Acute kidney injury (AKI) is a growing global health concern, yet no treatment is currently available to prevent it or to promote kidney repair after injury. Animal models demonstrate that the macrophage is a major contributor to the inflammatory response to AKI. Emerging data from human biopsies also corroborate the presence of macrophages in AKI and their persistence in progressive chronic kidney disease. Macrophages are phagocytic innate immune cells that are important mediators of tissue homeostasis and host defense. In response to tissue injury, macrophages become activated based on specific signals from the damaged microenvironment. The activation and functional state of the macrophage depends on the stage of tissue injury and repair, reflecting a dynamic and diverse spectrum of macrophage phenotypes. In this review, we highlight our current understanding of the mechanisms by which macrophages contribute to injury and repair after AKI.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. 1.  2005. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 16:3365–70 [Google Scholar]
  2. Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. 2.  2009. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 53:961–73 [Google Scholar]
  3. Murugan R, Kellum JA. 3.  2011. Acute kidney injury: What's the prognosis?. Nat. Rev. Nephrol. 7:209–17 [Google Scholar]
  4. Lewington AJ, Cerdá J, Mehta RL. 4.  2013. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int 84:457–67 [Google Scholar]
  5. Lee S, Huen S, Nishio H, Nishio S, Lee HK. 5.  et al. 2011. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. 22:317–26 [Google Scholar]
  6. Wynn TA, Vannella KM. 6.  2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–62 [Google Scholar]
  7. Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. 7.  2015. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17:34–40 [Google Scholar]
  8. Lavin Y, Mortha A, Rahman A, Merad M. 8.  2015. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 15:731–44 [Google Scholar]
  9. Ginhoux F, Guilliams M. 9.  2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:439–49 [Google Scholar]
  10. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N. 10.  et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90 [Google Scholar]
  11. Hoeffel G, Wang Y, Greter M, See P, Teo P. 11.  et al. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209:1167–81 [Google Scholar]
  12. Kawakami T, Lichtnekert J, Thompson LJ, Karna P, Bouabe H. 12.  et al. 2013. Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions. J. Immunol. 191:3358–72 [Google Scholar]
  13. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ. 13.  et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–40 [Google Scholar]
  14. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H. 14.  et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–26 [Google Scholar]
  15. Okabe Y, Medzhitov R. 15.  2016. Tissue biology perspective on macrophages. Nat. Immunol. 17:9–17 [Google Scholar]
  16. Martinez FO, Helming L, Gordon S. 16.  2009. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27:451–83 [Google Scholar]
  17. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW. 17.  et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20 [Google Scholar]
  18. Bradford BM, Sester DP, Hume DA, Mabbott NA. 18.  2011. Defining the anatomical localisation of subsets of the murine mononuclear phagocyte system using integrin alpha X (Itgax, CD11c) and colony stimulating factor 1 receptor (Csf1r, CD115) expression fails to discriminate dendritic cells from macrophages. Immunobiology 216:1228–37 [Google Scholar]
  19. Satpathy AT, Wu X, Albring JC, Murphy KM. 19.  2012. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13:1145–54 [Google Scholar]
  20. Gottschalk C, Kurts C. 20.  2015. The debate about dendritic cells and macrophages in the kidney. Front. Immunol. 6:435 [Google Scholar]
  21. Day Y-J, Huang L, Ye H, Linden J, Okusa MD. 21.  2005. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am. J. Physiol. Ren. Physiol. 288:F722–31 [Google Scholar]
  22. Jo S-K, Sung S-A, Cho W-Y, Go K-J, Kim H-K. 22.  2006. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol. Dial. Transplant. 21:1231–39 [Google Scholar]
  23. Lin S-L, Li B, Rao S, Yeo E-J, Hudson TE. 23.  et al. 2010. Macrophage Wnt7b is critical for kidney repair and regeneration. PNAS 107:4194–99 [Google Scholar]
  24. Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J, Sola A. 24.  2008. Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J. Pathol. 214:104–13 [Google Scholar]
  25. Ferenbach DA, Sheldrake TA, Dhaliwal K, Kipari TMJ, Marson LP. 25.  et al. 2012. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney Int 82:928–33 [Google Scholar]
  26. Lu L, Faubel S, He Z, Andres-Hernando A, Jani A. 26.  et al. 2012. Depletion of macrophages and dendritic cells in ischemic acute kidney injury. Am. J. Nephrol. 35:181–90 [Google Scholar]
  27. Kulkarni OP, Hartter I, Mulay SR, Hagemann J, Darisipudi MN. 27.  et al. 2014. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol. 25:978–89 [Google Scholar]
  28. Clements M, Gershenovich M, Chaber C, Campos-Rivera J, Du P. 28.  et al. 2016. Differential Ly6C expression after renal ischemia–reperfusion identifies unique macrophage populations. J. Am. Soc. Nephrol. 27:159–70 [Google Scholar]
  29. Li L, Huang L, Sung S-SJ, Vergis AL, Rosin DL. 29.  et al. 2008. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74:1526–37 [Google Scholar]
  30. Oh D-J, Dursun B, He Z, Lu L, Hoke TS. 30.  et al. 2008. Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice. Am. J. Physiol. Ren. Physiol. 294:F264–71 [Google Scholar]
  31. Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K-I. 31.  et al. 2003. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J. Am. Soc. Nephrol. 14:2503–15 [Google Scholar]
  32. Kitagawa K, Wada T, Furuichi K, Hashimoto H, Ishiwata Y. 32.  et al. 2004. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am. J. Pathol. 165:237–46 [Google Scholar]
  33. Wada T. 33.  2004. Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J. Am. Soc. Nephrol. 15:940–48 [Google Scholar]
  34. Peng X, Zhang J, Xiao Z, Dong Y, Du J. 34.  2015. CX3CL1-CX3CR1 interaction increases the population of Ly6CCX3CR1hi macrophages contributing to unilateral ureteral obstruction-induced fibrosis. J. Immunol. 195:2797–805 [Google Scholar]
  35. Lu LH, Oh DJ, Dursun B, He Z, Hoke TS. 35.  et al. 2007. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice. J. Pharmacol. Exp. Ther. 324:111–17 [Google Scholar]
  36. Lionakis MS, Swamydas M, Fischer BG, Plantinga TS, Johnson MD. 36.  et al. 2013. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J. Clin. Investig. 123:5035–51 [Google Scholar]
  37. Ngo LY, Kasahara S, Kumasaka DK, Knoblaugh SE, Jhingran A, Hohl TM. 37.  2014. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J. Infect. Dis. 209:109–19 [Google Scholar]
  38. Chousterman BG, Boissonnas A, Poupel L, Baudesson de Chanville C, Adam J. 38.  et al. 2016. Ly6Chigh monocytes protect against kidney damage during sepsis via a CX3CR1-dependent adhesion mechanism. J. Am. Soc. Nephrol. 27:792–803 [Google Scholar]
  39. Lin S-L, Castaño AP, Nowlin BT, Lupher ML, Duffield JS. 39.  2009. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol. 183:6733–43 [Google Scholar]
  40. Belliere J, Casemayou A, Ducasse L, Zakaroff-Girard A, Martins F. 40.  et al. 2015. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J. Am. Soc. Nephrol. 26:1363–77 [Google Scholar]
  41. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O. 41.  et al. 2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–70 [Google Scholar]
  42. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T. 42.  et al. 2007. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037–47 [Google Scholar]
  43. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N. 43.  et al. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–69 [Google Scholar]
  44. Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CH. 44.  et al. 2015. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J. Exp. Med. 212:447–56 [Google Scholar]
  45. Varga T, Mounier R, Gogolak P, Poliska S, Chazaud B, Nagy L. 45.  2013. Tissue LyC6 macrophages are generated in the absence of circulating LyC6 monocytes and Nur77 in a model of muscle regeneration. J. Immunol. 191:5695–701 [Google Scholar]
  46. Hilgendorf I, Gerhardt LM, Tan TC, Winter C, Holderried TA. 46.  et al. 2014. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 114:1611–22 [Google Scholar]
  47. Shechter R, Miller O, Yovel G, Rosenzweig N, London A. 47.  et al. 2013. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–69 [Google Scholar]
  48. Wang J, Kubes P. 48.  2016. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 165:668–78 [Google Scholar]
  49. Zuk A, Bonventre JV. 49.  2016. Acute kidney injury. Annu. Rev. Med. 67:293–307 [Google Scholar]
  50. Campanholle G, Mittelsteadt K, Nakagawa S, Kobayashi A, Lin S-L. 50.  et al. 2013. TLR-2/TLR-4 TREM-1 signaling pathway is dispensable in inflammatory myeloid cells during sterile kidney injury. PLOS ONE 8:e68640 [Google Scholar]
  51. Ranganathan P, Jayakumar C, Mohamed R, Weintraub NL, Ramesh G. 51.  2014. Semaphorin 3A inactivation suppresses ischemia-reperfusion-induced inflammation and acute kidney injury. Am. J. Physiol. Ren. Physiol. 307:F183–94 [Google Scholar]
  52. Li L, Huang L, Sung S-SJ, Lobo PI, Brown MG. 52.  et al. 2007. NKT cell activation mediates neutrophil IFN-γ production and renal ischemia-reperfusion injury. J. Immunol. 178:5899–911 [Google Scholar]
  53. Bajwa A, Huang L, Ye H, Dondeti K, Song S. 53.  et al. 2012. Dendritic cell sphingosine 1-phosphate receptor-3 regulates Th1-Th2 polarity in kidney ischemia-reperfusion injury. J. Immunol. 189:2584–96 [Google Scholar]
  54. Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD. 54.  2007. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71:619–28 [Google Scholar]
  55. Lech M, Avila-Ferrufino A, Allam R, Segerer S, Khandoga A. 55.  et al. 2009. Resident dendritic cells prevent postischemic acute renal failure by help of single Ig IL-1 receptor-related protein. J. Immunol. 183:4109–18 [Google Scholar]
  56. Lassen S, Lech M, Römmele C, Mittruecker H-W, Mak TW, Anders H-J. 56.  2010. Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells, which suppresses postischemic inflammation and prevents acute renal failure. J. Immunol. 185:1976–83 [Google Scholar]
  57. Tadagavadi RK, Reeves WB. 57.  2010. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J. Am. Soc. Nephrol. 21:53–63 [Google Scholar]
  58. Tadagavadi RK, Reeves WB. 58.  2010. Endogenous IL-10 attenuates cisplatin nephrotoxicity: role of dendritic cells. J. Immunol. 185:4904–11 [Google Scholar]
  59. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R. 59.  et al. 2003. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112:645–57 [Google Scholar]
  60. Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM. 60.  et al. 2014. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–63 [Google Scholar]
  61. Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP. 61.  et al. 2016. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27:3356–67 [Google Scholar]
  62. Kobayashi H, Gilbert V, Liu Q, Kapitsinou PP, Unger TL. 62.  et al. 2012. Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury. J. Immunol. 188:5106–15 [Google Scholar]
  63. Kalucka J, Schley G, Georgescu A, Klanke B, Rössler S. 63.  et al. 2015. Kidney injury is independent of endothelial HIF-1α.. J. Mol. Med. 93:891–904 [Google Scholar]
  64. Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O. 64.  et al. 2014. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J. Clin. Investig. 124:2396–409 [Google Scholar]
  65. Scheerer N, Dehne N, Stockmann C, Swoboda S, Baba HA. 65.  et al. 2013. Myeloid hypoxia-inducible factor-1α is essential for skeletal muscle regeneration in mice. J. Immunol. 191:407–14 [Google Scholar]
  66. Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG. 66.  et al. 2009. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J. Clin. Investig. 119:2330–42 [Google Scholar]
  67. Alikhan MA, Jones CV, Williams TM, Beckhouse AG, Fletcher AL. 67.  et al. 2011. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am. J. Pathol. 179:1243–56 [Google Scholar]
  68. Zhang M-Z, Yao B, Yang S, Jiang L, Wang S. 68.  et al. 2012. CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Investig. 122:4519–32 [Google Scholar]
  69. Wang Y, Chang J, Yao B, Niu A, Kelly E. 69.  et al. 2015. Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. Kidney Int 88:1274–82 [Google Scholar]
  70. Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG. 70.  2015. GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 26:1334–45 [Google Scholar]
  71. Baek JH, Zeng R, Weinmann-Menke J, Valerius MT, Wada Y. 71.  et al. 2015. IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease. J. Clin. Investig. 125:3198–214 [Google Scholar]
  72. Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX. 72.  et al. 2016. Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J. Am. Soc. Nephrol. 27:495–508 [Google Scholar]
  73. Pacher P, Beckman JS, Liaudet L. 73.  2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87:315–424 [Google Scholar]
  74. Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR. 74.  1999. Early kidney TNF-α expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am. J. Physiol. 277:R922–29 [Google Scholar]
  75. Misseri R, Meldrum DR, Dinarello CA, Dagher P, Hile KL. 75.  et al. 2005. TNF-α mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling. Am. J. Physiol. Ren. Physiol. 288:F406–11 [Google Scholar]
  76. Ling H, Edelstein C, Gengaro P, Meng X, Lucia S. 76.  et al. 1999. Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am. J. Physiol. 277:F383–90 [Google Scholar]
  77. de Paiva VN, Monteiro RM, Marques VP, Cenedeze MA, Teixeira VP. 77.  et al. 2009. Critical involvement of Th1-related cytokines in renal injuries induced by ischemia and reperfusion. Int. Immunopharmacol. 9:668–72 [Google Scholar]
  78. Mitazaki S, Kato N, Suto M, Hiraiwa K, Abe S. 78.  2009. Interleukin-6 deficiency accelerates cisplatin-induced acute renal failure but not systemic injury. Toxicology 265:115–21 [Google Scholar]
  79. Mitazaki S, Honma S, Suto M, Kato N, Hiraiwa K. 79.  et al. 2011. Interleukin-6 plays a protective role in development of cisplatin-induced acute renal failure through upregulation of anti-oxidative stress factors. Life Sci 88:1142–48 [Google Scholar]
  80. Kielar ML, John R, Bennett M, Richardson JA, Shelton JM. 80.  et al. 2005. Maladaptive role of IL-6 in ischemic acute renal failure. J. Am. Soc. Nephrol. 16:3315–25 [Google Scholar]
  81. Nechemia-Arbely Y, Barkan D, Pizov G, Shriki A, Rose-John S. 81.  et al. 2008. IL-6/IL-6R axis plays a critical role in acute kidney injury. J. Am. Soc. Nephrol. 19:1106–15 [Google Scholar]
  82. Luig M, Kluger MA, Goerke B, Meyer M, Nosko A. 82.  et al. 2015. Inflammation-induced IL-6 functions as a natural brake on macrophages and limits GN. J. Am. Soc. Nephrol. 26:1597–607 [Google Scholar]
  83. Schmidt IM, Hall IE, Kale S, Lee S, He CH. 83.  et al. 2013. Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and predicts delayed allograft function. J. Am. Soc. Nephrol. 24:309–19 [Google Scholar]
  84. He CH, Lee CG, Dela Cruz CS, Lee CM, Zhou Y. 84.  et al. 2013. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2. Cell Rep 4:830–41 [Google Scholar]
  85. Karasawa K, Asano K, Moriyama S, Ushiki M, Monya M. 85.  et al. 2015. Vascular-resident CD169-positive monocytes and macrophages control neutrophil accumulation in the kidney with ischemia-reperfusion injury. J. Am. Soc. Nephrol. 26:896–906 [Google Scholar]
  86. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X. 86.  et al. 2016. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat. Med. 22:183–93 [Google Scholar]
  87. Soares MP, Hamza I. 87.  2016. Macrophages and iron metabolism. Immunity 44:492–504 [Google Scholar]
  88. Martines AM, Masereeuw R, Tjalsma H, Hoenderop JG, Wetzels JF, Swinkels DW. 88.  2013. Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat. Rev. Nephrol. 9:385–98 [Google Scholar]
  89. Paller MS, Hedlund BE. 89.  1988. Role of iron in postischemic renal injury in the rat. Kidney Int 34:474–80 [Google Scholar]
  90. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM. 90.  et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–72 [Google Scholar]
  91. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C. 91.  et al. 2014. Synchronized renal tubular cell death involves ferroptosis. PNAS 111:16836–41 [Google Scholar]
  92. Zager RA, Vijayan A, Johnson AC. 92.  2012. Proximal tubule haptoglobin gene activation is an integral component of the acute kidney injury “stress response.”. Am. J. Physiol. Ren. Physiol. 303:F139–48 [Google Scholar]
  93. Zager RA, Johnson AC, Becker K. 93.  2012. Renal cortical hemopexin accumulation in response to acute kidney injury. Am. J. Physiol. Ren. Physiol. 303:F1460–72 [Google Scholar]
  94. Scindia Y, Dey P, Thirunagari A, Liping H, Rosin DL. 94.  et al. 2015. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. J. Am. Soc. Nephrol. 26:2800–14 [Google Scholar]
  95. Paragas N, Kulkarni R, Werth M, Schmidt-Ott KM, Forster C. 95.  et al. 2014. α-Intercalated cells defend the urinary system from bacterial infection. J. Clin. Investig. 124:2963–76 [Google Scholar]
  96. Paragas N, Qiu A, Zhang Q, Samstein B, Deng S-X. 96.  et al. 2011. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 17:216–22 [Google Scholar]
  97. Mishra J, Mori K, Ma Q, Kelly C, Yang J. 97.  et al. 2004. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J. Am. Soc. Nephrol. 15:3073–82 [Google Scholar]
  98. Jung M, Brüne B, Hotter G, Sola A. 98.  2016. Macrophage-derived lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury. Sci. Rep. 6:21950 [Google Scholar]
  99. Sola A, Weigert A, Jung M, Vinuesa E, Brecht K. 99.  et al. 2011. Sphingosine-1-phosphate signalling induces the production of Lcn-2 by macrophages to promote kidney regeneration. J. Pathol. 225:597–608 [Google Scholar]
  100. Jung M, Sola A, Hughes J, Kluth DC, Vinuesa E. 100.  et al. 2012. Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney Int 81:969–82 [Google Scholar]
  101. Zarjou A, Bolisetty S, Joseph R, Traylor A, Apostolov EO. 101.  et al. 2013. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J. Clin. Investig. 123:4423–34 [Google Scholar]
  102. Bolisetty S, Zarjou A, Hull TD, Traylor AM, Perianayagam A. 102.  et al. 2015. Macrophage and epithelial cell H-ferritin expression regulates renal inflammation. Kidney Int 88:95–108 [Google Scholar]
  103. Kovtunovych G, Eckhaus MA, Ghosh MC, Ollivierre-Wilson H, Rouault TA. 103.  2010. Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116:6054–62 [Google Scholar]
  104. Starzyński RR, Canonne-Hergaux F, Lenartowicz M, Krzeptowski W, Willemetz A. 104.  et al. 2013. Ferroportin expression in haem oxygenase 1-deficient mice. Biochem. J. 449:69–78 [Google Scholar]
  105. Nath KA. 105.  2014. Heme oxygenase-1 and acute kidney injury. Curr. Opin. Nephrol. Hypertens. 23:17–24 [Google Scholar]
  106. Hull TD, Kamal AI, Boddu R, Bolisetty S, Guo L. 106.  et al. 2015. Heme oxygenase-1 regulates myeloid cell trafficking in AKI. J. Am. Soc. Nephrol. 26:2139–51 [Google Scholar]
  107. Ferenbach DA, Ramdas V, Spencer N, Marson L, Anegon I. 107.  et al. 2010. Macrophages expressing heme oxygenase-1 improve renal function in ischemia/reperfusion injury. Mol. Ther. 18:1706–13 [Google Scholar]
  108. Hato T, Winfree S, Kalakeche R, Dube S, Kumar R. 108.  et al. 2015. The macrophage mediates the renoprotective effects of endotoxin preconditioning. J. Am. Soc. Nephrol. 26:1347–62 [Google Scholar]
  109. Eardley KS, Zehnder D, Quinkler M, Lepenies J, Bates RL. 109.  et al. 2006. The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int 69:1189–97 [Google Scholar]
  110. Eardley KS, Kubal C, Zehnder D, Quinkler M, Lepenies J. 110.  et al. 2008. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int 74:495–504 [Google Scholar]
  111. Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS. 111.  et al. 2012. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 82:172–83 [Google Scholar]
  112. Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y. 112.  et al. 2016. Severity and frequency of proximal tubule injury determines renal prognosis. J. Am. Soc. Nephrol. 27:2393–406 [Google Scholar]
  113. Lech M, Gröbmayr R, Ryu M, Lorenz G, Hartter I. 113.  et al. 2014. Macrophage phenotype controls long-term AKI outcomes—kidney regeneration versus atrophy. J. Am. Soc. Nephrol. 25:292–304 [Google Scholar]
  114. Gandolfo MT, Jang HR, Bagnasco SM, Ko GJ, Agreda P. 114.  et al. 2009. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int 76:717–29 [Google Scholar]
  115. Kinsey GR, Sharma R, Huang L, Li L, Vergis AL. 115.  et al. 2009. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J. Am. Soc. Nephrol. 20:1744–53 [Google Scholar]
  116. Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H. 116.  et al. 2013. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med. 210:775–88 [Google Scholar]
  117. Cao Q, Wang Y, Zheng D, Sun Y, Wang Y. 117.  et al. 2010. IL-10/TGF-β-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J. Am. Soc. Nephrol. 21:933–42 [Google Scholar]
  118. Kim MG, Kim SC, Ko YS, Lee HY, Jo SK, Cho W. 118.  2015. The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. PLOS ONE 10:e0143961 [Google Scholar]
  119. Cao Q, Wang Y, Zheng D, Sun Y, Wang C. 119.  et al. 2014. Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney Int 85:794–806 [Google Scholar]
  120. Ko GJ, Boo C-S, Jo S-K, Cho WY, Kim HK. 120.  2008. Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol. Dial. Transplant. 23:842–52 [Google Scholar]
  121. Anders HJ, Vielhauer V, Frink M, Linde Y, Cohen CD. 121.  et al. 2002. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J. Clin. Investig. 109:251–59 [Google Scholar]
  122. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C. 122.  et al. 2008. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 172:288–98 [Google Scholar]
  123. Ma FY, Liu J, Kitching AR, Manthey CL, Nikolic-Paterson DJ. 123.  2009. Targeting renal macrophage accumulation via c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney. Am. J. Physiol. Ren. Physiol. 296:F177–85 [Google Scholar]
  124. Larson-Casey JL, Deshane JS, Ryan AJ, Thannickal VJ, Carter AB. 124.  2016. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 44:582–96 [Google Scholar]
  125. Huen SC, Moeckel GW, Cantley LG. 125.  2013. Macrophage-specific deletion of transforming growth factor-β1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury. Am. J. Physiol. Ren. Physiol. 305:F477–84 [Google Scholar]
  126. Ge S, Hertel B, Susnik N, Rong S, Dittrich AM. 126.  et al. 2014. Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo. PLOS ONE 9:e85461 [Google Scholar]
  127. Mohamed R, Jayakumar C, Chen F, Fulton D, Stepp D. 127.  et al. 2016. Low-dose IL-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis. J. Am. Soc. Nephrol. 27:745–65 [Google Scholar]
  128. Nishida M, Okumura Y, Ozawa S, Shiraishi I, Itoi T, Hamaoka K. 128.  2007. MMP-2 inhibition reduces renal macrophage infiltration with increased fibrosis in UUO. Biochem. Biophys. Res. Commun. 354:133–39 [Google Scholar]
  129. Abraham AP, Ma FY, Mulley WR, Ozols E, Nikolic-Paterson DJ. 129.  2012. Macrophage infiltration and renal damage are independent of matrix metalloproteinase 12 in the obstructed kidney. Nephrology 17:322–29 [Google Scholar]
  130. Tan TK, Zheng G, Hsu TT, Lee SR, Zhang J. 130.  et al. 2013. Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Lab. Investig. 93:434–49 [Google Scholar]
  131. Giannandrea M, Parks WC. 131.  2014. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech. 7:193–203 [Google Scholar]
  132. Madala SK, Pesce JT, Ramalingam TR, Wilson MS, Minnicozzi S. 132.  et al. 2010. Matrix metalloproteinase 12-deficiency augments extracellular matrix degrading metalloproteinases and attenuates IL-13-dependent fibrosis. J. Immunol. 184:3955–63 [Google Scholar]
  133. Yuan A, Lee Y, Choi U, Moeckel G, Karihaloo A. 133.  2015. Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors. Am. J. Physiol. Ren. Physiol. 308:F459–72 [Google Scholar]
  134. Moore KJ, Sheedy FJ, Fisher EA. 134.  2013. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13:709–21 [Google Scholar]
  135. Llodrá J, Angeli V, Liu J, Trogan E, Fisher EA, Randolph GJ. 135.  2004. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. PNAS 101:11779–84 [Google Scholar]
  136. Berthier CC, Bethunaickan R, Gonzalez-Rivera T, Nair V, Ramanujam M. 136.  et al. 2012. Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis. J. Immunol. 189:988–1001 [Google Scholar]
  137. Palmer MB, Vichot AA, Cantley LG, Moeckel GW. 137.  2014. Quantification and localization of M2 macrophages in human kidneys with acute tubular injury. Int. J. Nephrol. Renovasc. Dis. 7:415–19 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error