cellular responses. PLOS ONE 7:e36922
    [Google Scholar]
  115. 115.  Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B 2016. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol. Motil. 28:620–30
    [Google Scholar]
  116. 116.  Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C et al. 2017. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170:185–98.e16
    [Google Scholar]
  117. 117.  He Y, Wang H, Yang D, Wang C, Yang L, Jin C 2015. Differential expression of motilin receptor in various parts of gastrointestinal tract in dogs. Gastroenterol. Res. Pract. 2015:970940
    [Google Scholar]
  118. 118.  Amato A, Cinci L, Rotondo A, Serio R, Faussone-Pellegrini MS et al. 2010. Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors. Neurogastroenterol. Motil. 22:664–e203
    [Google Scholar]
  119. 119.  Sayegh AI, Ritter RC 2003. Cholecystokinin activates specific enteric neurons in the rat small intestine. Peptides 24:237–44
    [Google Scholar]
  120. 120.  Bohorquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y et al. 2015. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Investig. 125:782–86
    [Google Scholar]
  121. 121.  Berthoud HR, Jedrzejewska A, Powley TL 1990. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with Dil injected into the dorsal vagal complex in the rat. J. Comp. Neurol. 301:65–79
    [Google Scholar]
  122. 122.  Lomax AE, Sharkey KA, Furness JB 2010. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol. Motil. 22:7–18
    [Google Scholar]
  123. 123.  Gulbransen BD, Bains JS, Sharkey KA 2010. Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J. Neurosci. 30:6801–9
    [Google Scholar]
  124. 124.  Sjövall H, Redfors S, Hallbäck DA, Eklund S, Jodal M, Lundgren O 1983. The effect of splanchnic nerve stimulation on blood flow distribution, villous tissue osmolality and fluid and electrolyte transport in the small intestine of the cat. Acta Physiol. Scand. 117:359–65
    [Google Scholar]
  125. 125.  Sjövall H, Redfors S, Jodal M, Lundgren O 1983. On the mode of action of the sympathetic fibres on intestinal fluid transport: evidence for the existence of a glucose-stimulated secretory nervous pathway in the intestinal wall. Acta Physiol. Scand. 119:39–48
    [Google Scholar]
  126. 126.  Altschuler SM, Escardo J, Lynn RB, Miselis RR 1993. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology 104:502–9
    [Google Scholar]
  127. 127.  Espinosa-Medina I, Saha O, Boismoreau F, Chettouh Z, Rossi F et al. 2016. The sacral autonomic outflow is sympathetic. Science 354:893–97
    [Google Scholar]
  128. 128.  Walter GC, Phillips RJ, Baronowsky EA, Powley TL 2009. Versatile, high-resolution anterograde labeling of vagal efferent projections with dextran amines. J. Neurosci. Methods 178:1–9
    [Google Scholar]
  129. 129.  Kalia M, Fuxe K, Goldstein M, Harfstrand A, Agnati LF, Coyle JT 1984. Evidence for the existence of putative dopamine-, adrenaline- and noradrenaline-containing vagal motor neurons in the brainstem of the rat. Neurosci. Lett. 50:57–62
    [Google Scholar]
  130. 130.  Hyland NP, Abrahams TP, Fuchs K, Burmeister MA, Hornby PJ 2001. Organization and neurochemistry of vagal preganglionic neurons innervating the lower esophageal sphincter in ferrets. J. Comp. Neurol. 430:222–34
    [Google Scholar]
  131. 131.  Powell N, Walker MM, Talley NJ 2017. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat. Rev. Gastroenterol. Hepatol. 14:143–59
    [Google Scholar]
  132. 132.  Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S et al. 2010. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLOS ONE 5:e8762
    [Google Scholar]
  133. 133.  Braak H, de Vos RA, Bohl J, Del Tredici K 2006. Gastric α-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci. Lett. 396:67–72
    [Google Scholar]
  134. 134.  Edwards LL, Pfeiffer RF, Quigley EM, Hofman R, Balluff M 1991. Gastrointestinal symptoms in Parkinson's disease. Mov. Disord. 6:151–56
    [Google Scholar]
  135. 135.  Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W et al. 2014. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128:805–20
    [Google Scholar]
  136. 136.  Ulusoy A, Rusconi R, Perez-Revuelta BI, Musgrove RE, Helwig M et al. 2013. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol. Med. 5:1119–27
    [Google Scholar]
  137. 137.  Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF et al. 2017. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 88:1996–2002
    [Google Scholar]
  138. 138.  Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L et al. 2015. Vagotomy and subsequent risk of Parkinson's disease. Ann. Neurol. 78:522–29
    [Google Scholar]
  139. 139.  Kaatz M, Fast C, Ziegler U, Balkema-Buschmann A, Hammerschmidt B et al. 2012. Spread of classic BSE prions from the gut via the peripheral nervous system to the brain. Am. J. Pathol. 181:515–24
    [Google Scholar]
  140. 140.  Rao M, Gershon MD 2016. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13:517–28
    [Google Scholar]
  141. 141.  Del Tredici K, Braak H 2016. Sporadic Parkinson's disease: development and distribution of α-synuclein pathology. Neuropathol. Appl. Neurobiol. 42:33–50
    [Google Scholar]
  142. 142.  Natale G, Ferrucci M, Lazzeri G, Paparelli A, Fornai F 2011. Transmission of prions within the gut and towards the central nervous system. Prion 5:142–49
    [Google Scholar]
  143. 143.  Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP et al. 2014. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158:263–76
    [Google Scholar]
  144. 144.  Grubišić V, Kennedy AJ, Sweatt JD, Parpura V 2015. Pitt-Hopkins mouse model has altered particular gastrointestinal transits in vivo. Autism Res 8:629–33
    [Google Scholar]
  145. 145.  Margolis KG, Li Z, Stevanovic K, Saurman V, Israelyan N et al. 2016. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. J. Clin. Investig. 126:2221–35
    [Google Scholar]
  146. 146.  Peng Y, Huentelman M, Smith C, Qiu S 2013. MET receptor tyrosine kinase as an autism genetic risk factor. Int. Rev. Neurobiol. 113:135–65
    [Google Scholar]
  147. 147.  Puig KL, Lutz BM, Urquhart SA, Rebel AA, Zhou X et al. 2015. Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system. J. Alzheimers Dis. 44:1263–78
    [Google Scholar]
  148. 148.  Semar S, Klotz M, Letiembre M, Van Ginneken C, Braun A et al. 2013. Changes of the enteric nervous system in amyloid-β protein precursor transgenic mice correlate with disease progression. J. Alzheimers Dis. 36:7–20
    [Google Scholar]
  149. 149.  Guo Y, Wang Q, Zhang K, An T, Shi P et al. 2012. HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Res 1460:88–95
    [Google Scholar]
  150. 150.  Esmaeili MA, Panahi M, Yadav S, Hennings L, Kiaei M 2013. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int. J. Exp. Pathol. 94:56–64
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021317-121515
Loading
/content/journals/10.1146/annurev-physiol-021317-121515
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error