1932

Abstract

Coronary artery disease (CAD) is the number one cause of death worldwide and involves the accumulation of plaques within the artery wall that can occlude blood flow to the heart and cause myocardial infarction. The high mortality associated with CAD makes the development of medical interventions that repair and replace diseased arteries a high priority for the cardiovascular research community. Advancements in arterial regenerative medicine could benefit from a detailed understanding of coronary artery development during embryogenesis and of how these pathways might be reignited during disease. Recent research has advanced our knowledge on how the coronary vasculature is built and revealed unexpected features of progenitor cell deployment that may have implications for organogenesis in general. Here, we highlight these recent findings and discuss how they set the stage to interrogate developmental pathways during injury and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022516-033953
2017-02-10
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/physiol/79/1/annurev-physiol-022516-033953.html?itemId=/content/journals/10.1146/annurev-physiol-022516-033953&mimeType=html&fmt=ahah

Literature Cited

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD. 1.  et al. 2014. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:3e28–292 [Google Scholar]
  2. Tabas I, Garcia-Cardeña G, Owens GK. 2.  2015. The cell biology of disease: recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209:113–22 [Google Scholar]
  3. Rubanyi GM. 3.  2013. Mechanistic, technical, and clinical perspectives in therapeutic stimulation of coronary collateral development by angiogenic growth factors. Mol. Ther. 21:4725–38 [Google Scholar]
  4. Schaper W. 4.  2009. Collateral circulation: past and present. Basic Res. Cardiol. 104:15–21 [Google Scholar]
  5. Potente M, Gerhardt H, Carmeliet P. 5.  2011. Basic and therapeutic aspects of angiogenesis. Cell 146:6873–87 [Google Scholar]
  6. Smart N, Dubé KN, Riley PR. 6.  2009. Coronary vessel development and insight towards neovascular therapy. Int. J. Exp. Pathol. 90:3262–83 [Google Scholar]
  7. Tian X, Pu WT, Zhou B. 7.  2015. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116:3515–30 [Google Scholar]
  8. Olivey HE, Svensson EC. 8.  2010. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ. Res. 106:5818–32 [Google Scholar]
  9. Dyer L, Pi X, Patterson C. 9.  2014. Connecting the coronaries: how the coronary plexus develops and is functionalized. Dev. Biol. 395:1111–19 [Google Scholar]
  10. Red-Horse K, Ueno H, Weissman IL, Krasnow MA. 10.  2010. Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549–53 [Google Scholar]
  11. Zeini M, Hang CT, Lehrer-Graiwer J, Dao T, Zhou B, Chang C-P. 11.  2009. Spatial and temporal regulation of coronary vessel formation by calcineurin-NFAT signaling. Development 136:193335–45 [Google Scholar]
  12. Waldo KL, Willner W, Kirby ML. 12.  1990. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am. J. Anat. 188:2109–20 [Google Scholar]
  13. Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Hungerford JE, Little CD, Poelmann RE. 13.  1997. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev. Dyn. 208:3338–48 [Google Scholar]
  14. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML. 14.  et al. 2016. Revisiting cardiac cellular composition. Circ. Res. 118:3400–9 [Google Scholar]
  15. Kivelä R, Bry M, Robciuc MR, Räsänen M, Taavitsainen M. 15.  et al. 2014. VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol. Med. 6:3307–21 [Google Scholar]
  16. Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA. 16.  2016. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Investig. 126:3821–28 [Google Scholar]
  17. Armulik A, Genove G, Betsholtz C. 17.  2011. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21:2193–215 [Google Scholar]
  18. Passman JN, Dong X-R, Wu S-P, Maguire CT, Hogan KA. 18.  et al. 2008. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. PNAS 105:279349–54 [Google Scholar]
  19. Stenmark KR, Yeager ME, Kasmi El KC, Nozik-Grayck E, Gerasimovskaya EV. 19.  et al. 2013. The adventitia: essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 75:123–47 [Google Scholar]
  20. Nam J, Onitsuka I, Hatch J, Uchida Y, Ray S. 20.  et al. 2013. Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development 140:71475–85 [Google Scholar]
  21. Manousiouthakis E, Mendez M, Garner MC, Exertier P, Makita T. 21.  2014. Venous endothelin guides sympathetic innervation of the developing mouse heart. Nat. Commun. 5:3918 [Google Scholar]
  22. Klotz L, Norman S, Vieira JM, Masters M, Rohling M. 22.  et al. 2015. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522:62–67 [Google Scholar]
  23. Tomanek RJ. 23.  2016. Developmental progression of the coronary vasculature in human embryos and fetuses. Anat. Rec. 299:125–41 [Google Scholar]
  24. Bennett HS. 24.  1936. The development of the blood supply to the heart in the embryo pig. Am. J. Anat. 60:127–53 [Google Scholar]
  25. Goldsmith JB, Butler HW. 25.  1937. The development of the cardiac-coronary circulatory system. Am. J. Anat. 60:2185–201 [Google Scholar]
  26. Männer J. 26.  1999. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 255:2212–26 [Google Scholar]
  27. Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bökenkamp R, Hogers B. 27.  1993. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res. 73:3559–68 [Google Scholar]
  28. Mikawa T, Gourdie RG. 28.  1996. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174:2221–32 [Google Scholar]
  29. Pérez-Pomares J-M, Carmona R, González-Iriarte M, Atencia G, Wessels A, Muñoz-Chápuli R. 29.  2002. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 46:81005–13 [Google Scholar]
  30. Mikawa T, Fischman DA. 30.  1992. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. PNAS 89:209504–8 [Google Scholar]
  31. Kretzschmar K, Watt FM. 31.  2012. Lineage tracing. Cell 148:1–233–45 [Google Scholar]
  32. Merki E, Zamora M, Raya A, Kawakami Y, Wang J. 32.  et al. 2005. Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation. PNAS 102:5118455–60 [Google Scholar]
  33. Cai C-L, Martin JC, Sun Y, Cui L, Wang L. 33.  et al. 2008. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–8 [Google Scholar]
  34. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I. 34.  et al. 2008. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–13 [Google Scholar]
  35. Chen HI, Sharma B, Akerberg BN, Numi HJ, Kivelä R. 35.  et al. 2014. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141:234500–12 [Google Scholar]
  36. Tian X, Hu T, Zhang H, He L, Huang X. 36.  et al. 2013. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res 23:91075–90 [Google Scholar]
  37. Nakano H, Liu X, Arshi A, Nakashima Y, van Handel B. 37.  et al. 2013. Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat. Commun. 4:1564 [Google Scholar]
  38. Tomanek RJ, Ishii Y, Holifield JS, Sjogren CL, Hansen HK, Mikawa T. 38.  2006. VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo. Circ. Res. 98:7947–53 [Google Scholar]
  39. Zhang Z, Zhou B. 39.  2013. Accelerated coronary angiogenesis by Vegfr1-knockout endocardial cells. PLOS ONE 8:7e70570 [Google Scholar]
  40. Compton LA, Potash DA, Brown CB, Barnett JV. 40.  2007. Coronary vessel development is dependent on the type III transforming growth factor β receptor. Circ. Res. 101:8784–91 [Google Scholar]
  41. Yzaguirre AD, Padmanabhan A, de Groh ED, Engleka KA, Li J. 41.  et al. 2015. Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. eLife 4:e07780 [Google Scholar]
  42. Wu B, Zhang Z, Lui W, Chen X, Wang Y. 42.  et al. 2012. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151:51083–96 [Google Scholar]
  43. Katz TC, Singh MK, Degenhardt K, Rivera-Feliciano J, Johnson RL. 43.  et al. 2012. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 22:3639–50 [Google Scholar]
  44. Singh A, Ramesh S, Cibi DM, Yun LS, Li J. 44.  et al. 2016. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development. Cell Rep. 15:71384–93 [Google Scholar]
  45. Zhang H, Pu W, Li G, Huang X, He L. 45.  et al. 2016. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118:1880–93 [Google Scholar]
  46. Tian X, Hu T, Zhang H, He L, Huang X. 46.  et al. 2014. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345:90–94 [Google Scholar]
  47. Arita Y, Nakaoka Y, Matsunaga T, Kidoya H, Yamamizu K. 47.  et al. 2014. Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nat. Commun. 5:4552 [Google Scholar]
  48. Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A. 48.  1999. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126:91845–57 [Google Scholar]
  49. Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C. 49.  et al. 1995. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:2489–503 [Google Scholar]
  50. Wu S-P, Dong X-R, Regan JN, Su C, Majesky MW. 50.  2013. Tbx18 regulates development of the epicardium and coronary vessels. Dev. Biol. 383:2307–20 [Google Scholar]
  51. Lavine KJ, White AC, Park C, Smith CS, Choi K. 51.  et al. 2006. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 20:121651–66 [Google Scholar]
  52. Ma Q, Kong SW, Hu Y, Campbell PH, McGowan FX. 52.  et al. 2009. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J. Clin. Investig. 119:61462–76 [Google Scholar]
  53. Greif DM, Kumar M, Lighthouse JK, Hum J, An A. 53.  et al. 2012. Radial construction of an arterial wall. Dev. Cell 23:3482–93 [Google Scholar]
  54. Arima Y, Miyagawa-Tomita S, Maeda K, Asai R, Seya D. 54.  et al. 2012. Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat. Commun. 3:1267 [Google Scholar]
  55. Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S. 55.  et al. 2012. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139:122139–49 [Google Scholar]
  56. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. 56.  2000. Fate of the mammalian cardiac neural crest. Development 127:81607–16 [Google Scholar]
  57. Waldo KL, Kumiski DH, Kirby ML. 57.  1994. Association of the cardiac neural crest with development of the coronary arteries in the chick embryo. Anat. Rec. 239:3315–31 [Google Scholar]
  58. Hood LC, Rosenquist TH. 58.  1992. Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat. Rec. 234:2291–300 [Google Scholar]
  59. Chen Q, Zhang H, Liu Y, Adams S, Eilken H. 59.  et al. 2016. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 7:12422 [Google Scholar]
  60. Wei K, Díaz-Trelles R, Liu Q, Diez-Cuñado M, Scimia M-C. 60.  et al. 2015. Developmental origin of age-related coronary artery disease. Cardiovasc. Res. 107:2287–94 [Google Scholar]
  61. Mellgren AM, Smith CL, Olsen GS, Eskiocak B, Zhou B. 61.  et al. 2008. Platelet-derived growth factor receptor β signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ. Res. 103:121393–401 [Google Scholar]
  62. Smith CL, Blaek ST, Sung CY, Tallquist MD. 62.  2011. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ. Res. 108:e15–26 [Google Scholar]
  63. Braitsch CM, Combs MD, Quaggin SE, Yutzey KE. 63.  2012. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev. Biol. 368:2345–57 [Google Scholar]
  64. Liu Q, Zhang H, Tian X, He L, Huang X. 64.  et al. 2016. Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo. Biochem. Biophys. Res. Commun. 471:4430–36 [Google Scholar]
  65. Cao J, Navis A, Cox BD, Dickson AL, Gemberling M. 65.  et al. 2016. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration. Development 143:2232–43 [Google Scholar]
  66. Unternaehrer JJ, Zhao R, Kim K, Cesana M, Powers JT. 66.  et al. 2014. The epithelial–mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Rep 3:5691–98 [Google Scholar]
  67. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V. 67.  et al. 2012. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148:51015–28 [Google Scholar]
  68. Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS. 68.  et al. 2015. Pericytes are progenitors for coronary artery smooth muscle. eLife 4:e10036 [Google Scholar]
  69. Trembley MA, Velasquez LS, de Mesy Bentley KL, Small EM. 69.  2015. Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels. Development 142:121–30 [Google Scholar]
  70. Grieskamp T, Rudat C, Lüdtke TH-W, Norden J, Kispert A. 70.  2011. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ. Res. 108:7813–23 [Google Scholar]
  71. Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B. 71.  2010. Notch3 is critical for proper angiogenesis and mural cell investment. Circ. Res. 107:7860–70 [Google Scholar]
  72. Hofmann JJ, Briot A, Enciso J, Zovein AC, Ren S. 72.  et al. 2012. Endothelial deletion of murine Jag1 leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development 139:234449–60 [Google Scholar]
  73. Kerr BA, West XZ, Kim Y-W, Zhao Y, Tischenko M. 73.  et al. 2016. Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium. Nat. Commun. 7:10960 [Google Scholar]
  74. Chen HI, Poduri A, Numi H, Kivelä R, Saharinen P. 74.  et al. 2014. VEGF-C and aortic cardiomyocytes guide coronary artery stem development. J. Clin. Investig. 124:114899–914 [Google Scholar]
  75. Ivins S, Chappell J, Vernay B, Suntharalingham J, Martineau A. 75.  et al. 2015. The CXCL12/CXCR4 axis plays a critical role in coronary artery development. Dev. Cell 33:4455–68 [Google Scholar]
  76. Angelini P. 76.  2007. Coronary artery anomalies: an entity in search of an identity. Circulation 115:101296–305 [Google Scholar]
  77. Zeina AR, Blinder J, Sharif D, Rosenschein U, Barmeir E. 77.  2014. Congenital coronary artery anomalies in adults: non-invasive assessment with multidetector CT. Br. J. Radiol. 82:975254–61 [Google Scholar]
  78. Wesselhoeft H, Fawcett JS, Johnson AL. 78.  1968. Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation 38:2403–25 [Google Scholar]
  79. Hauser M. 79.  2005. Congenital anomalies of the coronary arteries. Heart 91:91240–45 [Google Scholar]
  80. Ramírez S, Curi-Curi PJ, Calderón-Colmenero J, García J, Britton C. 80.  et al. 2011. Outcomes of coronary reimplantation for correction of anomalous origin of left coronary artery from pulmonary artery. Rev. Esp. Cardiol. 64:8681–87 [Google Scholar]
  81. Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, Péault BM, Huysmans HA. 81.  1989. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth?. Anat. Embryol. 180:5437–41 [Google Scholar]
  82. Tian X, Hu T, He L, Zhang H, Huang X. 82.  et al. 2013. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLOS ONE 8:11e80857 [Google Scholar]
  83. Moser M, Binder O, Wu Y, Aitsebaomo J, Ren R. 83.  et al. 2003. BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol. Cell. Biol. 23:165664–79 [Google Scholar]
  84. Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar K-M. 84.  et al. 2008. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ. Res. 103:8804–12 [Google Scholar]
  85. Dyer L, Wu Y, Moser M, Patterson C. 85.  2014. BMPER-induced BMP signaling promotes coronary artery remodeling. Dev. Biol. 386:2385–94 [Google Scholar]
  86. Cavallero S, Shen H, Yi C, Lien C-L, Kumar SR, Sucov HM. 86.  2015. CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Dev. Cell 33:4469–77 [Google Scholar]
  87. Lucitti JL, Jones EAV, Huang C, Chen J, Fraser SE, Dickinson ME. 87.  2007. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134:183317–26 [Google Scholar]
  88. Le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V. 88.  et al. 2004. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131:2361–75 [Google Scholar]
  89. Xu C, Hasan SS, Schmidt I, Rocha SF, Pitulescu ME. 89.  et al. 2014. Arteries are formed by vein-derived endothelial tip cells. Nat. Commun. 5:5758 [Google Scholar]
  90. Ehling M, Adams S, Benedito R, Adams RH. 90.  2013. Notch controls retinal blood vessel maturation and quiescence. Development 140:143051–61 [Google Scholar]
  91. Theodoris CV, Li M, White MP, Liu L, He D. 91.  et al. 2015. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 160:61072–86 [Google Scholar]
  92. Udan RS, Vadakkan TJ, Dickinson ME. 92.  2013. Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 140:194041–50 [Google Scholar]
  93. Sato Y, Poynter G, Huss D, Filla MB, Czirok A. 93.  et al. 2010. Dynamic analysis of vascular morphogenesis using transgenic quail embryos. PLOS ONE 5:9e12674 [Google Scholar]
  94. Simons M, Eichmann A. 94.  2015. Molecular controls of arterial morphogenesis. Circ. Res. 116:101712–24 [Google Scholar]
  95. Chittenden TW, Claes F, Lanahan AA, Autiero M, Palac RT. 95.  et al. 2006. Selective regulation of arterial branching morphogenesis by synectin. Dev. Cell 10:6783–95 [Google Scholar]
  96. Paye JM, Phng L-K, Lanahan AA, Gerhard H, Simons M. 96.  2009. Synectin-dependent regulation of arterial maturation. Dev. Dyn. 238:3604–10 [Google Scholar]
  97. Moraes F, Paye J, Mac Gabhann F, Zhuang ZW, Zhang J. 97.  et al. 2013. Endothelial cell-dependent regulation of arteriogenesis. Circ. Res. 113:91076–86 [Google Scholar]
  98. Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F. 98.  et al. 2013. The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev. Cell 25:2156–68 [Google Scholar]
  99. Liu Y, Lu X, Xiang F-L, Poelmann RE, Gittenberger-de Groot AC. 99.  et al. 2014. Nitric oxide synthase-3 deficiency results in hypoplastic coronary arteries and postnatal myocardial infarction. Eur. Heart J. 35:14920–31 [Google Scholar]
  100. Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS. 100.  et al. 2000. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86:2E29–35 [Google Scholar]
  101. Aase K, Lymboussaki A, Kaipainen A, Olofsson B, Alitalo K, Eriksson U. 101.  1999. Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature. Dev. Dyn. 215:112–25 [Google Scholar]
  102. Aase K, Euler von G, Li X, Pontén A, Thorén P. 102.  et al. 2001. Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation 104:3358–64 [Google Scholar]
  103. Li X, Tjwa M, Van Hove I, Enholm B, Neven E. 103.  et al. 2008. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler. Thromb. Vasc. Biol. 28:91614–20 [Google Scholar]
  104. Takeda Y, Costa S, Delamarre E, Roncal C, Leite de Oliveira R. 104.  et al. 2011. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479:122–26 [Google Scholar]
  105. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. 105.  2016. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation 23:295–121 [Google Scholar]
  106. Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG. 106.  et al. 2014. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. PNAS 111:4516029–34 [Google Scholar]
  107. Leid JM, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ. 107.  2016. Primitive embryonic macrophages are required for coronary development and maturation. Circ. Res. 118:101498–511 [Google Scholar]
  108. Pagliuca FW, Millman JR, Gurtler M, Segel M, Dervort AV. 108.  et al. 2014. Generation of functional human pancreatic B cells in vitro. Cell 159:2428–39 [Google Scholar]
  109. Song K, Nam Y, Luo X, Qi X, Tan W. 109.  et al. 2012. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604 [Google Scholar]
  110. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V. 110.  et al. 2012. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–98 [Google Scholar]
  111. Srivastava D, DeWitt N. 111.  2016. In vivo cellular reprogramming: the next generation. Cell 166:1386–96 [Google Scholar]
/content/journals/10.1146/annurev-physiol-022516-033953
Loading
/content/journals/10.1146/annurev-physiol-022516-033953
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error