Although superthin filaments were inferred from early experiments on muscle, decades passed before their existence was accepted. Phylogenetic analyses suggest that titin, the largest known protein, first appeared in the common ancestor of chordates and nematodes and evolved rapidly via duplication. Twitchin and projectin evolved later by truncation. Sallimus mutants in exhibit disrupted sarcomere and chromosome structure, suggesting that giant proteins may have evolved as chromosomal scaffolds that were co-opted for a similar purpose in striated muscles. Though encoded by only one gene, titin comprises hundreds of exons and has the potential for enormous diversity. Shorter isoforms typically confer greater passive stiffness associated with smaller in vivo muscle strains. Recent studies demonstrate unequivocally that titin stiffness increases upon muscle activation, but the mechanisms are only now being uncovered. Although some basic principles have been established, a vast opportunity remains to extend our understanding of titin function in striated muscle.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Maruyama K. 1.  1976. Connectin, an elastic protein from myofibrils. J. Biochem. 80:405–7 [Google Scholar]
  2. Latta H, Hartmann JF. 2.  1950. Use of a glass edge in thin sectioning for electron microscopy. Proc. Soc. Exp. Biol. Med. 74:436–39 [Google Scholar]
  3. Palade GE. 3.  1952. A study of fixation for electron microscopy. J. Exp. Med. 95:285–98 [Google Scholar]
  4. Hanson J, Huxley HE. 4.  1953. Structural basis of the cross-striations in muscle. Nature 172:530–32 [Google Scholar]
  5. Huxley HE. 5.  1953. Electron microscope studies of the organisation of the filaments in striated muscle. Biochim. Biophys. Acta 12:387–94 [Google Scholar]
  6. Huxley AF, Niedergerke R. 6.  1954. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173:971–73 [Google Scholar]
  7. Huxley H, Hanson J. 7.  1954. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–76 [Google Scholar]
  8. Maruyama K. 8.  1995. Birth of the sliding filament concept in muscle contraction. J. Biochem. 117:1–6 [Google Scholar]
  9. Rall JA. 9.  2014. Mechanism of Muscular Contraction New York: Springer/Am. Physiol. Soc.
  10. Hanson J, Huxley HE. 10.  1957. Quantitative studies on the structure of cross-striated myofibrils. II. Investigations by biochemical techniques. Biochim. Biophys. Acta 23:250–60 [Google Scholar]
  11. McNeill PF, Hoyle G. 11.  1967. Evidence for superthin filaments. Am. Zoologist 7:483–98 [Google Scholar]
  12. Sjöstrand FS. 12.  1962. The connections between A- and I-band filaments in striated frog muscle. J. Ultrastruct. Res. 7:225–46 [Google Scholar]
  13. Huxley HE. 13.  1964. Structural arrangements and the contraction mechanism in striated muscle. Proc. R. Soc. Lond. B 160:442–48 [Google Scholar]
  14. Hanson J. 14.  1968. Recent X-ray diffraction studies of muscle. Q. Rev. Biophys. 1:177–216 [Google Scholar]
  15. Trombitas K, Freiburg A, Greaser M, Labeit S, Granzier H. 15.  2000. From connecting filaments to co-expression of titin isoforms. Adv. Exp. Med. Biol. 481:405–18 [Google Scholar]
  16. Fürst DO, Osborn M, Nave R, Weber K. 16.  1988. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J. Cell Biol. 106:1563–72 [Google Scholar]
  17. Wang K, McClure J, Tu A. 17.  1979. Titin: major myofibrillar components of striated muscle. PNAS 76:3698–702 [Google Scholar]
  18. Maruyama K, Kimura S, Ohashi K, Kuwano Y. 18.  1981. Connectin, an elastic protein of muscle. Identification of “titin” with connectin. J. Biochem. 89:701–9 [Google Scholar]
  19. Hooper SL, Thuma JB. 19.  2005. Invertebrate muscles: muscle specific genes and proteins. Physiol. Rev. 85:1001–60 [Google Scholar]
  20. Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M. 20.  et al. 2001. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ. Res. 89:1065–72 [Google Scholar]
  21. Wang K, Ramirez-Mitchell R, Palter D. 21.  1984. Titin is an extraordinarily long, flexible, and slender myofibrillar protein. PNAS 81:3685–89 [Google Scholar]
  22. Labeit S, Kolmerer B. 22.  1995. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–96 [Google Scholar]
  23. Muhle-Goll C, Habeck M, Cazorla O, Nilges M, Labeit S, Granzier H. 23.  2001. Structural and functional studies of titin's fn3 modules reveal conserved surface patterns and binding to myosin S1—a possible role in the Frank-Starling mechanism of the heart. J. Mol. Biol. 313:431–47 [Google Scholar]
  24. Bennett PM, Hodkin TE, Hawkins C. 24.  1997. Evidence that the tandem Ig domains near the end of the muscle thick filament form an inelastic part of the I-band titin. J. Struct. Biol. 120:93–104 [Google Scholar]
  25. Gregorio CC, Granzier H, Sorimachi H, Labeit S. 25.  1999. Muscle assembly: A titanic achievement?. Curr. Opin. Cell Biol. 11:18–25 [Google Scholar]
  26. Bullard B, Linke WA, Leonard K. 26.  2002. Varieties of elastic protein in invertebrate muscles. J. Muscle Res. Cell Motil. 23:435–47 [Google Scholar]
  27. Gautel M. 27.  1996. The super-repeats of titin/connectin and their interactions: glimpses at sarcomeric assembly. Adv. Biophys. 33:27–37 [Google Scholar]
  28. Higgins DG, Labeit S, Gautel M, Gibson TJ. 28.  1994. The evolution of titin and related giant muscle proteins. J. Mol. Evol. 38:395–404 [Google Scholar]
  29. Ziegler C. 29.  1994. Titin-related proteins in invertebrate muscles. Comp. Biochem. Physiol. A Physiol. 109:823–33 [Google Scholar]
  30. Steinmetz PR, Kraus JE, Larroux C, Hammel JU, Amon-Hassenzahl A. 30.  et al. 2012. Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487:231–34 [Google Scholar]
  31. Bullard B, Leake MC, Leonard K. 31.  2006. Some functions of proteins from the Drosophila sallimus (sls) gene. Nature's Versatile Engine: Insect Flight Muscle Inside and Out J Vigoreaux 177–84 Georgetown, TX: Landes Bioscience [Google Scholar]
  32. Burkholder TJ, Lieber RL. 32.  2001. Sarcomere length operating range of vertebrate muscles during movement. J. Exp. Biol. 204:1529–36 [Google Scholar]
  33. Guo W, Bharmal SJ, Esbona K, Greaser ML. 33.  2010. Titin diversity—alternative splicing gone wild. J. Biomed. Biotechnol. 2010:753675 [Google Scholar]
  34. Ohtsuka S, Hanashima A, Kubokawa K, Bao Y, Tando Y. 34.  et al. 2011. Amphioxus connectin exhibits merged structure as invertebrate connectin in I-band region and vertebrate connectin in A-band region. J. Mol. Biol. 409:415–26 [Google Scholar]
  35. Hanashima A, Ogasawara M, Nomiya Y, Sasaki T, Bao Y, Kimura S. 35.  2012. Genomic- and protein-based approaches for connectin (titin) identification in the ascidian Ciona intestinalis. Methods 56:18–24 [Google Scholar]
  36. Kenny PA, Liston EM, Higgins DG. 36.  1999. Molecular evolution of immunoglobulin and fibronectin domains in titin and related muscle proteins. Gene 232:11–23 [Google Scholar]
  37. Flaherty DB, Gernert KM, Shmeleva N, Tang X, Mercer KB. 37.  et al. 2002. Titins in C. elegans with unusual features: coiled-coil domains, novel regulation of kinase activity and two new possible elastic regions. J. Mol. Biol. 323:533–49 [Google Scholar]
  38. Machado C, Andrew DJ. 38.  2000. D-titin: a giant protein with dual roles in chromosomes and muscles. J. Cell Biol. 151:639–52 [Google Scholar]
  39. Machado C, Sunkel CE, Andrew DJ. 39.  1998. Human autoantibodies reveal titin as a chromosomal protein. J. Cell Biol. 141:321–33 [Google Scholar]
  40. Zastrow MS, Flaherty DB, Benian GM, Wilson KL. 40.  2006. Nuclear titin interacts with A- and B-type lamins in vitro and in vivo. J. Cell Sci. 119:239–49 [Google Scholar]
  41. Takata H, Uchiyama S, Nakamura N, Nakashima S, Kobayashi S. 41.  et al. 2007. A comparative proteome analysis of human metaphase chromosomes isolated from two different cell lines reveals a set of conserved chromosome-associated proteins. Genes Cells 12:269–84 [Google Scholar]
  42. Houchmandzadeh B, Dimitrov S. 42.  1999. Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes. J. Cell Biol. 145:215–23 [Google Scholar]
  43. Labbé JP. 43.  2005. Élasticité du centromère. [Centromere elasticity]. Med. Sci. 21:261–66 [Google Scholar]
  44. Buck D, Smith JE 3rd, Chung CS, Ono Y, Sorimachi H. 44.  et al. 2014. Removal of immunoglobulin-like domains from titin's spring segment alters titin splicing in mouse skeletal muscle and causes myopathy. J. Gen. Physiol. 143:215–30 [Google Scholar]
  45. Guo W, Schafer S, Greaser ML, Radke MH, Liss M. 45.  et al. 2012. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18:766–73 [Google Scholar]
  46. Li S, Guo W, Dewey CN, Greaser ML. 46.  2013. RBM20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res 41:2659–72 [Google Scholar]
  47. Neagoe C, Opitz CA, Makarenko I, Linke WA. 47.  2003. Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J. Muscle Res. Cell Motil. 24:175–89 [Google Scholar]
  48. Prado LG, Makarenko I, Andresen C, Kruger M, Opitz CA, Linke WA. 48.  2005. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J. Gen. Physiol. 126:461–80 [Google Scholar]
  49. Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F. 49.  et al. 2000. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ. Res. 86:1114–21 [Google Scholar]
  50. Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA. 50.  2004. Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ. Res. 94:967–75 [Google Scholar]
  51. Ottenheijm CA, Knottnerus AM, Buck D, Luo X, Greer K. 51.  et al. 2009. Tuning passive mechanics through differential splicing of titin during skeletal muscle development. Biophys. J. 97:2277–86 [Google Scholar]
  52. Yin Z, Ren J, Guo W. 52.  2015. Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim. Biophys. Acta 1852:47–52 [Google Scholar]
  53. Lindstedt SL, Reich TE, Keim P, LaStayo PC. 53.  2002. Do muscles function as adaptable locomotor springs?. J. Exp. Biol. 205:2211–16 [Google Scholar]
  54. Reich TE, Lindstedt SL, LaStayo PC, Pierotti DJ. 54.  2000. Is the spring quality of muscle plastic?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R1661–66 [Google Scholar]
  55. Granzier HL, Wang K. 55.  1993. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys. J. 65:2141–59 [Google Scholar]
  56. Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B. 56.  1998. Nature of PEVK-titin elasticity in skeletal muscle. PNAS 95:8052–57 [Google Scholar]
  57. Gautel M, Goulding D. 57.  1996. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 385:11–14 [Google Scholar]
  58. Granzier HL, Labeit S. 58.  2004. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ. Res. 94:284–95 [Google Scholar]
  59. Linke WA, Bartoo ML, Ivemeyer M, Pollack GH. 59.  1996. Limits of titin extension in single cardiac myofibrils. J. Muscle Res. Cell Motil. 17:425–38 [Google Scholar]
  60. Linke WA, Granzier H. 60.  1998. A spring tale: new facts on titin elasticity. Biophys. J. 75:2613–14 [Google Scholar]
  61. Trombitas K, Greaser M, French G, Granzier H. 61.  1998. PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti-titin antibody 9D10. J. Struct. Biol. 122:188–96 [Google Scholar]
  62. Kellermayer MS, Granzier HL. 62.  1996. Elastic properties of single titin molecules made visible through fluorescent F-actin binding. Biochem. Biophys. Res. Commun. 221:491–97 [Google Scholar]
  63. Tskhovrebova L, Trinick J. 63.  1997. Direct visualization of extensibility in isolated titin molecules. J. Mol. Biol. 265:100–6 [Google Scholar]
  64. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R. 64.  1991. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. PNAS 88:7101–5 [Google Scholar]
  65. Anderson BR, Granzier HL. 65.  2012. Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations. Prog. Biophys. Mol. Biol. 110:204–17 [Google Scholar]
  66. Bullard B, Garcia T, Benes V, Leake MC, Linke WA, Oberhauser AF. 66.  2006. The molecular elasticity of the insect flight muscle proteins projectin and kettin. PNAS 103:4451–56 [Google Scholar]
  67. Burkart C, Qiu F, Brendel S, Benes V, Haag P. 67.  et al. 2007. Modular proteins from the Drosophila sallimus (sls) gene and their expression in muscles with different extensibility. J. Mol. Biol. 367:953–69 [Google Scholar]
  68. Spierts IL, Akster HA, Granzier HL. 68.  1997. Expression of titin isoforms in red and white muscle fibres of carp (Cyprinus carpio L.) exposed to different sarcomere strains during swimming. J. Comp. Physiol. B 167:543–51 [Google Scholar]
  69. Spierts IL, Leeuwen JL. 69.  1999. Kinematics and muscle dynamics of C- and S-starts of carp (Cyprinus carpio L.). J. Exp. Biol. 202:393–406 [Google Scholar]
  70. Lindstedt SL, Nishikawa KC. 70.  2015. From Tusko to Titin: the role for comparative physiology in an era of molecular discovery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308:R983–89 [Google Scholar]
  71. Lindstedt SL. 71.  2016. Skeletal muscle tissue in movement and health: positives and negatives. J. Exp. Biol. 219:183–88 [Google Scholar]
  72. Fukuda N, Granzier H. 72.  2004. Role of the giant elastic protein titin in the Frank-Starling mechanism of the heart. Curr. Vasc. Pharmacol. 2:135–39 [Google Scholar]
  73. Lee EJ, Peng J, Radke M, Gotthardt M, Granzier HL. 73.  2010. Calcium sensitivity and the Frank-Starling mechanism of the heart are increased in titin N2B region-deficient mice. J. Mol. Cell Cardiol. 49:449–58 [Google Scholar]
  74. Kobirumaki-Shimozawa F, Inoue T, Shintani SA, Oyama K, Terui T. 74.  et al. 2014. Cardiac thin filament regulation and the Frank-Starling mechanism. J. Physiol. Sci. 64:221–32 [Google Scholar]
  75. Castro-Ferreira R, Fontes-Carvalho R, Falcão-Pires I, Leite-Moreira AF. 75.  2011. The role of titin in the modulation of cardiac function and its pathophysiological implications. Arq. Bras. Cardiol. 96:332–39 [Google Scholar]
  76. Nelson OL, Robbins CT. 76.  2015. Cardiovascular function in large to small hibernators: bears to ground squirrels. J. Comp. Physiol. B 185:265–79 [Google Scholar]
  77. Nelson OL, Robbins CT, Wu Y, Granzier H. 77.  2008. Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears. Am. J. Physiol. Heart Circ. Physiol. 294:H366–71 [Google Scholar]
  78. Nelson OL, Rourke BC. 78.  2013. Increase in cardiac myosin heavy-chain (MyHC) alpha protein isoform in hibernating ground squirrels, with echocardiographic visualization of ventricular wall hypertrophy and prolonged contraction. J. Exp. Biol. 216:4678–90 [Google Scholar]
  79. Patrick SM, Hoskins AC, Kentish JC, White E, Shiels HA, Cazorla O. 79.  2010. Enhanced length-dependent Ca2+ activation in fish cardiomyocytes permits a large operating range of sarcomere lengths. J. Mol. Cell Cardiol. 48:917–24 [Google Scholar]
  80. Tatsumi R, Maeda K, Hattori A, Takahashi K. 80.  2001. Calcium binding to an elastic portion of connectin/titin filaments. J. Muscle Res. Cell Motil. 22:149–62 [Google Scholar]
  81. Bagni MA, Cecchi G, Colombini B, Colomo F. 81.  2002. A non-cross-bridge stiffness in activated frog muscle fibers. Biophys. J. 82:3118–27 [Google Scholar]
  82. Bagni MA, Colombini B, Geiger P, Berlinguer Palmini R, Cecchi G. 82.  2004. Non-cross-bridge calcium-dependent stiffness in frog muscle fibers. Am. J. Physiol. Cell Physiol. 286:C1353–57 [Google Scholar]
  83. Campbell KS, Moss RL. 83.  2002. History-dependent mechanical properties of permeabilized rat soleus muscle fibers. Biophys. J. 82:929–43 [Google Scholar]
  84. Nocella M, Cecchi G, Bagni MA, Colombini B. 84.  2014. Force enhancement after stretch in mammalian muscle fiber: no evidence of cross-bridge involvement. Am. J. Physiol. Cell Physiol. 307:C1123–29 [Google Scholar]
  85. Rassier DE, Leite FS, Nocella M, Cornachione AS, Colombini B, Bagni MA. 85.  2015. Non-crossbridge forces in activated striated muscles: a titin dependent mechanism of regulation?. J. Muscle Res. Cell Motil. 36:37–45 [Google Scholar]
  86. Labeit D, Watanabe K, Witt C, Fujita H, Wu Y. 86.  et al. 2003. Calcium-dependent molecular spring elements in the giant protein titin. PNAS 100:13716–21 [Google Scholar]
  87. Campbell KS. 87.  2009. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle. PLOS Comput. Biol. 5:e1000560 [Google Scholar]
  88. Campbell SG, Campbell KS. 88.  2011. Mechanisms of residual force enhancement in skeletal muscle: insights from experiments and mathematical models. Biophys. Rev. 3:199–207 [Google Scholar]
  89. Herzog W. 89.  2014. The role of titin in eccentric muscle contraction. J. Exp. Biol. 217:2825–33 [Google Scholar]
  90. Minozzo FC, Lira CA. 90.  2013. Muscle residual force enhancement: a brief review. Clinics 68:269–74 [Google Scholar]
  91. Edman KA, Elzinga G, Noble MI. 91.  1976. Proceedings: force enhancement induced by stretch of contracting single isolated muscle fibres of the frog. J. Physiol. 258:95P–96P [Google Scholar]
  92. Edman KA, Tsuchiya T. 92.  1996. Strain of passive elements during force enhancement by stretch in frog muscle fibres. J. Physiol. 490:Pt. 1191–205 [Google Scholar]
  93. Leonard TR, Herzog W. 93.  2010. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction. Am. J. Physiol. Cell Physiol. 299:C14–20 [Google Scholar]
  94. Powers K, Schappacher-Tilp G, Jinha A, Leonard T, Nishikawa K, Herzog W. 94.  2014. Titin force is enhanced in actively stretched skeletal muscle. J. Exp. Biol. 217:3629–36 [Google Scholar]
  95. Granzier HL. 95.  2010. Activation and stretch-induced passive force enhancement—are you pulling my chain? Focus on “Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction.”. Am. J. Physiol. Cell Physiol. 299:C11–33 [Google Scholar]
  96. Rassier DE. 96.  2012. The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin. Proc. Biol. Sci. 279:2705–13 [Google Scholar]
  97. Leonard TR, DuVall M, Herzog W. 97.  2010. Force enhancement following stretch in a single sarcomere. Am. J. Physiol. Cell Physiol. 299:C1398–401 [Google Scholar]
  98. Joumaa V, Leonard TR, Herzog W. 98.  2008. Residual force enhancement in myofibrils and sarcomeres. Proc. Biol. Sci. 275:1411–19 [Google Scholar]
  99. Nishikawa KC, Monroy JA, Uyeno TE, Yeo SH, Pai DK, Lindstedt SL. 99.  2012. Is titin a ‘winding filament’? A new twist on muscle contraction. Proc. Biol. Sci. 279:981–90 [Google Scholar]
  100. Can S, Dewitt MA, Yildiz A. 100.  2014. Bidirectional helical motility of cytoplasmic dynein around microtubules. eLife 3:e03205 [Google Scholar]
  101. Vale RD, Toyoshima YY. 101.  1988. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52:459–69 [Google Scholar]
  102. Brunnbauer M, Dombi R, Ho TH, Schliwa M, Rief M, Ökten Z. 102.  2012. Torque generation of kinesin motors is governed by the stability of the neck domain. Mol. Cell 46:147–58 [Google Scholar]
  103. Ali MY, Uemura S, Adachi K, Itoh H, Kinosita K Jr., Ishiwata S. 103.  2002. Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat. Struct. Biol. 9:464–67 [Google Scholar]
  104. Sun L, Gorospe JR, Hoffman EP, Rao AK. 104.  2007. Decreased platelet expression of myosin regulatory light chain polypeptide (MYL9) and other genes with platelet dysfunction and CBFA2/RUNX1 mutation: insights from platelet expression profiling. J. Thromb. Haemost. 5:146–54 [Google Scholar]
  105. Morgan DL. 105.  1977. Separation of active and passive components of short-range stiffness of muscle. Am J. Physiol. 232:C45–49 [Google Scholar]
  106. Funatsu T, Kono E, Higuchi H, Kimura S, Ishiwata S. 106.  et al. 1993. Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J. Cell Biol. 120:711–24 [Google Scholar]
  107. Bianco P, Nagy A, Kengyel A, Szatmari D, Martonfalvi Z. 107.  et al. 2007. Interaction forces between F-actin and titin PEVK domain measured with optical tweezers. Biophys. J. 93:2102–9 [Google Scholar]
  108. Monroy JA, Powers KL, Gilmore LA, Uyeno TA, Lindstedt SL, Nishikawa KC. 108.  2012. What is the role of titin in active muscle?. Exerc. Sport Sci. Rev. 40:73–78 [Google Scholar]
  109. Joumaa V, Herzog W. 109.  2014. Calcium sensitivity of residual force enhancement in rabbit skinned fibers. Am. J. Physiol. Cell Physiol. 307:C395–401 [Google Scholar]
  110. Nishikawa KC, Monroy JA, Powers KL, Gilmore LA, Uyeno TA, Lindstedt SL. 110.  2013. A molecular basis for intrinsic muscle properties: implications for motor control. Adv. Exp. Med. Biol. 782:111–25 [Google Scholar]
  111. Edman KA, Elzinga G, Noble MI. 111.  1982. Residual force enhancement after stretch of contracting frog single muscle fibers. J. Gen. Physiol. 80:769–84 [Google Scholar]
  112. Lee HD, Herzog W, Leonard T. 112.  2001. Effects of cyclic changes in muscle length on force production in in-situ cat soleus. J. Biomech. 34:979–87 [Google Scholar]
  113. Rassier DE, Herzog W. 113.  2004. Considerations on the history dependence of muscle contraction. J. Appl. Physiol. 96:419–27 [Google Scholar]
  114. Heidlauf T, Klotz T, Rode C, Altan E, Bleiler C. 114.  et al. 2016. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction. Biomech. Model. Mechanobiol. In press
  115. Rode C, Siebert T, Blickhan R. 115.  2009. Titin-induced force enhancement and force depression: a ‘sticky-spring’ mechanism in muscle contractions?. J. Theor. Biol. 259:350–60 [Google Scholar]
  116. Schappacher-Tilp G, Leonard T, Desch G, Herzog W. 116.  2015. A novel three-filament model of force generation in eccentric contraction of skeletal muscles. PLOS ONE 10:e0117634 [Google Scholar]
  117. DuVall M. 117.  2015. Titin regulation of active and passive force in skeletal muscle PhD Thesis, Univ. Calgary, Calgary, Can.
  118. Rivas-Pardo JA, Eckels EC, Popa I, Kosuri P, Linke WA, Fernández JM. 118.  2016. Work done by titin protein folding assists muscle contraction. Cell Rep 14:1339–47 [Google Scholar]
  119. Garvey SM, Rajan C, Lerner AP, Frankel WN, Cox GA. 119.  2002. The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 79:146–49 [Google Scholar]
  120. Taylor-Burt KR, Monroy J, Pace C, Lindstedt S, Nishikawa KC. 120.  2015. Shiver me titin! Elucidating titin's role in shivering thermogenesis. J. Exp. Biol. 218:694–702 [Google Scholar]
  121. Powers K, Nishikawa K, Joumaa V, Herzog W. 121.  2016. Decreased force enhancement in skeletal muscle sarcomeres with a deletion in titin. J. Exp. Biol. 219:1311–16 [Google Scholar]
  122. Hooper SL, Hobbs KH, Thuma JB. 122.  2008. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog. Neurobiol. 86:72–127 [Google Scholar]
  123. Nishikawa K. 123.  2016. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation. J. Exp. Biol. 219:189–96 [Google Scholar]
  124. Bullard B, Burkart C, Labeit S, Leonard K. 124.  2005. The function of elastic proteins in the oscillatory contraction of insect flight muscle. J. Muscle Res. Cell Motil. 26:479–85 [Google Scholar]
  125. Butler TM, Siegman MJ. 125.  2010. Mechanism of catch force: tethering of thick and thin filaments by twitchin. J. Biomed. Biotechnol. 2010:725207 [Google Scholar]
  126. Funabara D, Hamamoto C, Yamamoto K, Inoue A, Ueda M. 126.  et al. 2007. Unphosphorylated twitchin forms a complex with actin and myosin that may contribute to tension maintenance in catch. J. Exp. Biol. 210:4399–410 [Google Scholar]
  127. Yamada A, Yoshio M, Kojima H, Oiwa K. 127.  2001. An in vitro assay reveals essential protein components for the “catch” state of invertebrate smooth muscle. PNAS 98:6635–40 [Google Scholar]
  128. Wilson DM, Larimer JL. 128.  1968. The catch property of ordinary muscle. PNAS 61:909–16 [Google Scholar]
  129. King L, Jhou CR. 129.  2010. Nuclear titin interacts with histones. Chang Gung Med. J. 33:201–10 [Google Scholar]
  130. Chauveau C, Rowell J, Ferreiro A. 130.  2014. A rising titan: TTN review and mutation update. Hum. Mutat. 35:1046–59 [Google Scholar]
  131. Bai J, Binari R, Ni JQ, Vijayakanthan M, Li HS, Perrimon N. 131.  2008. RNA interference screening in Drosophila primary cells for genes involved in muscle assembly and maintenance. Development 135:1439–49 [Google Scholar]
  132. Hughes DC, Wallace MA, Baar K. 132.  2015. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 309:E1–E10 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error