Autonomic thermoregulation is a recently acquired function, as it appears for the first time in mammals and provides the brain with the ability to control energy expenditure. The importance of such control can easily be highlighted by the ability of a heterogeneous group of mammals to actively reduce metabolic rate and enter a condition of regulated hypometabolism known as torpor. The central neural circuits of thermoregulatory cold defense have been recently unraveled and could in theory be exploited to reduce energy expenditure in species that do not normally use torpor, inducing a state called synthetic torpor. This approach may represent the first steps toward the development of a technology to induce a safe and reversible state of hypometabolism in humans, unlocking many applications ranging from new medical procedures to deep space travel.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Lovegrove BG. 1.  2012. The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol. Rev. Camb. Philos. Soc. 87:128–62 [Google Scholar]
  2. Nespolo RF, Bacigalupe LD, Figueroa CC, Koteja P, Opazo JC. 2.  2011. Using new tools to solve an old problem: the evolution of endothermy in vertebrates. Trends Ecol. Evol. 26:414–23 [Google Scholar]
  3. Tattersall GJ, Leite CA, Sanders CE, Cadena V, Andrade DV. 3.  et al. 2016. Seasonal reproductive endothermy in tegu lizards. Sci. Adv. 2:e1500951 [Google Scholar]
  4. Wegner NC, Snodgrass OE, Dewar H, Hyde JR. 4.  2015. Animal physiology. Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus. . Science 348:786–89 [Google Scholar]
  5. Geiser F. 5.  2008. Ontogeny and phylogeny of endothermy and torpor in mammals and birds. Comp. Biochem. Physiol. A 150:176–80 [Google Scholar]
  6. Clarke A, Portner HO. 6.  2010. Temperature, metabolic power and the evolution of endothermy. Biol. Rev. Camb. Philos. Soc. 85:703–27 [Google Scholar]
  7. Hillenius WJ, Ruben JA. 7.  2004. The evolution of endothermy in terrestrial vertebrates: Who? When? Why?. Physiol. Biochem. Zool. 77:1019–42 [Google Scholar]
  8. Grigg GC, Beard LA, Augee ML. 8.  2004. The evolution of endothermy and its diversity in mammals and birds. Physiol. Biochem. Zool. 77:982–97 [Google Scholar]
  9. Malan A. 9.  2014. The evolution of mammalian hibernation: lessons from comparative acid-base physiology. Integr. Comp. Biol. 54:484–96 [Google Scholar]
  10. van Breukelen F, Martin SL. 10.  2015. The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals. Physiology 30:273–81 [Google Scholar]
  11. Geiser F. 11.  2010. Aestivation in mammals and birds. Prog. Mol. Subcell. Biol. 49:95–111 [Google Scholar]
  12. Geiser F. 12.  2013. Hibernation. Curr. Biol. 23:R188–93 [Google Scholar]
  13. Berger RJ. 13.  1984. Slow wave sleep, shallow torpor and hibernation: homologous states of diminished metabolism and body temperature. Biol. Psychol. 19:305–26 [Google Scholar]
  14. Bouma HR, Verhaag EM, Otis JP, Heldmaier G, Swoap SJ. 14.  et al. 2012. Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J. Cell Physiol. 227:1285–90 [Google Scholar]
  15. Boulant JA. 15.  2006. Neuronal basis of Hammel's model for set-point thermoregulation. J. Appl. Physiol. 100:1347–54 [Google Scholar]
  16. Wiener N. 16.  1948. Cybernetics: Or Control and Communication in the Animal and the Machine Paris: Hermann & Cie Cambridge, MA: MIT Press [Google Scholar]
  17. Briese E. 17.  1998. Normal body temperature of rats: the setpoint controversy. Neurosci. Biobehav. Rev. 22:427–36 [Google Scholar]
  18. Romanovsky AA. 18.  2007. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol 292R37–46Proposed a new theoretical framework for thermoregulation. [Google Scholar]
  19. McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ. 19.  2010. Multiple thermoregulatory effectors with independent central controls. Eur. J. Appl. Physiol. 109:27–33 [Google Scholar]
  20. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. 20.  2001. Effects of size and temperature on metabolic rate. Science 293:2248–51 [Google Scholar]
  21. Morrison SF, Madden CJ, Tupone D. 21.  2014. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19:741–56 [Google Scholar]
  22. Morrison SF. 22.  2011. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central neural pathways for thermoregulatory cold defense. J. Appl. Physiol. 110:1137–49 [Google Scholar]
  23. Nakamura K, Morrison SF. 23.  2010. A thermosensory pathway mediating heat-defense responses. PNAS 107:8848–53 [Google Scholar]
  24. Cliff MA, Green BG. 24.  1996. Sensitization and desensitization to capsaicin and menthol in the oral cavity: interactions and individual differences. Physiol. Behav. 59:487–94 [Google Scholar]
  25. Wang H, Siemens J. 25.  2015. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature 2:178–87 [Google Scholar]
  26. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA. 26.  et al. 2002. A TRP channel that senses cold stimuli and menthol. Cell 108:705–15 [Google Scholar]
  27. Chen J. 27.  2015. The evolutionary divergence of TRPA1 channel: heat-sensitive, cold-sensitive and temperature-insensitive. Temperature 2:158–59 [Google Scholar]
  28. Szolcsányi J. 28.  2015. Effect of capsaicin on thermoregulation: an update with new aspects. Temperature 2:277–96 [Google Scholar]
  29. Morrison SF, Nakamura K. 29.  2011. Central neural pathways for thermoregulation. Front. Biosci. 16:74–104 [Google Scholar]
  30. Nakamura K, Morrison SF. 30.  2008. A thermosensory pathway that controls body temperature. Nat. Neurosci. 11:62–71 [Google Scholar]
  31. Boulant JA. 31.  1998. Hypothalamic neurons. Mechanisms of sensitivity to temperature. Ann. N.Y. Acad. Sci. 856:108–15 [Google Scholar]
  32. Schmieg G, Mercer JB, Jessen C. 32.  1980. Thermosensitivity of the extrahypothalamic brain stem in conscious goats. Brain Res 188:383–97 [Google Scholar]
  33. Kobayashi S, Murakami N. 33.  1982. Thermosensitive neurons in slice preparations of rat medulla oblongata. Brain Res. Bull. 8:721–26 [Google Scholar]
  34. Xue Y, Yang Y, Tang Y, Ye M, Xu J. 34.  et al. 2016. In vitro thermosensitivity of rat lateral parabrachial neurons. Neurosci. Lett. 619:15–20 [Google Scholar]
  35. Boulant JA. 35.  2000. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin. Infect. Dis. 31:Suppl. 5S157–61 [Google Scholar]
  36. Glotzbach SF, Heller HC. 36.  1976. Central nervous regulation of body temperature during sleep. Science 194537–39A key experiment showing that during REM sleep, central thermosensibility is inhibited. [Google Scholar]
  37. Fuller CA, Horwitz BA, Horowitz JM. 37.  1975. Shivering and nonshivering thermogenic responses of cold-exposed rats to hypothalamic warming. Am. J. Physiol. 228:1519–24 [Google Scholar]
  38. Wechselberger M, Wright CL, Bishop GA, Boulant JA. 38.  2006. Ionic channels and conductance-based models for hypothalamic neuronal thermosensitivity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R518–29 [Google Scholar]
  39. Eberwine J, Bartfai T. 39.  2011. Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response: signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol. Ther. 129:241–59 [Google Scholar]
  40. Mittag J, Lyons DJ, Sällström J, Vujovic M, Dudazy-Gralla S. 40.  et al. 2013. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. J. Clin. Investig. 123:509–16 [Google Scholar]
  41. Yakimova KS, Sann H, Pierau FK. 41.  1996. Neuronal basis for the hyperthermic effect of μ-opioid agonists in rats: decrease in temperature sensitivity of warm-sensitive hypothalamic neurons. Neurosci. Lett. 218:115–18 [Google Scholar]
  42. Yoshida K, Nakamura K, Matsumura K, Kanosue K, Konig M. 42.  et al. 2003. Neurons of the rat preoptic area and the raphe pallidus nucleus innervating the brown adipose tissue express the prostaglandin E receptor subtype EP3. Eur. J. Neurosci. 18:1848–60 [Google Scholar]
  43. Ranels HJ, Griffin JD. 43.  2003. The effects of prostaglandin E2 on the firing rate activity of thermosensitive and temperature insensitive neurons in the ventromedial preoptic area of the rat hypothalamus. Brain Res 964:42–50 [Google Scholar]
  44. Rusyniak DE, Zaretsky DV, Zaretskaia MV, DiMicco JA. 44.  2011. The role of orexin-1 receptors in physiologic responses evoked by microinjection of PgE2 or muscimol into the medial preoptic area. Neurosci. Lett. 498:162–66 [Google Scholar]
  45. Berner NJ, Heller HC. 45.  1998. Does the preoptic anterior hypothalamus receive thermoafferent information?. Am. J. Physiol. 274:R9–18 [Google Scholar]
  46. McAllen RM, May CN, Shafton AD. 46.  1995. Functional anatomy of sympathetic premotor cell groups in the medulla. Clin. Exp. Hypertens. 17:209–21 [Google Scholar]
  47. Nakamura K, Matsumura K, Hubschle T, Nakamura Y, Hioki H. 47.  et al. 2004. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J. Neurosci. 24:5370–80 [Google Scholar]
  48. Stornetta RL, Rosin DL, Simmons JR, McQuiston TJ, Vujovic N. 48.  et al. 2005. Coexpression of vesicular glutamate transporter-3 and gamma-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J. Comp. Neurol. 492:477–94 [Google Scholar]
  49. Cano G, Passerin AM, Schiltz JC, Card JP, Morrison SF, Sved AF. 49.  2003. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 460:303–26 [Google Scholar]
  50. Nguyen NL, Randall J, Banfield BW, Bartness TJ. 50.  2014. Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306:R375–86 [Google Scholar]
  51. Kalsbeek A, Fliers E, Franke AN, Wortel J, Buijs RM. 51.  2000. Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 141:3832–41 [Google Scholar]
  52. Kalsbeek A, La Fleur S, Van Heijningen C, Buijs RM. 52.  2004. Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J. Neurosci. 24:7604–13 [Google Scholar]
  53. Standish A, Enquist LW, Escardo JA, Schwaber JS. 53.  1995. Central neuronal circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus. J. Neurosci. 15:1998–2012 [Google Scholar]
  54. Ter Horst GJ, Van den Brink A, Homminga SA, Hautvast RW, Rakhorst G. 54.  et al. 1993. Transneuronal viral labelling of rat heart left ventricle controlling pathways. Neuroreport 4:1307–10 [Google Scholar]
  55. Morrison SF, Cao WH. 55.  2000. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:R1763–75 [Google Scholar]
  56. Huang J, Weiss ML. 56.  1999. Characterization of the central cell groups regulating the kidney in the rat. Brain Res 845:77–91 [Google Scholar]
  57. Denes A, Boldogkoi Z, Uhereczky G, Hornyak A, Rusvai M. 57.  et al. 2005. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience 134:947–63 [Google Scholar]
  58. Billig I, Foris JM, Card JP, Yates BJ. 58.  1999. Transneuronal tracing of neural pathways controlling an abdominal muscle, rectus abdominis, in the ferret. Brain Res 820:31–44 [Google Scholar]
  59. Streefland C, Maes FW, Bohus B. 59.  1998. Autonomic brainstem projections to the pancreas: a retrograde transneuronal viral tracing study in the rat. J. Auton. Nerv. Syst. 74:71–81 [Google Scholar]
  60. Morrison SF, Sved AF, Passerin AM. 60.  1999. GABA-mediated inhibition of raphe pallidus neurons regulates sympathetic outflow to brown adipose tissue. Am. J. Physiol. 276:R290–97The first paper showing that neurons within the raphe pallidus can drive thermogenesis. [Google Scholar]
  61. Cerri M, Zamboni G, Tupone D, Dentico D, Luppi M. 61.  et al. 2010. Cutaneous vasodilation elicited by disinhibition of the caudal portion of the rostral ventromedial medulla of the free-behaving rat. Neuroscience 165:984–95 [Google Scholar]
  62. Cao WH, Morrison SF. 62.  2006. Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons. Neuropharmacology 51:426–37 [Google Scholar]
  63. Madden CJ, Morrison SF. 63.  2009. Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296:R831–43 [Google Scholar]
  64. Jeong JH, Lee DK, Blouet C, Ruiz HH, Buettner C. 64.  et al. 2015. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism. Mol. Metab. 4:483–92 [Google Scholar]
  65. Madden CJ, Morrison SF. 65.  2005. Hypoxic activation of arterial chemoreceptors inhibits sympathetic outflow to brown adipose tissue in rats. J. Physiol. 566:559–73 [Google Scholar]
  66. Tupone D, Madden CJ, Cano G, Morrison SF. 66.  2011. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J. Neurosci. 31:15944–55 [Google Scholar]
  67. Cerri M, Del Vecchio F, Mastrotto M, Luppi M, Martelli D. 67.  et al. 2014. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLOS ONE 9:e112849 [Google Scholar]
  68. Doris PA, Baker MA. 68.  1981. Effects of dehydration on thermoregulation in cats exposed to high ambient temperatures. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 51:46–54 [Google Scholar]
  69. McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D. 69.  2015. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol 214:8–32 [Google Scholar]
  70. Hill RD, Schneider RC, Liggins GC, Schuette AH, Elliott RL. 70.  et al. 1987. Heart rate and body temperature during free diving of Weddell seals. Am. J. Physiol. 253:R344–51 [Google Scholar]
  71. Cadena V, Tattersall GJ. 71.  2016. Body temperature regulation during acclimation to cold and hypoxia in rats. J. Therm. Biol. 46:56–64 [Google Scholar]
  72. Del Vecchio F, Nalivaiko E, Cerri M, Luppi M, Amici R. 72.  2014. Provocative motion causes fall in brain temperature and affects sleep in rats. Exp. Brain Res. 232:2591–99 [Google Scholar]
  73. Parmeggiani PL. 73.  2003. Thermoregulation and sleep. Front. Biosci. 8:s557–67 [Google Scholar]
  74. Aserinsky E, Kleitman N. 74.  1953. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–74 [Google Scholar]
  75. Krauchi K. 75.  2007. The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment. Sleep Med. Rev 11439–51 [Google Scholar]
  76. Van Someren EJ. 76.  2004. Thermoregulation as a sleep signaling system. Sleep Med. Rev 8327–28 [Google Scholar]
  77. Alfoldi P, Rubicsek G, Cserni G, Obal F. 77.  1990. Brain and core temperatures and peripheral vasomotion during sleep and wakefulness at various ambient temperatures in the rat. Pflugers Arch 417:336–41 [Google Scholar]
  78. Brebbia DR, Altshuler KZ. 78.  1965. Oxygen consumption rate and electroencephalographic stage of sleep. Science 150:1621–23 [Google Scholar]
  79. Heller HC, Ruby NF. 79.  2004. Sleep and circadian rhythms in mammalian torpor. Annu. Rev. Physiol. 66:275–89 [Google Scholar]
  80. Schmidt MH. 80.  2014. The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness. Neurosci. Biobehav. Rev. 47:122–53 [Google Scholar]
  81. Raymann RJ, Swaab DF, Van Someren EJ. 81.  2007. Skin temperature and sleep-onset latency: changes with age and insomnia. Physiol. Behav. 90:257–66 [Google Scholar]
  82. Krauchi K, Deboer T. 82.  2010. The interrelationship between sleep regulation and thermoregulation. Front. Biosci. 15:604–25 [Google Scholar]
  83. Romeijn N, Raymann RJ, Møst E, Te Lindert B, Van Der Meijden WP. 83.  et al. 2012. Sleep, vigilance, and thermosensitivity. Pflugers Arch 463:169–76 [Google Scholar]
  84. Krauchi K, Cajochen C, Werth E, Wirz-Justice A. 84.  1999. Warm feet promote the rapid onset of sleep. Nature 401:36–37 [Google Scholar]
  85. Cerri M, Ocampo-Garces A, Amici R, Baracchi F, Capitani P. 85.  et al. 2005. Cold exposure and sleep in the rat: effects on sleep architecture and the electroencephalogram. Sleep 28:694–705 [Google Scholar]
  86. Parmeggiani PL, Rabini C. 86.  1967. Shivering and panting during sleep. Brain Res 6:789–91 [Google Scholar]
  87. Parmeggiani PL, Azzaroni A, Cevolani D, Ferrari G. 87.  1983. Responses of anterior hypothalamic-preoptic neurons to direct thermal stimulation during wakefulness and sleep. Brain Res 269:382–85 [Google Scholar]
  88. Alam MN, McGinty D, Szymusiak R. 88.  1995. Preoptic/anterior hypothalamic neurons: thermosensitivity in rapid eye movement sleep. Am. J. Physiol. 269:R1250–57 [Google Scholar]
  89. Melvin RG, Andrews MT. 89.  2009. Torpor induction in mammals: recent discoveries fueling new ideas. Trends Endocrinol. Metab. 20:490–98 [Google Scholar]
  90. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G. 90.  2004. Physiology: hibernation in a tropical primate. Nature 429:825–26The first study of a hibernating primate. [Google Scholar]
  91. Heldmaier G, Ortmann S, Elvert R. 91.  2004. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141:317–29 [Google Scholar]
  92. Geiser F. 92.  2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66:239–74 [Google Scholar]
  93. Barnes BM. 93.  1989. Freeze avoidance in a mammal: body temperatures below 0 degree C in an Arctic hibernator. Science 244:1593–95 [Google Scholar]
  94. Arnold W, Heldmaier G, Ortmann S, Pohl H, Ruf T, Steinlechner S. 94.  1991. Ambient temperatures in hibernacula and their energetic consequences for alpine marmots (Marmota marmota). J. Therm. Biol. 16:223–26 [Google Scholar]
  95. Buck CL, Barnes BM. 95.  2000. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:R255–62 [Google Scholar]
  96. Grimpo K, Legler K, Heldmaier G, Exner C. 96.  2013. That's hot: golden spiny mice display torpor even at high ambient temperatures. J. Comp. Physiol. B 183:567–81The only study showing torpor at high temperature. [Google Scholar]
  97. Heldmaier G, Ruf T. 97.  1992. Body temperature and metabolic rate during natural hypothermia in endotherms. J. Comp. Physiol. B 162:696–706 [Google Scholar]
  98. Iliff BW, Swoap SJ. 98.  2012. Central adenosine receptor signaling is necessary for daily torpor in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303:R477–84 [Google Scholar]
  99. Jinka TR, Toien O, Drew KL. 99.  2011. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors. J. Neurosci. 31:10752–58 [Google Scholar]
  100. Tupone D, Madden CJ, Morrison SF. 100.  2013. Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J. Neurosci. 33:14512–25A study that induced synthetic torpor by activating the central adenosine A1 receptor. [Google Scholar]
  101. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjørkum AA, Greene RW, McCarley RW. 101.  1997. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–68 [Google Scholar]
  102. Zhang J, Kaasik K, Blackburn MR, Lee CC. 102.  2006. Constant darkness is a circadian metabolic signal in mammals. Nature 439:340–43 [Google Scholar]
  103. Swoap SJ, Rathvon M, Gutilla M. 103.  2007. AMP does not induce torpor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R468–73 [Google Scholar]
  104. Blackstone E, Morrison M, Roth MB. 104.  2005. H2S induces a suspended animation-like state in mice. Science 308:518 [Google Scholar]
  105. Cerri M, Mastrotto M, Tupone D, Martelli D, Luppi M. 105.  et al. 2013. The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat. J. Neurosci. 33:2984–93This study induced synthetic torpor for the first time in a nonhibernator. [Google Scholar]
  106. Dugbartey GJ, Bouma HR, Strijkstra AM, Boerema AS, Henning RH. 106.  2015. Induction of a torpor-like state by 5′-AMP does not depend on H2S production. PLOS ONE 10:e0136113 [Google Scholar]
  107. Staples JF. 107.  2016. Metabolic flexibility: hibernation, torpor, and estivation. Compr. Physiol. 6:737–71 [Google Scholar]
  108. Brown JC, Chung DJ, Cooper AN, Staples JF. 108.  2013. Regulation of succinate-fuelled mitochondrial respiration in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. J. Exp. Biol. 216:1736–43 [Google Scholar]
  109. Kondo N, Sekijima T, Kondo J, Takamatsu N, Tohya K, Ohtsu T. 109.  2006. Circannual control of hibernation by HP complex in the brain. Cell 125:161–72 [Google Scholar]
  110. Hochachka PW. 110.  1986. Defense strategies against hypoxia and hypothermia. Science 231:234–41 [Google Scholar]
  111. Kiss T, Battonyai I, Pirger Z. 111.  2014. Down regulation of sodium channels in the central nervous system of hibernating snails. Physiol. Behav. 131:93–98 [Google Scholar]
  112. Beauchamp RO Jr., Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA. 112.  1984. A critical review of the literature on hydrogen sulfide toxicity. Crit. Rev. Toxicol. 13:25–97 [Google Scholar]
  113. Blackstone E, Roth MB. 113.  2007. Suspended animation-like state protects mice from lethal hypoxia. Shock 27:370–72 [Google Scholar]
  114. Volpato GP, Searles R, Yu B, Scherrer-Crosbie M, Bloch KD. 114.  et al. 2008. Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse. Anesthesiology 108:659–68 [Google Scholar]
  115. Lou LX, Geng B, Du JB, Tang CS. 115.  2008. Hydrogen sulphide-induced hypothermia attenuates stress-related ulceration in rats. Clin. Exp. Pharmacol. Physiol. 35:223–28 [Google Scholar]
  116. Li J, Zhang G, Cai S, Redington AN. 116.  2008. Effect of inhaled hydrogen sulfide on metabolic responses in anesthetized, paralyzed, and mechanically ventilated piglets. Pediatr. Crit. Care Med. 9:110–12 [Google Scholar]
  117. Drabek T, Kochanek PM, Stezoski J, Wu X, Bayir H. 117.  et al. 2011. Intravenous hydrogen sulfide does not induce hypothermia or improve survival from hemorrhagic shock in pigs. Shock 35:67–73 [Google Scholar]
  118. Haouzi P, Notet V, Chenuel B, Chalon B, Sponne I. 118.  et al. 2008. H2S induced hypometabolism in mice is missing in sedated sheep. Respir. Physiol. Neurobiol. 160:109–15 [Google Scholar]
  119. Dirkes MC, Milstein DM, Heger M, van Gulik TM. 119.  2015. Absence of hydrogen sulfide-induced hypometabolism in pigs: a mechanistic explanation in relation to small nonhibernating mammals. Eur. Surg. Res. 54:178–91 [Google Scholar]
  120. Talaei F, Bouma HR, Van der Graaf AC, Strijkstra AM, Schmidt M, Henning RH. 120.  2011. Serotonin and dopamine protect from hypothermia/rewarming damage through the CBS/H2S pathway. PLOS ONE 6:e22568 [Google Scholar]
  121. Zaretsky DV, Zaretskaia MV, DiMicco JA. 121.  2003. Stimulation and blockade of GABAA receptors in the raphe pallidus: effects on body temperature, heart rate, and blood pressure in conscious rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R110–16 [Google Scholar]
  122. Fan W, Morrison SF, Cao WH, Yu P. 122.  2007. Thermogenesis activated by central melanocortin signaling is dependent on neurons in the rostral raphe pallidus (rRPa) area. Brain Res 1179:61–69 [Google Scholar]
  123. Blessing WW. 123.  2003. Lower brainstem pathways regulating sympathetically mediated changes in cutaneous blood flow. Cell Mol. Neurobiol. 23:527–38 [Google Scholar]
  124. Brown JW, Sirlin EA, Benoit AM, Hoffman JM, Darnall RA. 124.  2008. Activation of 5-HT1A receptors in medullary raphe disrupts sleep and decreases shivering during cooling in the conscious piglet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:R884–94 [Google Scholar]
  125. McAllen RM, Farrell M, Johnson JM, Trevaks D, Cole L. 125.  et al. 2006. Human medullary responses to cooling and rewarming the skin: a functional MRI study. PNAS 103:809–13The only brain imaging study showing the cold-induced activation of the raphe pallidus in humans. [Google Scholar]
  126. Jinka TR, Combs VM, Drew KL. 126.  2015. Translating drug-induced hibernation to therapeutic hypothermia. ACS Chem. Neurosci. 6:899–904 [Google Scholar]
  127. Almeida MC, Hew-Butler T, Soriano RN, Rao S, Wang W. 127.  et al. 2012. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J. Neurosci. 32:2086–99 [Google Scholar]
  128. Feketa VV, Marrelli SP. 128.  2015. Induction of therapeutic hypothermia by pharmacological modulation of temperature-sensitive TRP channels: theoretical framework and practical considerations. Temperature 2:244–57 [Google Scholar]
  129. Margules DL, Goldman B, Finck A. 129.  1979. Hibernation: an opioid-dependent state?. Brain Res. Bull. 4:721–4 [Google Scholar]
  130. Sakurai T. 130.  2014. The role of orexin in motivated behaviours. Nat. Rev. Neurosci. 15:719–31 [Google Scholar]
  131. Gluck EF, Stephens N, Swoap SJ. 131.  2006. Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R1303–9 [Google Scholar]
  132. Paul MJ, Freeman DA, Park JH, Dark J. 132.  2005. Neuropeptide Y induces torpor-like hypothermia in Siberian hamsters. Brain Res 1055:83–92 [Google Scholar]
  133. Han Z, Liu X, Luo Y, Ji X. 133.  2015. Therapeutic hypothermia for stroke: Where to go?. Exp. Neurol. 272:67–77 [Google Scholar]
  134. Seymour CW, Rosengart MR. 134.  2015. Septic shock: advances in diagnosis and treatment. JAMA 314:708–17 [Google Scholar]
  135. Angus DC, van der Poll T. 135.  2013. Severe sepsis and septic shock. N. Engl. J. Med. 369:840–51 [Google Scholar]
  136. von der Ohe CG, Darian-Smith C, Garner CC, Heller HC. 136.  2006. Ubiquitous and temperature-dependent neural plasticity in hibernators. J. Neurosci. 26:10590–98The first paper to show synaptic retraction during hibernation. [Google Scholar]
  137. von der Ohe CG, Garner CC, Darian-Smith C, Heller HC. 137.  2007. Synaptic protein dynamics in hibernation. J. Neurosci. 27:84–92 [Google Scholar]
  138. Daan S, Barnes BM, Strijkstra AM. 138.  1991. Warming up for sleep? Ground squirrels sleep during arousals from hibernation. Neurosci. Lett. 128:265–68 [Google Scholar]
  139. Peretti D, Bastide A, Radford H, Verity N, Molloy C. 139.  et al. 2015. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 518:236–39 [Google Scholar]
  140. Arendt T, Bullmann T. 140.  2013. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a “master switch” regulating synaptic gain in neuronal networks. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305:R478–89 [Google Scholar]
  141. Bouma HR, Kroese FG, Kok JW, Talaei F, Boerema AS. 141.  et al. 2011. Low body temperature governs the decline of circulating lymphocytes during hibernation through sphingosine-1-phosphate. PNAS 108:2052–57 [Google Scholar]
  142. Musacchia XJ, Barr RE. 142.  1968. Survival of whole-body-irradiated hibernating and active ground squirrels;. Citellus tridecemlineatus. Radiat. Res. 33:348–56 [Google Scholar]
  143. Gemignani J, Gheysens T, Summerer L. 143.  2015. Beyond astronauts’ capabilities: the current state of the art. Conf. Proc. IEEE Eng. Med. Biol. Soc 20153615–18 [Google Scholar]
  144. Oizumi M, Albantakis L, Tononi G. 144.  2014. From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLOS Comput. Biol. 10:e1003588 [Google Scholar]
  145. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. 145.  2005. Breakdown of cortical effective connectivity during sleep. Science 309:2228–32 [Google Scholar]
  146. Magnifico F, Pierangeli G, Barletta G, Candela C, Montagna P. 146.  et al. 2002. Paroxysmal episodic central thermoregulatory failure. Neurology 58:1300–2The best described case of spontaneous torpor in humans. [Google Scholar]
  147. Lee CC. 147.  2008. Is human hibernation possible?. Annu. Rev. Med. 59:177–86 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error