Active iodide (I) transport in both the thyroid and some extrathyroidal tissues is mediated by the Na+/I symporter (NIS). In the thyroid, NIS-mediated I uptake plays a pivotal role in thyroid hormone (TH) biosynthesis. THs are key during embryonic and postembryonic development and critical for cell metabolism at all stages of life. The molecular characterization of NIS in 1996 and the use of radioactive I isotopes have led to significant advances in the diagnosis and treatment of thyroid cancer and provide the molecular basis for studies aimed at extending the use of radioiodide treatment in extrathyroidal malignancies. This review focuses on the most recent findings on I homeostasis and I transport deficiency-causing NIS mutations, as well as current knowledge of the structure/function properties of NIS and NIS regulatory mechanisms. We also discuss employing NIS as a reporter gene using viral vectors and stem cells in imaging, diagnostic, and therapeutic procedures.

[Erratum, Closure]

An erratum has been published for this article:
The Sodium/Iodide Symporter (NIS): Molecular Physiology and Preclinical and Clinical Applications

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Baumann E. 1.  1896. Über das Thyrojodin. Münch. Med. Wschr 43309–12 [Google Scholar]
  2. Baumann E. 2.  1896. Über den Jodgehalt der Schilddrusen von Menchen und Tieren. Hoppe-Seylers Z. Physiol. Chem. 22:1–17 [Google Scholar]
  3. Hertz S, Roberts A, Means JH, Evans RD. 3.  1940. Radioactive iodine as an indicator in thyroid physiology. J. Pharmacol. Exp. Ther. 128:565–76 [Google Scholar]
  4. Seidlin SM, Marinelli LD, Oshry E. 4.  1946. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. JAMA 132:838–47 [Google Scholar]
  5. Dai G, Levy O, Carrasco N. 5.  1996. Cloning and characterization of the thyroid iodide transporter. Nature 379:458–60 [Google Scholar]
  6. Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N. 6.  1997. Thyroid Na+/I symporter. Mechanism, stoichiometry, and specificity. J. Biol. Chem. 272:27230–38 [Google Scholar]
  7. Tazebay UH, Wapnir IL, Levy O, Dohán O, Zuckier LS. 7.  et al. 2000. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 6:871–78 [Google Scholar]
  8. Wapnir IL, van de Rijn M, Nowels K, Amenta PS, Walton K. 8.  et al. 2003. Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J. Clin. Endocrinol. Metab. 88:1880–88 [Google Scholar]
  9. Paroder-Belenitsky M, Maestas MJ, Dohán O, Nicola JP, Reyna-Neyra A. 9.  et al. 2011. Mechanism of anion selectivity and stoichiometry of the Na+/I symporter (NIS). PNAS 108:17933–38 [Google Scholar]
  10. Dohán O, Portulano C, Basquin C, Reyna-Neyra A, Amzel LM, Carrasco N. 10.  2007. The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. PNAS 104:20250–55 [Google Scholar]
  11. Miller A, Russell SJ. 11.  2016. The use of the NIS reporter gene for optimizing oncolytic virotherapy. Expert Opin. Biol. Ther. 16:15–32 [Google Scholar]
  12. Penheiter AR, Griesmann GE, Federspiel MJ, Dingli D, Russell SJ, Carlson SK. 12.  2012. Pinhole micro-SPECT/CT for noninvasive monitoring and quantitation of oncolytic virus dispersion and percent infection in solid tumors. Gene Ther 19:279–87 [Google Scholar]
  13. Bleichrodt N, Born MP. 13.  1994. A meta-analysis of research on iodine and its relationship to cognitive development. The Damaged Brain of Iodine Deficiency JB Stanbury 195–200 New York: Cognizant Comm. [Google Scholar]
  14. Portulano C, Paroder-Belenitsky M, Carrasco N. 14.  2014. The Na+/I symporter (NIS): mechanism and medical impact. Endocr. Rev. 35:106–49 [Google Scholar]
  15. Bassett JH, Williams GR. 15.  2016. Role of thyroid hormones in skeletal development and bone maintenance. Endocr. Rev. 37:135–87 [Google Scholar]
  16. Videla LA, Fernández V, Cornejo P, Vargas R, Castillo I. 16.  2015. Thyroid hormone in the frontier of cell protection, survival and functional recovery. Expert Rev. Mol. Med. 17:e10 [Google Scholar]
  17. Dunn JT, Delange F. 17.  2001. Damaged reproduction: the most important consequence of iodine deficiency. J. Clin. Endocrinol. Metab. 86:2360–63 [Google Scholar]
  18. Morreale de Escobar G, Obregón MJ, Escobar del Rey F. 18.  2000. Is neuropsychological development related to maternal hypothyroidism or to maternal hypothyroxinemia?. J. Clin. Endocrinol. Metab. 85:3975–87 [Google Scholar]
  19. Verheesen RH, Schweitzer CM. 19.  2008. Iodine deficiency, more than cretinism and goiter. Med. Hypotheses 71645–48 [Google Scholar]
  20. Ivanova L, Zandberga E, Siliņa K, Kalniņa Z, Abols A. 20.  et al. 2015. Prognostic relevance of carbonic anhydrase IX expression is distinct in various subtypes of breast cancer and its silencing suppresses self-renewal capacity of breast cancer cells. Cancer Chemother. Pharmacol. 75:235–46 [Google Scholar]
  21. 21. World Health Org. (WHO). 2014. Guideline: Fortification of Food-Grade Salt with Iodine for the Prevention and Control of Iodine Deficiency Disorders Geneva: WHO [Google Scholar]
  22. Wolff J. 22.  1964. Transport of iodide and other anions in the thyroid gland. Physiol. Rev. 44:45–90 [Google Scholar]
  23. Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S. 23.  et al. 1996. Cloning of the human sodium iodide symporter. Biochem. Biophys. Res. Commun. 226:339–45 [Google Scholar]
  24. Smanik PA, Ryu KY, Theil KS, Mazzaferri EL, Jhiang SM. 24.  1997. Expression, exon-intron organization, and chromosome mapping of the human sodium iodide symporter. Endocrinology 138:3555–58 [Google Scholar]
  25. Levy O, Dai G, Riedel C, Ginter CS, Paul EM. 25.  et al. 1997. Characterization of the thyroid Na+/I symporter with an anti-COOH terminus antibody. PNAS 94:5568–73 [Google Scholar]
  26. Levy O, De la Vieja A, Carrasco N. 26.  1998. The Na+/I symporter (NIS): recent advances. J. Bioenerg. Biomembr. 30:195–206 [Google Scholar]
  27. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A. 27.  et al. 2008. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–14 [Google Scholar]
  28. Levy O, De la Vieja A, Ginter CS, Riedel C, Dai G, Carrasco N. 28.  1998. N-linked glycosylation of the thyroid Na+/I symporter (NIS). Implications for its secondary structure model. J. Biol. Chem. 273:22657–63 [Google Scholar]
  29. Li W, Nicola JP, Amzel LM, Carrasco N. 29.  2013. Asn441 plays a key role in folding and function of the Na+/I symporter (NIS). FASEB J 27:3229–38 [Google Scholar]
  30. Nicola JP, Carrasco N, Mario Amzel L. 30.  2014. Physiological sodium concentrations enhance the iodide affinity of the Na+/I symporter. Nat. Commun. 5:3948 [Google Scholar]
  31. Kogai T, Endo T, Saito T, Miyazaki A, Kawaguchi A, Onaya T. 31.  1997. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology 138:2227–32 [Google Scholar]
  32. Marcocci C, Cohen JL, Grollman EF. 32.  1984. Effect of actinomycin D on iodide transport in FRTL-5 thyroid cells. Endocrinology 115:2123–32 [Google Scholar]
  33. Riedel C, Levy O, Carrasco N. 33.  2001. Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin. J. Biol. Chem. 276:21458–63 [Google Scholar]
  34. Saito T, Endo T, Kawaguchi A, Ikeda M, Nakazato M. 34.  1997. Increased expression of the Na+/I symporter in cultured human thyroid cells exposed to thyrotropin and in Graves’ thyroid tissue. J. Clin. Endocrinol. Metab. 82:3331–36 [Google Scholar]
  35. Weiss SJ, Philp NJ, Grollman EF. 35.  1984. Iodide transport in a continuous line of cultured cells from rat thyroid. Endocrinology 114:1090–98 [Google Scholar]
  36. Carrasco N. 36.  2013. Thyroid hormones synthesis: thyroid iodide transport. The Thyroide. A Fundamental and Clinical Text LE Braverman, DS Cooper 32–47 Philadelphia, PA: Lippincott Williams & Wilkins [Google Scholar]
  37. Wolff J, Chaikoff IL. 37.  1948. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J. Biol. Chem. 174:555–64 [Google Scholar]
  38. Braverman LE, Ingbar SH. 38.  1963. Changes in thyroidal function during adaptation to large doses of iodide. J. Clin. Investig. 42:1216–31 [Google Scholar]
  39. Leoni SG, Kimura ET, Santisteban P, De la Vieja A. 39.  2011. Regulation of thyroid oxidative state by thioredoxin reductase has a crucial role in thyroid responses to iodide excess. Mol. Endocrinol. 25:1924–35 [Google Scholar]
  40. Serrano-Nascimento C, Calil-Silveira J, Nunes MT. 40.  2010. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration. Am. J. Physiol. Cell Physiol. 298:C893–99 [Google Scholar]
  41. Vono-Toniolo J, Kopp P. 41.  2004. Thyroglobulin gene mutations and other genetic defects associated with congenital hypothyroidism. Arq. Bras. Endocrinol. Metabol. 48:70–82 [Google Scholar]
  42. Stratford AL, Boelaert K, Tannahill LA, Kim DS, Warfield A. 42.  et al. 2005. Pituitary tumor transforming gene binding factor: a novel transforming gene in thyroid tumorigenesis. J. Clin. Endocrinol. Metab. 90:4341–49 [Google Scholar]
  43. Boelaert K, Smith VE, Stratford AL, Kogai T, Tannahill LA. 43.  et al. 2007. PTTG and PBF repress the human sodium iodide symporter. Oncogene 26:4344–56 [Google Scholar]
  44. Lacoste C, Hervé J, Bou Nader M, Dos Santos A, Moniaux N. 44.  et al. 2012. Iodide transporter NIS regulates cancer cell motility and invasiveness by interacting with the Rho guanine nucleotide exchange factor LARG. Cancer Res 72:5505–15 [Google Scholar]
  45. Roepke TK, King EC, Reyna-Neyra A, Paroder M, Purtell K. 45.  et al. 2009. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat. Med. 15:1186–94 [Google Scholar]
  46. Purtell K, Paroder-Belenitsky M, Reyna-Neyra A, Nicola JP, Koba W. 46.  et al. 2012. The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I uptake. FASEB J 26:3252–59 [Google Scholar]
  47. Abbott GW, Tai KK, Neverisky DL, Hansler A, Hu Z. 47.  et al. 2014. KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability. Sci. Signal. 7:ra22 [Google Scholar]
  48. Abbott GW. 48.  2015. The KCNE2 K+ channel regulatory subunit: ubiquitous influence, complex pathobiology. Gene 569:162–72 [Google Scholar]
  49. Di Cosmo C, Fanelli G, Tonacchera M, Ferrarini E, Dimida A. 49.  et al. 2006. The sodium-iodide symporter expression in placental tissue at different gestational age: an immunohistochemical study. Clin. Endocrinol. 65:544–48 [Google Scholar]
  50. Mitchell AM, Manley SW, Morris JC, Powell KA, Bergert ER, Mortimer RH. 50.  2001. Sodium iodide symporter (NIS) gene expression in human placenta. Placenta 22:256–58 [Google Scholar]
  51. Morgenstern KE, Vadysirisack DD, Zhang Z, Cahill KV, Foster JA. 51.  et al. 2005. Expression of sodium iodide symporter in the lacrimal drainage system: implication for the mechanism underlying nasolacrimal duct obstruction in I131-treated patients. Ophthalmic Plast. Reconstr. Surg. 21:337–44 [Google Scholar]
  52. Riesco-Eizaguirre G, Leoni SG, Mendiola M, Estevez-Cebrero MA, Gallego MI. 52.  et al. 2014. NIS mediates iodide uptake in the female reproductive tract and is a poor prognostic factor in ovarian cancer. J. Clin. Endocrinol. Metab. 99:E1199–208 [Google Scholar]
  53. Spitzweg C, Dutton CM, Castro MR, Bergert ER, Goellner JR. 53.  et al. 2001. Expression of the sodium iodide symporter in human kidney. Kidney Int 59:1013–23 [Google Scholar]
  54. Marti-Climent JM, Collantes M, Jauregui-Osoro M, Quincoces G, Prieto E. 54.  et al. 2015. Radiation dosimetry and biodistribution in non-human primates of the sodium/iodide PET ligand [18F]-tetrafluoroborate. EJNMMI Res 5:70 [Google Scholar]
  55. Akturk M, Oruc AS, Danisman N, Erkek S, Buyukkagnici U. 55.  et al. 2013. Na+/I symporter and type 3 iodothyronine deiodinase gene expression in amniotic membrane and placenta and its relationship to maternal thyroid hormones. Biol. Trace Element Res. 154:338–44 [Google Scholar]
  56. Altorjay A, Dohán O, Szilágyi A, Paroder M, Wapnir IL, Carrasco N. 56.  2007. Expression of the Na+/I symporter (NIS) is markedly decreased or absent in gastric cancer and intestinal metaplastic mucosa of Barrett esophagus. BMC Cancer 7:5 [Google Scholar]
  57. La Perle KM, Kim DC, Hall NC, Bobbey A, Shen DH. 57.  et al. 2013. Modulation of sodium/iodide symporter expression in the salivary gland. Thyroid 23:1029–36 [Google Scholar]
  58. Spitzweg C, Joba W, Morris JC, Heufelder AE. 58.  1999. Regulation of sodium iodide symporter gene expression in FRTL-5 rat thyroid cells. Thyroid 9:821–30 [Google Scholar]
  59. Dagogo-Jack S. 59.  1994. Dietary iodine affects epidermal growth factor levels in mouse thyroid and submaxillary glands. Endocr. Res. 20:247–57 [Google Scholar]
  60. Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL. 60.  2003. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17:1502–4 [Google Scholar]
  61. Gupta A, Lakhoo K, Pritchard N, Herbert M. 61.  2008. Epidermal growth factor in neonatal saliva. Eur. J. Pediatr. Surg. 18:245–48 [Google Scholar]
  62. Venturi S, Venturi M. 62.  2009. Iodine in evolution of salivary glands and in oral health. Nutr. Health 20:119–34 [Google Scholar]
  63. Nicola JP, Basquin C, Portulano C, Reyna-Neyra A, Paroder M, Carrasco N. 63.  2009. The Na+/I symporter mediates active iodide uptake in the intestine. Am. J. Physiol. Cell Physiol. 296:C654–62 [Google Scholar]
  64. Nicola JP, Carrasco N, Masini-Repiso AM. 64.  2015. Dietary I absorption: expression and regulation of the Na+/I symporter in the intestine. Vitam. Horm. 98:1–31 [Google Scholar]
  65. Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Andersen S. 65.  et al. 2009. Estimation of iodine intake from various urinary iodine measurements in population studies. Thyroid 19:1281–86 [Google Scholar]
  66. Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP. 66.  1999. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat. Genet. 21:440–43 [Google Scholar]
  67. van den Hove MF, Croizet-Berger K, Jouret F, Guggino SE, Guggino WB. 67.  et al. 2006. The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology 147:1287–96 [Google Scholar]
  68. Calebiro D, Porazzi P, Bonomi M, Lisi S, Grindati A. 68.  et al. 2011. Absence of primary hypothyroidism and goiter in Slc26a4 (−/−) mice fed on a low iodine diet. J. Endocrinol. Investig. 34:593–98 [Google Scholar]
  69. Iwata T, Yoshida T, Teranishi M, Murata Y, Hayashi Y. 69.  et al. 2011. Influence of dietary iodine deficiency on the thyroid gland in Slc26a4-null mutant mice. Thyroid. Res. 4:10 [Google Scholar]
  70. Cho JY, Xing S, Liu X, Buckwalter TL, Hwa L. 70.  et al. 2000. Expression and activity of human Na+/I symporter in human glioma cells by adenovirus-mediated gene delivery. Gene Ther 7:740–49 [Google Scholar]
  71. Renier C, Vogel H, Offor O, Yao C, Wapnir I. 71.  2010. Breast cancer brain metastases express the sodium iodide symporter. J. Neurooncol. 96:331–36 [Google Scholar]
  72. Wapnir IL, Goris M, Yudd A, Dohán O, Adelman D. 72.  et al. 2004. The Na+/I symporter mediates iodide uptake in breast cancer metastases and can be selectively down-regulated in the thyroid. Clin. Cancer Res. 10:4294–302 [Google Scholar]
  73. Kogai T, Curcio F, Hyman S, Cornford EM, Brent GA, Hershman JM. 73.  2000. Induction of follicle formation in long-term cultured normal human thyroid cells treated with thyrotropin stimulates iodide uptake but not sodium/iodide symporter messenger RNA and protein expression. J. Endocrinol. 167:125–35 [Google Scholar]
  74. Kogai T, Brent GA. 74.  2012. The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol. Ther. 135:355–70 [Google Scholar]
  75. Kogai T, Kanamoto Y, Li AI, Che LH, Ohashi E. 75.  et al. 2005. Differential regulation of sodium/iodide symporter gene expression by nuclear receptor ligands in MCF-7 breast cancer cells. Endocrinology 146:3059–69 [Google Scholar]
  76. Unterholzner S, Willhauck MJ, Cengic N, Schütz M, Göke B. 76.  et al. 2006. Dexamethasone stimulation of retinoic acid-induced sodium iodide symporter expression and cytotoxicity of 131-I in breast cancer cells. J. Clin. Endocrinol. Metab. 91:69–78 [Google Scholar]
  77. Dohán O, De la Vieja A, Carrasco N. 77.  2006. Hydrocortisone and purinergic signaling stimulate sodium/iodide symporter (NIS)-mediated iodide transport in breast cancer cells. Mol. Endocrinol. 20:1121–37 [Google Scholar]
  78. Kogai T, Kanamoto Y, Che LH, Taki K, Moatamed F. 78.  et al. 2004. Systemic retinoic acid treatment induces sodium/iodide symporter expression and radioiodide uptake in mouse breast cancer models. Cancer Res 64:415–22 [Google Scholar]
  79. Brown-Grant K. 79.  1965. The metabolism of iodide by the thyroid gland and by the uterus during early pregnancy in the rat. J. Physiol. 176:73–90 [Google Scholar]
  80. Trovato M, Vitarelli E, Tripepi M, Abate A, Rizzo P. 80.  et al. 2008. Expression of NA-1 symporter (NIS) in endometrial mucosa of fertile, sterile and post-menopausal women. Histol. Histopathol. 23:549–54 [Google Scholar]
  81. Lacroix L, Mian C, Caillou B, Talbot M, Filetti S. 81.  et al. 2001. Na+/I symporter and Pendred syndrome gene and protein expressions in human extra-thyroidal tissues. Eur. J. Endocrinol. 144:297–302 [Google Scholar]
  82. Spitzweg C, Joba W, Eisenmenger W, Heufelder AE. 82.  1998. Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acids from salivary gland, mammary gland, and gastric mucosa. J. Clin. Endocrinol. Metab. 83:1746–51 [Google Scholar]
  83. Chaffin CL, Vandevoort CA. 83.  2013. Follicle growth, ovulation, and luteal formation in primates and rodents: a comparative perspective. Exp. Biol. Med. 238:539–48 [Google Scholar]
  84. 84. Am. Acad. Pediatr., Rose SR, Am. Thyroid Assoc., Brown RS, Lawson Wilkins Pediatr. Endocr. Soc. 2006. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics 117:2290–303 [Google Scholar]
  85. Park SM, Chatterjee VK. 85.  2005. Genetics of congenital hypothyroidism. J. Med. Genet 42379–89 [Google Scholar]
  86. Clifton-Bligh RJ, Wentworth JM, Heinz P, Crisp MS, John R. 86.  et al. 1998. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat. Genet. 19:399–401 [Google Scholar]
  87. Dentice M, Cordeddu V, Rosica A, Ferrara AM, Santarpia L. 87.  et al. 2006. Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J. Clin. Endocrinol. Metab. 91:1428–33 [Google Scholar]
  88. Krude H, Schutz B, Biebermann H, von Moers A, Schnabel D. 88.  et al. 2002. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J. Clin. Investig. 109:475–80 [Google Scholar]
  89. Macchia PE, Lapi P, Krude H, Pirro MT, Missero C. 89.  et al. 1998. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat. Genet. 19:83–86 [Google Scholar]
  90. Pohlenz J, Dumitrescu A, Zundel D, Martiné U, Schönberger W. 90.  et al. 2002. Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. J. Clin. Investig. 109:469–73 [Google Scholar]
  91. Avbelj M, Tahirovic H, Debeljak M, Kusekova M, Toromanovic A. 91.  et al. 2007. High prevalence of thyroid peroxidase gene mutations in patients with thyroid dyshormonogenesis. Eur. J. Endocrinol. 156:511–19 [Google Scholar]
  92. Bizhanova A, Kopp P. 92.  2010. Genetics and phenomics of Pendred syndrome. Mol. Cell Endocrinol. 322:83–90 [Google Scholar]
  93. Gutnisky VJ, Moya CM, Rivolta CM, Domené S, Varela V. 93.  et al. 2004. Two distinct compound heterozygous constellations (R277X/IVS34-1G>C and R277X/R1511X) in the thyroglobulin (TG) gene in affected individuals of a Brazilian kindred with congenital goiter and defective TG synthesis. J. Clin. Endocrinol. Metab. 89:646–57 [Google Scholar]
  94. Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F. 94.  et al. 2002. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N. Engl. J. Med. 347:95–102 [Google Scholar]
  95. Moreno JC, Klootwijk W, van Toor H, Pinto G, D'Alessandro M. 95.  et al. 2008. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N. Engl. J. Med. 358:1811–18 [Google Scholar]
  96. Pohlenz J, Refetoff S. 96.  1999. Mutations in the sodium/iodide symporter (NIS) gene as a cause for iodide transport defects and congenital hypothyroidism. Biochimie 81:469–76 [Google Scholar]
  97. Reed-Tsur MD, De la Vieja A, Ginter CS, Carrasco N. 97.  2008. Molecular characterization of V59E NIS, a Na+/I symporter mutant that causes congenital I- transport defect. Endocrinology 149:3077–84 [Google Scholar]
  98. Paroder V, Nicola JP, Ginter CS, Carrasco N. 98.  2013. The iodide-transport-defect-causing mutation R124H: a delta-amino group at position 124 is critical for maturation and trafficking of the Na+/I symporter. J. Cell Sci. 126:3305–13 [Google Scholar]
  99. Kosugi S, Okamoto H, Tamada A, Sanchez-Franco F. 99.  2002. A novel peculiar mutation in the sodium/iodide symporter gene in Spanish siblings with iodide transport defect. J. Clin. Endocrinol. Metab. 87:3830–36 [Google Scholar]
  100. De La Vieja A, Ginter CS, Carrasco N. 100.  2004. The Q267E mutation in the sodium/iodide symporter (NIS) causes congenital iodide transport defect (ITD) by decreasing the NIS turnover number. J. Cell Sci. 117:677–87 [Google Scholar]
  101. Nicola JP, Reyna-Neyra A, Saenger P, Rodriguez-Buritica DF, Godoy JD. 101.  et al. 2015. The sodium/iodide symporter mutant V270E causes stunted growth but no cognitive deficiency. J. Clin. Endocrinol. Metab. 100:E1353–61 [Google Scholar]
  102. Montanelli L, Agretti P, Marco G, Bagattini B, Ceccarelli C. 102.  et al. 2009. Congenital hypothyroidism and late-onset goiter: identification and characterization of a novel mutation in the sodium/iodide symporter of the proband and family members. Thyroid 19:1419–25 [Google Scholar]
  103. De la Vieja A, Reed MD, Ginter CS, Carrasco N. 103.  2007. Amino acid residues in transmembrane segment IX of the Na+/I symporter play a role in its Na+ dependence and are critical for transport activity. J. Biol. Chem. 282:25290–98 [Google Scholar]
  104. Levy O, Ginter CS, De la Vieja A, Levy D, Carrasco N. 104.  1998. Identification of a structural requirement for thyroid Na+/I symporter (NIS) function from analysis of a mutation that causes human congenital hypothyroidism. FEBS Lett 429:36–40 [Google Scholar]
  105. Dohán O, Gavrielides MV, Ginter C, Amzel LM, Carrasco N. 105.  2002. Na+/I symporter activity requires a small and uncharged amino acid residue at position 395. Mol. Endocrinol. 16:1893–902 [Google Scholar]
  106. Li W, Nicola JP, Amzel LM, Carrasco N. 106.  2013. Asn441 plays a key role in folding and function of the Na+/I symporter (NIS). FASEB J 27:3229–38 [Google Scholar]
  107. De la Vieja A, Ginter CS, Carrasco N. 107.  2005. Molecular analysis of a congenital iodide transport defect: G543E impairs maturation and trafficking of the Na+/I symporter. Mol. Endocrinol. 19:2847–58 [Google Scholar]
  108. Portulano C, Paroder-Belenitsky M, Carrasco N. 108.  2014. The Na+/I symporter (NIS): mechanism and medical impact. Endocr. Rev. 35:106–49 [Google Scholar]
  109. Nicola JP, Nazar M, Serrano-Nascimento C, Goulart-Silva F, Sobrero G. 109.  et al. 2011. Iodide transport defect: functional characterization of a novel mutation in the Na+/I symporter 5′-untranslated region in a patient with congenital hypothyroidism. J. Clin. Endocrinol. Metab. 96:E1100–7 [Google Scholar]
  110. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. 110.  2005. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–23 [Google Scholar]
  111. Khafizov K, Perez C, Koshy C, Quick M, Fendler K. 111.  et al. 2012. Investigation of the sodium-binding sites in the sodium-coupled betaine transporter BetP. PNAS 109:E3035–44 [Google Scholar]
  112. Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O. 112.  et al. 2008. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322:709–13 [Google Scholar]
  113. Ravera S, Quick M, Nicola JP, Carrasco N, Amzel LM. 113.  2015. Beyond non-integer Hill coefficients: a novel approach to analyzing binding data, applied to Na+-driven transporters. J. Gen. Physiol. 145:555–63 [Google Scholar]
  114. Zhao C, Stolzenberg S, Gracia L, Weinstein H, Noskov S, Shi L. 114.  2012. Ion-controlled conformational dynamics in the outward-open transition from an occluded state of LeuT. Biophys. J. 103:878–88 [Google Scholar]
  115. Loo DD, Jiang X, Gorraitz E, Hirayama BA, Wright EM. 115.  2013. Functional identification and characterization of sodium binding sites in Na symporters. PNAS 110:E4557–66 [Google Scholar]
  116. Meinild AK, Forster IC. 116.  2012. Using lithium to probe sequential cation interactions with GAT1. Am. J. Physiol. Cell Physiol. 302:C1661–75 [Google Scholar]
  117. Paroder V, Nicola JP, Ginter CS, Carrasco N. 117.  2013. The iodide transport defect-causing mutation R124H: a delta-amino group at position 124 is critical for maturation and trafficking of the Na+/I symporter (NIS). J. Cell Sci. 126:3305–13 [Google Scholar]
  118. Shimura H, Haraguchi K, Miyazaki A, Endo T, Onaya T. 118.  1997. Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I symporter gene. Endocrinology 138:4493–96 [Google Scholar]
  119. Baril P, Martin-Duque P, Vassaux G. 119.  2010. Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy. Br. J. Pharmacol. 159:761–71 [Google Scholar]
  120. Boland A, Ricard M, Opolon P, Bidart JM, Yeh P. 120.  et al. 2000. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 60:3484–92 [Google Scholar]
  121. Penheiter AR, Russell SJ, Carlson SK. 121.  2012. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr. Gene Ther. 12:33–47 [Google Scholar]
  122. Spitzweg C, Dietz AB, O'Connor MK, Bergert ER, Tindall DJ. 122.  et al. 2001. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 8:1524–31 [Google Scholar]
  123. Spitzweg C, Heufelder AE, Morris JC. 123.  2000. Thyroid iodine transport. Thyroid 10:321–30 [Google Scholar]
  124. Hingorani M, Spitzweg C, Vassaux G, Newbold K, Melcher A. 124.  et al. 2010. The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr. Cancer Drug Targets 10:242–67 [Google Scholar]
  125. Spitzweg C, Morris JC. 125.  2004. Gene therapy for thyroid cancer: current status and future prospects. Thyroid 14:424–34 [Google Scholar]
  126. Niu G, Gaut AW, Ponto LL, Hichwa RD, Madsen MT. 126.  et al. 2004. Multimodality noninvasive imaging of gene transfer using the human sodium iodide symporter. J. Nucl. Med. 45:445–49 [Google Scholar]
  127. Msaouel P, Iankov ID, Allen C, Aderca I, Federspiel MJ. 127.  et al. 2009. Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter. Mol. Ther. 17:2041–48 [Google Scholar]
  128. Peerlinck I, Merron A, Baril P, Conchon S, Martin-Duque P. 128.  et al. 2009. Targeted radionuclide therapy using a Wnt-targeted replicating adenovirus encoding the Na/I symporter. Clin. Cancer Res. 15:6595–601 [Google Scholar]
  129. Haddad D, Zanzonico PB, Carlin S, Chen CH, Chen NG. 129.  et al. 2012. A vaccinia virus encoding the human sodium iodide symporter facilitates long-term image monitoring of virotherapy and targeted radiotherapy of pancreatic cancer. J. Nucl. Med. 53:1933–42 [Google Scholar]
  130. Russell SJ, Federspiel MJ, Peng KW, Tong C, Dingli D. 130.  et al. 2014. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin. Proc. 89:926–33 [Google Scholar]
  131. Li H, Peng KW, Dingli D, Kratzke RA, Russell SJ. 131.  2010. Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther 17:550–58 [Google Scholar]
  132. Dwyer RM, Bergert ER, O'Connor MK, Gendler SJ, Morris JC. 132.  2005. In vivo radioiodide imaging and treatment of breast cancer xenografts after MUC1-driven expression of the sodium iodide symporter. Clin. Cancer Res. 11:1483–89 [Google Scholar]
  133. Dwyer RM, Bergert ER, O'Connor MK, Gendler SJ, Morris JC. 133.  2006. Adenovirus-mediated and targeted expression of the sodium-iodide symporter permits in vivo radioiodide imaging and therapy of pancreatic tumors. Hum. Gene Ther. 17:661–68 [Google Scholar]
  134. Dwyer RM, Bergert ER, O'Connor MK, Gendler SJ, Morris JC. 134.  2006. Sodium iodide symporter-mediated radioiodide imaging and therapy of ovarian tumor xenografts in mice. Gene Ther 13:60–66 [Google Scholar]
  135. Dwyer RM, Schatz SM, Bergert ER, Myers RM, Harvey ME. 135.  et al. 2005. A preclinical large animal model of adenovirus-mediated expression of the sodium-iodide symporter for radioiodide imaging and therapy of locally recurrent prostate cancer. Mol. Ther. 12:835–41 [Google Scholar]
  136. Trujillo MA, Oneal MJ, Davydova J, Bergert E, Yamamoto M, 3rd Morris JC. 136.  2009. Construction of an MUC-1 promoter driven, conditionally replicating adenovirus that expresses the sodium iodide symporter for gene therapy of breast cancer. Breast Cancer Res 11:R53 [Google Scholar]
  137. Trujillo MA, Oneal MJ, McDonough S, Qin R, Morris JC. 137.  2010. A probasin promoter, conditionally replicating adenovirus that expresses the sodium iodide symporter (NIS) for radiovirotherapy of prostate cancer. Gene Ther 17:1325–32 [Google Scholar]
  138. Naik S, Russell SJ. 138.  2009. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin. Biol. Ther. 9:1163–76 [Google Scholar]
  139. Peng KW, Ahmann GJ, Pham L, Greipp PR, Cattaneo R, Russell SJ. 139.  2001. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 98:2002–7 [Google Scholar]
  140. Galanis E, Atherton PJ, Maurer MJ, Knutson KL, Dowdy SC. 140.  et al. 2015. Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res 75:22–30 [Google Scholar]
  141. Blechacz B, Splinter PL, Greiner S, Myers R, Peng KW. 141.  et al. 2006. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology 44:1465–77 [Google Scholar]
  142. Domingo-Musibay E, Allen C, Kurokawa C, Hardcastle JJ, Aderca I. 142.  et al. 2014. Measles Edmonston vaccine strain derivatives have potent oncolytic activity against osteosarcoma. Cancer Gene Ther 21:483–90 [Google Scholar]
  143. Li H, Peng KW, Russell SJ. 143.  2012. Oncolytic measles virus encoding thyroidal sodium iodide symporter for squamous cell cancer of the head and neck radiovirotherapy. Hum. Gene Ther. 23:295–301 [Google Scholar]
  144. Liu YP, Wang J, Avanzato VA, Bakkum-Gamez JN, Russell SJ. 144.  et al. 2014. Oncolytic vaccinia virotherapy for endometrial cancer. Gynecol. Oncol. 132:722–29 [Google Scholar]
  145. Haddad D, Chen CH, Carlin S, Silberhumer G, Chen NG. 145.  et al. 2012. Imaging characteristics, tissue distribution, and spread of a novel oncolytic vaccinia virus carrying the human sodium iodide symporter. PLOS ONE 7:e41647 [Google Scholar]
  146. Haddad D, Chen NG, Zhang Q, Chen CH, Yu YA. 146.  et al. 2011. Insertion of the human sodium iodide symporter to facilitate deep tissue imaging does not alter oncolytic or replication capability of a novel vaccinia virus. J. Transl. Med. 9:36 [Google Scholar]
  147. Belin LJ, Ady JW, Lewis C, Marano D, Gholami S. 147.  et al. 2013. An oncolytic vaccinia virus expressing the human sodium iodine symporter prolongs survival and facilitates SPECT/CT imaging in an orthotopic model of malignant pleural mesothelioma. Surgery 154:486–95 [Google Scholar]
  148. Jun KH, Gholami S, Song TJ, Au J, Haddad D. 148.  et al. 2014. A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter. J. Exp. Clin. Cancer Res. 33:2 [Google Scholar]
  149. Eveno C, Mojica K, Ady JW, Thorek DL, Longo V. 149.  et al. 2015. Gene therapy using therapeutic and diagnostic recombinant oncolytic vaccinia virus GLV-1h153 for management of colorectal peritoneal carcinomatosis. Surgery 157:331–37 [Google Scholar]
  150. Gholami S, Chen CH, Belin LJ, Lou E, Fujisawa S. 150.  et al. 2013. Vaccinia virus GLV-1h153 is a novel agent for detection and effective local control of positive surgical margins for breast cancer. Breast Cancer Res 15:R26 [Google Scholar]
  151. Gholami S, Haddad D, Chen CH, Chen NG, Zhang Q. 151.  et al. 2011. Novel therapy for anaplastic thyroid carcinoma cells using an oncolytic vaccinia virus carrying the human sodium iodide symporter. Surgery 150:1040–47 [Google Scholar]
  152. Mansfield DC, Kyula JN, Rosenfelder N, Chao-Chu J, Kramer-Marek G. 152.  et al. 2016. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer. Gene Ther 23:357–68 [Google Scholar]
  153. Lehner S, Lang C, Kaissis G, Todica A, Zacherl MJ. 153.  et al. 2015. 124I-PET assessment of human sodium iodide symporter reporter gene activity for highly sensitive in vivo monitoring of teratoma formation in mice. Mol. Imaging Biol. 17:874–83 [Google Scholar]
  154. Knoop K, Schwenk N, Schmohl K, Müller A, Zach C. 154.  et al. 2015. Mesenchymal stem cell-mediated, tumor stroma-targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as theranostic gene. J. Nucl. Med. 56:600–6 [Google Scholar]
  155. Park JW, Jung KH, Lee JH, Moon SH, Cho YS. 155.  et al. 2016. Imaging early fate of cancer stem cells in mouse hindlimbs with sodium iodide symporter gene and I-124 PET. Mol. Imaging Biol. 18:748 [Google Scholar]
  156. Micci MA, Boone DR, Parsley MA, Wei J, Patrikeev I. 156.  et al. 2015. Development of a novel imaging system for cell therapy in the brain. Stem Cell Res. Ther. 6:131 [Google Scholar]
  157. Terrovitis J, Kwok KF, Lautamaki R, Engles JM, Barth AS. 157.  et al. 2008. Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J. Am. Coll. Cardiol. 52:1652–60 [Google Scholar]
  158. Templin C, Zweigerdt R, Schwanke K, Olmer R, Ghadri JR. 158.  et al. 2012. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation 126:430–39 [Google Scholar]
  159. Lee AR, Woo SK, Kang SK, Lee SY, Lee MY. 159.  et al. 2015. Adenovirus-mediated expression of human sodium-iodide symporter gene permits in vivo tracking of adipose tissue-derived stem cells in a canine myocardial infarction model. Nucl. Med. Biol 42621–29 [Google Scholar]
  160. Shi S, Zhang M, Guo R, Miao Y, Zhang M. 160.  et al. 2014. Feasibility of lentiviral-mediated sodium iodide symporter gene delivery for the efficient monitoring of bone marrow-derived mesenchymal stem cell transplantation and survival. Int. J. Mol. Med. 34:1547–54 [Google Scholar]
  161. Shi S, Zhang M, Guo R, Miao Y, Zhang X, Li B. 161.  2015. Molecular imaging to monitor repair of myocardial infarction using genetically engineered bone marrow-derived mesenchymal stem cells. Curr. Gene Ther. 15:460–71 [Google Scholar]
  162. Chang C, Chan A, Lin X, Higuchi T, Terrovitis J. 162.  et al. 2013. Cellular bioenergetics is an important determinant of the molecular imaging signal derived from luciferase and the sodium-iodide symporter. Circ. Res. 112:441–50 [Google Scholar]
  163. Kang JH, Lee DS, Paeng JC, Lee JS, Kim YH. 163.  et al. 2005. Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J. Nucl. Med. 46:479–83 [Google Scholar]
  164. Hickey RD, Mao SA, Amiot B, Suksanpaisan L, Miller A. 164.  et al. 2015. Noninvasive 3-dimensional imaging of liver regeneration in a mouse model of hereditary tyrosinemia type 1 using the sodium iodide symporter gene. Liver Transpl 21:442–53 [Google Scholar]
  165. Holvoet B, Quattrocelli M, Belderbos S, Pollaris L, Wolfs E. 165.  et al. 2015. Sodium iodide symporter PET and BLI noninvasively reveal mesoangioblast survival in dystrophic mice. Stem Cell Rep 5:1183–95 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error