Tubulointerstitial fibrosis is a chronic and progressive process affecting kidneys during aging and in chronic kidney disease (CKD), regardless of cause. CKD and renal fibrosis affect half of adults above age 70 and 10% of the world's population. Although no targeted therapy yet exists to slow renal fibrosis, a number of important recent advances have clarified the cellular and molecular mechanisms underlying the disease. In this review, I highlight these advances with a focus on cells and pathways that may be amenable to therapeutic targeting. I discuss pathologic changes regulating interstitial myofibroblast activation, including profibrotic and proinflammatory paracrine signals secreted by epithelial cells after either acute or chronic injury. I conclude by highlighting novel therapeutic targets and approaches with particular promise for development of new treatments for patients with fibrotic kidney disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Risdon RA, Sloper JC, De Wardener HE. 1.  1968. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 2:363–66 [Google Scholar]
  2. Nath KA.2.  1992. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am. J. Kidney Dis. 20:1–17 [Google Scholar]
  3. Katz A, Caramori ML, Sisson-Ross S, Groppoli T, Basgen JM, Mauer M. 3.  2002. An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients. Kidney Int 61:2058–66 [Google Scholar]
  4. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW. 4.  et al. 2007. Prevalence of chronic kidney disease in the United States. JAMA 298:2038–47 [Google Scholar]
  5. Hoerger TJ, Wittenborn JS, Segel JE, Burrows NR, Imai K. 5.  et al. 2010. A health policy model of CKD: 1. Model construction, assumptions, and validation of health consequences. Am. J. Kidney Dis. 55:452–62 [Google Scholar]
  6. Anavekar NS, McMurray JJ, Velazquez EJ, Solomon SD, Kober L. 6.  et al. 2004. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N. Engl. J. Med. 351:1285–95 [Google Scholar]
  7. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. 7.  2004. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351:1296–305 [Google Scholar]
  8. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. 8.  2004. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch. Intern. Med. 164:659–63 [Google Scholar]
  9. 9. Natl. Kidney Found 2012. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am. J. Kidney Dis. 60:850–86 [Google Scholar]
  10. 10. US Renal Data Syst. 2013. USRDS 2013 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States Rep., US Renal Data Syst., Natl. Inst. Health/Natl. Inst. Diabetes Dig. Kidney Dis Bethesda, MD:
  11. Ke PY, Chen SS. 11.  2012. Hepatitis C virus and cellular stress response: implications to molecular pathogenesis of liver diseases. Viruses 4:2251–90 [Google Scholar]
  12. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC. 12.  2013. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 10:15–26 [Google Scholar]
  13. Kong P, Christia P, Frangogiannis NG. 13.  2013. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 71:549–74 [Google Scholar]
  14. Wynn TA.14.  2011. Integrating mechanisms of pulmonary fibrosis. J. Exp. Med. 208:1339–50 [Google Scholar]
  15. Wynn TA.15.  2008. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214:199–210 [Google Scholar]
  16. Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P. 16.  2014. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis?. Fibrogenes. Tissue Repair 7:4 [Google Scholar]
  17. Kramann R, DiRocco DP, Maarouf OH, Humphreys BD. 17.  2013. Matrix producing cells in chronic kidney disease: origin, regulation, and activation. Curr. Pathobiol. Rep. 1:301–11 [Google Scholar]
  18. Lin SL, Kisseleva T, Brenner DA, Duffield JS. 18.  2008. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173:1617–27 [Google Scholar]
  19. Eyden B.19.  2005. The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. Part 2: tumours and tumour-like lesions. J. Submicrosc. Cytol. Pathol. 37:231–96 [Google Scholar]
  20. Grupp C, Troche I, Klass C, Köhler M, Müller GA. 20.  2001. A novel model to study renal myofibroblast formation in vitro. Kidney Int 59:543–53 [Google Scholar]
  21. Hoyles RK, Derrett-Smith EC, Khan K, Shiwen X, Howat SL. 21.  et al. 2011. An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor β receptor. Am. J. Respir. Crit. Care Med. 183:249–61 [Google Scholar]
  22. Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP. 22.  et al. 1999. TGF-β1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am. J. Physiol. 276:G1059–68 [Google Scholar]
  23. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG. 23.  et al. 2006. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. PNAS 103:13180–85 [Google Scholar]
  24. Lijnen PJ, Petrov VV, Fagard RH. 24.  2000. Induction of cardiac fibrosis by transforming growth factor-β1. Mol. Genet. Metab. 71:418–35 [Google Scholar]
  25. Meng XM, Nikolic-Paterson DJ, Lan HY. 25.  2016. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12:325–38 [Google Scholar]
  26. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD. 26.  et al. 2013. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19:1617–24 [Google Scholar]
  27. Chang Y, Lau WL, Jo H, Tsujino K, Gewin L. 27.  et al. 2017. Pharmacologic blockade of αvβ1 integrin ameliorates renal failure and fibrosis in vivo. . J. Am. Soc. Nephrol. 28:1998–2005 [Google Scholar]
  28. Lebleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG. 28.  et al. 2013. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19:1047–53 [Google Scholar]
  29. Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipila P. 29.  et al. 2012. Hedgehog-Gli pathway activation during kidney fibrosis. Am. J. Pathol. 180:1441–53 [Google Scholar]
  30. Buch T, Heppner FL, Tertilt C, Heinen TJAJ, Kremer M. 30.  et al. 2005. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2:419–26 [Google Scholar]
  31. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S. 31.  et al. 2015. Perivascular Gli1 progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66 [Google Scholar]
  32. Kramann R, Goettsch C, Wongboonsin J, Iwata H, Schneider RK. 32.  et al. 2016. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell 19:628–42 [Google Scholar]
  33. Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R. 33.  et al. 2017. Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell 20:735–36 [Google Scholar]
  34. Kramann R, DiRocco DP, Humphreys BD. 34.  2013. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J. Pathol. 231:273–89 [Google Scholar]
  35. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT. 35.  et al. 2010. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176:85–97 [Google Scholar]
  36. Asada N, Takase M, Nakamura J, Oguchi A, Asada M. 36.  et al. 2011. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J. Clin. Investig. 121:3981–90 [Google Scholar]
  37. Koesters R, Kaissling B, Lehir M, Picard N, Theilig F. 37.  et al. 2010. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am. J. Pathol. 177:632–43 [Google Scholar]
  38. Endo T, Okuda T, Nakamura J, Higashi AY, Fukatsu A. 38.  et al. 2010. Exploring the origin of the cells responsible for regeneration and fibrosis in the kidneys. J. Am. Soc. Nephrol. 21:FC163 (Abstr.) [Google Scholar]
  39. Duffield JS, Humphreys BD. 39.  2011. Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney Int 79:494–501 [Google Scholar]
  40. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S. 40.  et al. 2015. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66 [Google Scholar]
  41. Zhao H, Feng J, Seidel K, Shi S, Klein O. 41.  et al. 2014. Secretion of Shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14:160–73 [Google Scholar]
  42. Kramann R, Fleig SV, Schneider RK, Fabian SL, DiRocco DP. 42.  et al. 2015. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J. Clin. Investig. 125:2935–51 [Google Scholar]
  43. Deng Y, Guo Y, Liu P, Zeng R, Ning Y. 43.  et al. 2016. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy. Sci. Rep. 6:19821 [Google Scholar]
  44. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. 44.  2008. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 19:2282–87 [Google Scholar]
  45. Phua YL, Martel N, Pennisi DJ, Little MH, Wilkinson L. 45.  2013. Distinct sites of renal fibrosis in Crim1 mutant mice arise from multiple cellular origins. J. Pathol. 229:685–96 [Google Scholar]
  46. De Palma M Venneri MA, Galli R, Sergi LS, Politi LS. 46.  et al. 2005. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–26 [Google Scholar]
  47. De Palma M, Venneri MA, Roca C, Naldini L. 47.  2003. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9:789–95 [Google Scholar]
  48. Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME. 48.  2008. The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 49:2163–71 [Google Scholar]
  49. Alva JA, Zovein AC, Monvoisin A, Murphy T, Salazar A. 49.  et al. 2006. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev. Dyn. 235:759–67 [Google Scholar]
  50. Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K. 50.  et al. 2009. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. PNAS 106:17892–97 [Google Scholar]
  51. Reilkoff RA, Bucala R, Herzog EL. 51.  2011. Fibrocytes: emerging effector cells in chronic inflammation. Nat. Rev. Immunol. 11:427–35 [Google Scholar]
  52. Reich B, Schmidbauer K, Rodriguez Gomez M, Hermann FJ, Göbel N. 52.  et al. 2013. Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int 84:78–89 [Google Scholar]
  53. Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP. 53.  2014. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep 3:650–62 [Google Scholar]
  54. Asada N, Takase M, Nakamura J, Oguchi A, Asada M. 54.  et al. 2011. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J. Clin. Investig. 121:3981–90 [Google Scholar]
  55. Yamauchi Y, Abe K, Mantani A, Hitoshi Y, Suzuki M. 55.  et al. 1999. A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev. Biol. 212:191–203 [Google Scholar]
  56. Gómez-Skarmeta JL, de la Calle-Mustienes E, Modolell J, Mayor R. 56.  1999. Xenopus brain factor-2 controls mesoderm, forebrain and neural crest development. Mech. Dev. 80:15–27 [Google Scholar]
  57. Gandhi R, Le Hir M, Kaissling B. 57.  1990. Immunolocalization of ecto-5′-nucleotidase in the kidney by a monoclonal antibody. Histochemistry 95:165–74 [Google Scholar]
  58. DiRocco DP, Kobayashi A, Taketo MM, McMahon AP, Humphreys BD. 58.  2013. Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J. Am. Soc. Nephrol. 24:1399–412 [Google Scholar]
  59. Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O. 59.  et al. 2016. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J. Clin. Investig. 126:1926–38 [Google Scholar]
  60. Guimarães-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y. 60.  et al. 2017. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20:345–59.e5 [Google Scholar]
  61. Crisan M, Chen CW, Corselli M, Andriolo G, Lazzari L, Peault B. 61.  2009. Perivascular multipotent progenitor cells in human organs. Ann. N.Y. Acad. Sci. 1176:118–23 [Google Scholar]
  62. Jiang Y, Berry DC, Tang W, Graff JM. 62.  2014. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep 9:1007–22 [Google Scholar]
  63. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M. 63.  et al. 2008. White fat progenitor cells reside in the adipose vasculature. Science 322:583–86 [Google Scholar]
  64. Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D. 64.  et al. 2006. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–73 [Google Scholar]
  65. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K. 65.  et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:eaah4573 [Google Scholar]
  66. Quaggin SE, Kapus A. 66.  2011. Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int 80:41–50 [Google Scholar]
  67. Vishvanath L, Long JZ, Spiegelman BM, Gupta RK. 67.  2017. Do adipocytes emerge from mural progenitors?. Cell Stem Cell 20:585–86 [Google Scholar]
  68. Wuttke M, Köttgen A. 68.  2016. Insights into kidney diseases from genome-wide association studies. Nat. Rev. Nephrol. 12:549–62 [Google Scholar]
  69. Pattaro C, Teumer A, Gorski M, Chu AY, Li M. 69.  et al. 2016. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7:10023 [Google Scholar]
  70. He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y. 70.  2009. Wnt/β-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20:765–76 [Google Scholar]
  71. Madan B, Patel MB, Zhang J, Bunte RM, Rudemiller NP. 71.  et al. 2016. Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis. Kidney Int 89:1062–74 [Google Scholar]
  72. Kawakami T, Ren S, Duffield JS. 72.  2013. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J. Pathol. 229:221–31 [Google Scholar]
  73. O'Brown ZK, Van Nostrand EL, Higgins JP, Kim SK. 73.  2015. The inflammatory transcription factors NFκB, STAT1 and STAT3 drive age-associated transcriptional changes in the human kidney. PLOS Genet 11:e1005734 [Google Scholar]
  74. Leaf IA, Nakagawa S, Johnson BG, Cha JJ, Mittelsteadt K. 74.  et al. 2017. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Investig. 127:321–34 [Google Scholar]
  75. Wetmore JB, Hung AM, Lovett DH, Sen S, Quershy O, Johansen KL. 75.  2005. Interleukin-1 gene cluster polymorphisms predict risk of ESRD. Kidney Int 68:278–84 [Google Scholar]
  76. Krüger B, Krick S, Dhillon N, Lerner SM, Ames S. 76.  et al. 2009. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. PNAS 106:3390–95 [Google Scholar]
  77. van Deursen JM. 77.  2014. The role of senescent cells in ageing. Nature 509:439–46 [Google Scholar]
  78. Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY. 78.  et al. 2015. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J. Clin. Investig. 125:1620–36 [Google Scholar]
  79. Humphreys BD, Xu F, Sabbisetti V, Grgic I, Naini SM. 79.  et al. 2013. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Investig. 123:4023–35 [Google Scholar]
  80. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K. 80.  et al. 2004. Ink4a/Arf expression is a biomarker of aging. J. Clin. Investig. 114:1299–307 [Google Scholar]
  81. Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. 81.  2017. Cellular senescence in renal ageing and disease. Nat. Rev. Nephrol. 13:77–89 [Google Scholar]
  82. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. 82.  2010. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16:535–43 [Google Scholar]
  83. Cosentino CC, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T. 83.  et al. 2013. Histone deacetylase inhibitor enhances recovery after AKI. J. Am. Soc. Nephrol. 24:943–53 [Google Scholar]
  84. DiRocco D, Bisi J, Roberts P, Strum JC, Wong KK. 84.  et al. 2013. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am. J. Physiol. Renal. Physiol. 306:F379–88 [Google Scholar]
  85. Pabla N, Gibson AA, Buege M, Ong SS, Li L. 85.  et al. 2015. Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions. PNAS 112:5231–36 [Google Scholar]
  86. Braun H, Schmidt BMW, Raiss M, Baisantry A, Mircea-Constantin D. 86.  et al. 2012. Cellular senescence limits regenerative capacity and allograft survival. J. Am. Soc. Nephrol. 23:1467–73 [Google Scholar]
  87. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG. 87.  et al. 2011. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–36 [Google Scholar]
  88. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ. 88.  et al. 2016. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530:184–89 [Google Scholar]
  89. Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G. 89.  et al. 2017. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8:14532 [Google Scholar]
  90. Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y. 90.  2012. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int 82:537–47 [Google Scholar]
  91. Zhou D, Tan RJ, Zhou L, Li Y, Liu Y. 91.  2013. Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci. Rep. 3:1878 [Google Scholar]
  92. Wang Z, Havasi A, Gall JM, Mao H, Schwartz JH, Borkan SC. 92.  2009. β-Catenin promotes survival of renal epithelial cells by inhibiting Bax. J. Am. Soc. Nephrol. 20:1919–28 [Google Scholar]
  93. Maarouf OH, Ikeda Y, Humphreys BD. 93.  2015. Wnt signaling in kidney tubulointerstitium during disease. Histol. Histopathol. 30:163–71 [Google Scholar]
  94. Zhou D, Fu H, Zhang L, Zhang K, Min Y. 94.  et al. 2017. Tubule-derived Wnts are required for fibroblast activation and kidney fibrosis. J. Am. Soc. Nephrol. 28:2322–36 [Google Scholar]
  95. Maarouf OH, Aravamudhan A, Rangarajan D, Kusaba T, Zhang V. 95.  et al. 2015. Paracrine Wnt1 drives interstitial fibrosis without inflammation by tubulointerstitial cross-talk. J. Am. Soc. Nephrol. 27:781–90 [Google Scholar]
  96. Moon RT, Kohn AD, De Ferrari GV Kaykas A. 96.  2004. WNT and β-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5:691–701 [Google Scholar]
  97. Zhou D, Li Y, Zhou L, Tan RJ, Xiao L. 97.  et al. 2014. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J. Am. Soc. Nephrol. 25:2187–200 [Google Scholar]
  98. Sirin Y, Susztak K. 98.  2012. Notch in the kidney: development and disease. J. Pathol. 226:394–403 [Google Scholar]
  99. Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A. 99.  et al. 2010. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Investig. 120:4040–54 [Google Scholar]
  100. Grande MT, Sánchez-Laorden B, López-Blau C, De Frutos CA, Boutet A. 100.  et al. 2015. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21:989–97 [Google Scholar]
  101. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K. 101.  et al. 2015. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21:998–1009 [Google Scholar]
  102. Fine LG, Orphanides C, Norman JT. 102.  1998. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int 65:Suppl.S74–78 [Google Scholar]
  103. Evans RG, Ow CP, Bie P. 103.  2015. The chronic hypoxia hypothesis: the search for the smoking gun goes on. Am. J. Physiol. Renal. Physiol. 308:F101–2 [Google Scholar]
  104. Bohle A, Strutz F, Müller GA. 104.  1994. On the pathogenesis of chronic renal failure in primary glomerulopathies: a view from the interstitium. Exp. Nephrol. 2:205–10 [Google Scholar]
  105. Basile DP, Donohoe DL, Roethe K, Mattson DL. 105.  2003. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage. Am. J. Physiol. Renal. Physiol. 284:F338–48 [Google Scholar]
  106. Goldfarb M, Rosenberger C, Abassi Z, Shina A, Zilbersat F. 106.  et al. 2006. Acute-on-chronic renal failure in the rat: functional compensation and hypoxia tolerance. Am. J. Nephrol. 26:22–33 [Google Scholar]
  107. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y. 107.  et al. 2007. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Investig. 117:3810–20 [Google Scholar]
  108. Tanaka T, Nangaku M. 108.  2010. The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1 alpha in progression of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 19:43–50 [Google Scholar]
  109. Kramann R, Wongboonsin J, Chang-Panesso M, Machado FG, Humphreys BD. 109.  2017. Gli1+ pericyte loss induces capillary rarefaction and proximal tubular injury. J. Am. Soc. Nephrol. 28:776–84 [Google Scholar]
  110. Venkatachalam MA, Weinberg JM. 110.  2017. Pericytes preserve capillary integrity to prevent kidney hypoxia. J. Am. Soc. Nephrol. 28:717–19 [Google Scholar]
  111. Kida Y, Ieronimakis N, Schrimpf C, Reyes M, Duffield JS. 111.  2013. EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J. Am. Soc. Nephrol. 24:559–72 [Google Scholar]
  112. Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR. 112.  2008. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am. J. Physiol. Renal. Physiol. 294:F928–36 [Google Scholar]
  113. Leonard EC, Friedrich JL, Basile DP. 113.  2008. VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury. Am. J. Physiol. Renal. Physiol. 295:F1648–57 [Google Scholar]
  114. Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF. 114.  et al. 2011. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am. J. Pathol. 178:911–23 [Google Scholar]
  115. Bijkerk R, van Solingen C, de Boer HC, van der Pol P, Khairoun M. 115.  et al. 2014. Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity. J. Am. Soc. Nephrol. 25:1710–22 [Google Scholar]
  116. Takahashi K, Yamanaka S. 116.  2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76 [Google Scholar]
  117. Du Y, Wang J, Jia J, Song N, Xiang C. 117.  et al. 2014. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell 14:394–403 [Google Scholar]
  118. Huang P, Zhang L, Gao Y, He Z, Yao D. 118.  et al. 2014. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14:370–84 [Google Scholar]
  119. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC. 119.  et al. 2016. Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18:797–808 [Google Scholar]
  120. Rezvani M, Español-Suñer R, Malato Y, Dumont L, Grimm AA. 120.  et al. 2016. In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 18:809–16 [Google Scholar]
  121. Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J. 121.  et al. 2016. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat. Cell Biol. 18:1269–80 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error