1932

Abstract

Synapses, the fundamental unit in neuronal circuits, are critical for learning and memory, perception, thinking, and reaction. The neuromuscular junction (NMJ) is a synapse formed between motoneurons and skeletal muscle fibers that is covered by Schwann cells (SCs). It is essential for controlling muscle contraction. NMJ formation requires intimate interactions among motoneurons, muscles, and SCs. Deficits in NMJ formation and maintenance cause neuromuscular disorders, including congenital myasthenic syndrome and myasthenia gravis. NMJ decline occurs in aged animals and may appear before clinical presentation of motoneuron disorders such as amyotrophic lateral sclerosis. We review recent findings in NMJ formation, maintenance, neuromuscular disorders, and aging of the NMJ, focusing on communications among motoneurons, muscles and SCs, and underlying mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022516-034255
2018-02-10
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/physiol/80/1/annurev-physiol-022516-034255.html?itemId=/content/journals/10.1146/annurev-physiol-022516-034255&mimeType=html&fmt=ahah

Literature Cited

  1. Kummer TT, Misgeld T, Sanes JR. 1.  2006. Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Curr. Opin. Neurobiol. 1674–82 [Google Scholar]
  2. Shi L, Fu AK, Ip NY. 2.  2012. Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 35441–53 [Google Scholar]
  3. Tintignac LA, Brenner HR, Ruegg MA. 3.  2015. Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol. Rev. 95809–52 [Google Scholar]
  4. Wu H, Xiong WC, Mei L. 4.  2010. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 1371017–33 [Google Scholar]
  5. Darabid H, Perez-Gonzalez AP, Robitaille R. 5.  2014. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat. Rev. Neurosci. 15703–18 [Google Scholar]
  6. McMahan UJ.6.  1990. The agrin hypothesis. Cold Spring Harb. Symp. Quant. Biol. 55407–18 [Google Scholar]
  7. Ruegg MA, Bixby JL. 7.  1998. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci 2122–27 [Google Scholar]
  8. Zong Y, Jin R. 8.  2013. Structural mechanisms of the agrin-LRP4-MuSK signaling pathway in neuromuscular junction differentiation. Cell. Mol. Life Sci. 703077–88 [Google Scholar]
  9. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L. 9.  2008. LRP4 serves as a coreceptor of agrin. Neuron 60285–97 [Google Scholar]
  10. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM. 10.  et al. 2008. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135334–42 [Google Scholar]
  11. Herz J.11.  2009. Apolipoprotein E receptors in the nervous system. Curr. Opin. Lipidol. 20190–96 [Google Scholar]
  12. Gomez AM, Burden SJ. 12.  2011. The extracellular region of Lrp4 is sufficient to mediate neuromuscular synapse formation. Dev. Dyn. 2402626–33 [Google Scholar]
  13. Zong Y, Zhang B, Gu S, Lee K, Zhou J. 13.  et al. 2012. Structural basis of agrin-LRP4-MuSK signaling. Genes Dev 26247–58 [Google Scholar]
  14. Stetefeld J, Alexandrescu AT, Maciejewski MW, Jenny M, Rathgeb-Szabo K. 14.  et al. 2004. Modulation of agrin function by alternative splicing and Ca2+ binding. Structure 12503–15 [Google Scholar]
  15. Wu H, Lu Y, Shen C, Patel N, Gan L. 15.  et al. 2012. Distinct roles of muscle and motoneuron LRP4 in neuromuscular junction formation. Neuron 7594–107 [Google Scholar]
  16. Choi HY, Liu Y, Tennert C, Sugiura Y, Karakatsani A. 16.  et al. 2013. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. eLife 2e00220 [Google Scholar]
  17. Zhang W, Coldefy AS, Hubbard SR, Burden SJ. 17.  2011. Agrin binds to the N-terminal region of Lrp4 protein and stimulates association between Lrp4 and the first immunoglobulin-like domain in muscle-specific kinase (MuSK). J. Biol. Chem. 28640624–30 [Google Scholar]
  18. Okada K, Inoue A, Okada M, Murata Y, Kakuta S. 18.  et al. 2006. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 3121802–5 [Google Scholar]
  19. Inoue A, Setoguchi K, Matsubara Y, Okada K, Sato N. 19.  et al. 2009. Dok-7 activates the muscle receptor kinase MuSK and shapes synapse formation. Sci. Signal. 2ra7 [Google Scholar]
  20. Arimura S, Okada T, Tezuka T, Chiyo T, Kasahara Y. 20.  et al. 2014. DOK7 gene therapy benefits mouse models of diseases characterized by defects in the neuromuscular junction. Science 3451505–8 [Google Scholar]
  21. Tezuka T, Inoue A, Hoshi T, Weatherbee SD, Burgess RW. 21.  et al. 2014. The MuSK activator agrin has a separate role essential for postnatal maintenance of neuromuscular synapses. PNAS 11116556–61 [Google Scholar]
  22. Till JH, Becerra M, Watty A, Lu Y, Ma Y. 22.  et al. 2002. Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation. Structure 101187–96 [Google Scholar]
  23. Bergamin E, Hallock PT, Burden SJ, Hubbard SR. 23.  2010. The cytoplasmic adaptor protein Dok7 activates the receptor tyrosine kinase MuSK via dimerization. Mol. Cell 39100–9 [Google Scholar]
  24. Buyan A, Kalli AC, Sansom MS. 24.  2016. Multiscale simulations suggest a mechanism for the association of the Dok7 PH domain with PIP-containing membranes. PLOS Comput. Biol. 12e1005028 [Google Scholar]
  25. Camurdanoglu BZ, Hrovat C, Dürnberger G, Madalinski M, Mechtler K, Herbst R. 25.  2016. MuSK kinase activity is modulated by a serine phosphorylation site in the kinase loop. Sci. Rep. 633583 [Google Scholar]
  26. Zhou H, Glass DJ, Yancopoulos GD, Sanes JR. 26.  1999. Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J. Cell Biol. 1461133–46 [Google Scholar]
  27. Linnoila J, Wang Y, Yao Y, Wang ZZ. 27.  2008. A mammalian homolog of Drosophila tumorous imaginal discs, Tid1, mediates agrin signaling at the neuromuscular junction. Neuron 60625–41 [Google Scholar]
  28. Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B. 28.  et al. 2012. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch. Neurol. 69445–51 [Google Scholar]
  29. Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. 29.  2001. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat. Med. 7365–68 [Google Scholar]
  30. Hoshi T, Tezuka T, Yokoyama K, Iemura S, Natsume T, Yamanashi Y. 30.  2013. Mesdc2 plays a key role in cell-surface expression of Lrp4 and postsynaptic specialization in myotubes. FEBS Lett 5873749–54 [Google Scholar]
  31. Hallock PT, Chin S, Blais S, Neubert TA, Glass DJ. 31.  2015. Sorbs1 and -2 interact with CrkL and are required for acetylcholine receptor cluster formation. Mol. Cell. Biol. 36262–70 [Google Scholar]
  32. Hallock PT, Xu CF, Park TJ, Neubert TA, Curran T, Burden SJ. 32.  2010. Dok-7 regulates neuromuscular synapse formation by recruiting Crk and Crk-L. Genes Dev 242451–61 [Google Scholar]
  33. Ueta R, Tezuka T, Izawa Y, Miyoshi S, Nagatoishi S. 33.  et al. 2017. The carboxyl-terminal region of Dok-7 plays a key, but not essential, role in activation of muscle-specific receptor kinase MuSK and neuromuscular synapse formation. J. Biochem. 161269–77 [Google Scholar]
  34. Brenner HR, Akaaboune M. 34.  2014. Recycling of acetylcholine receptors at ectopic postsynaptic clusters induced by exogenous agrin in living rats. Dev. Biol. 394122–28 [Google Scholar]
  35. Basu S, Sladecek S, Martinez-Peña y Valenzuela I, Akaaboune M, Smal I. 35.  et al. 2015. CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5β and actin for focal delivery of acetylcholine receptor vesicles. Mol. Biol. Cell 26938–51 [Google Scholar]
  36. Basu S, Sladecek S, Pemble H, Wittmann T, Slotman JA. 36.  et al. 2014. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends. J. Biol. Chem. 28930857–67 [Google Scholar]
  37. Lee CW, Han J, Bamburg JR, Han L, Lynn R, Zheng JQ. 37.  2009. Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking. Nat. Neurosci. 12848–56 [Google Scholar]
  38. Engel AG, Shen XM, Selcen D, Sine SM. 38.  2015. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14461 [Google Scholar]
  39. Chen PJ, Martinez-Peña y Valenzuela I, Aittaleb M, Akaaboune M. 39.  2016. AChRs are essential for the targeting of rapsyn to the postsynaptic membrane of NMJs in living mice. J. Neurosci. 365680–85 [Google Scholar]
  40. Mihailovska E, Raith M, Valencia RG, Fischer I, Al Banchaabouchi M. 40.  et al. 2014. Neuromuscular synapse integrity requires linkage of acetylcholine receptors to postsynaptic intermediate filament networks via rapsyn-plectin 1f complexes. Mol. Biol. Cell 254130–49 [Google Scholar]
  41. Luo S, Zhang B, Dong XP, Tao Y, Ting A. 41.  et al. 2008. HSP90β regulates rapsyn turnover and subsequent AChR cluster formation and maintenance. Neuron 6097–110 [Google Scholar]
  42. Bruneau EG, Akaaboune M. 42.  2010. Dynamics of the rapsyn scaffolding protein at the neuromuscular junction of live mice. J. Neurosci. 30614–19 [Google Scholar]
  43. Vogt J, Harrison BJ, Spearman H, Cossins J, Vermeer S. 43.  et al. 2008. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients. Am. J. Hum. Genet. 82222–27 [Google Scholar]
  44. Li L, Cao Y, Wu H, Ye X, Zhu Z. 44.  et al. 2016. Enzymatic activity of the scaffold protein rapsyn for synapse formation. Neuron 921007–19 [Google Scholar]
  45. van der Veen AG, Ploegh HL. 45.  2012. Ubiquitin-like proteins. Annu. Rev. Biochem. 81323–57 [Google Scholar]
  46. Amenta AR, Creely HE, Mercado ML, Hagiwara H, McKechnie BA. 46.  et al. 2012. Biglycan is an extracellular MuSK binding protein important for synapse stability. J. Neurosci. 322324–34 [Google Scholar]
  47. Kummer TT, Misgeld T, Lichtman JW, Sanes JR. 47.  2004. Nerve-independent formation of a topologically complex postsynaptic apparatus. J. Cell Biol. 1641077–87 [Google Scholar]
  48. Mazhar S, Herbst R. 48.  2012. The formation of complex acetylcholine receptor clusters requires MuSK kinase activity and structural information from the MuSK extracellular domain. Mol. Cell. Neurosci. 49475–86 [Google Scholar]
  49. Proszynski TJ, Gingras J, Valdez G, Krzewski K, Sanes JR. 49.  2009. Podosomes are present in a postsynaptic apparatus and participate in its maturation. PNAS 10618373–78 [Google Scholar]
  50. Proszynski TJ, Sanes JR. 50.  2013. Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. J. Cell Sci. 1262225–35 [Google Scholar]
  51. Gingras J, Gawor M, Bernadzki KM, Grady RM, Hallock P. 51.  et al. 2016. α-Dystrobrevin-1 recruits Grb2 and α-catulin to organize neurotransmitter receptors at the neuromuscular junction. J. Cell Sci. 129898–911 [Google Scholar]
  52. Chen Y, Ip FC, Shi L, Zhang Z, Tang H. 52.  et al. 2014. Coronin 6 regulates acetylcholine receptor clustering through modulating receptor anchorage to actin cytoskeleton. J. Neurosci. 342413–21 [Google Scholar]
  53. Härönen H, Zainul Z, Tu H, Naumenko N, Sormunen R. 53.  et al. 2017. Collagen XIII secures pre- and postsynaptic integrity of the neuromuscular synapse. Hum. Mol. Genet. 262076–90 [Google Scholar]
  54. Tang H, Macpherson P, Argetsinger LS, Cieslak D, Suhr ST. 54.  et al. 2004. CaM kinase II-dependent phosphorylation of myogenin contributes to activity-dependent suppression of nAChR gene expression in developing rat myotubes. Cell. Signal. 16551–63 [Google Scholar]
  55. Chen F, Liu Y, Sugiura Y, Allen PD, Gregg RG, Lin W. 55.  2011. Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors. Nat. Neurosci. 14570–77 [Google Scholar]
  56. Chen F, Qian L, Yang ZH, Huang Y, Ngo ST. 56.  et al. 2007. Rapsyn interaction with calpain stabilizes AChR clusters at the neuromuscular junction. Neuron 55247–60 [Google Scholar]
  57. Yang J, Dominguez B, de Winter F, Gould TW, Eriksson JE, Lee KF. 57.  2011. Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse. Nat. Neurosci. 14324–30 [Google Scholar]
  58. Mohseni P, Sung HK, Murphy AJ, Laliberte CL, Pallari HM. 58.  et al. 2011. Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions. J. Neurosci. 3111547–52 [Google Scholar]
  59. Shi L, Butt B, Ip FC, Dai Y, Jiang L. 59.  et al. 2010. Ephexin1 is required for structural maturation and neurotransmission at the neuromuscular junction. Neuron 65204–16 [Google Scholar]
  60. Wang JY, Chen F, Fu XQ, Ding CS, Zhou L. 60.  et al. 2014. Caspase-3 cleavage of Dishevelled induces elimination of postsynaptic structures. Dev. Cell 28670–84 [Google Scholar]
  61. Shen C, Lu Y, Zhang B, Figueiredo D, Bean J. 61.  et al. 2013. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J. Clin. Investig. 1235190–202 [Google Scholar]
  62. Viegas S, Jacobson L, Waters P, Cossins J, Jacob S. 62.  et al. 2012. Passive and active immunization models of MuSK-Ab positive myasthenia: electrophysiological evidence for pre and postsynaptic defects. Exp. Neurol. 234506–12 [Google Scholar]
  63. Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z. 63.  et al. 2002. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35489–505 [Google Scholar]
  64. Jing L, Lefebvre JL, Gordon LR, Granato M. 64.  2009. Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron 61721–33 [Google Scholar]
  65. Jing L, Gordon LR, Shtibin E, Granato M. 65.  2010. Temporal and spatial requirements of unplugged/MuSK function during zebrafish neuromuscular development. PLOS ONE 5e8843 [Google Scholar]
  66. Banerjee S, Gordon L, Donn TM, Berti C, Moens CB. 66.  et al. 2011. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration. Development 1383287–96 [Google Scholar]
  67. Lain E, Carnejac S, Escher P, Wilson MC, Lomo T. 67.  et al. 2009. A novel role for embigin to promote sprouting of motor nerve terminals at the neuromuscular junction. J. Biol. Chem. 2848930–39 [Google Scholar]
  68. Yumoto N, Kim N, Burden SJ. 68.  2012. Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature 489438–42 [Google Scholar]
  69. Li XM, Dong XP, Luo SW, Zhang B, Lee DH. 69.  et al. 2008. Retrograde regulation of motoneuron differentiation by muscle β-catenin. Nat. Neurosci. 11262–68 [Google Scholar]
  70. Liu Y, Sugiura Y, Wu F, Mi W, Taketo MM. 70.  et al. 2012. β-Catenin stabilization in skeletal muscles, but not in motor neurons, leads to aberrant motor innervation of the muscle during neuromuscular development in mice. Dev. Biol. 366255–67 [Google Scholar]
  71. Wu H, Lu Y, Barik A, Joseph A, Taketo MM. 71.  et al. 2012. β-Catenin gain of function in muscles impairs neuromuscular junction formation. Development 1392392–404 [Google Scholar]
  72. Zhao K, Shen C, Lu Y, Huang Z, Li L. 72.  et al. 2017. Muscle Yap is a regulator of neuromuscular junction formation and regeneration. J. Neurosci. 373465–77 [Google Scholar]
  73. Wu H, Barik A, Lu Y, Shen C, Bowman A. 73.  et al. 2015. Slit2 as a β-catenin/Ctnnb1-dependent retrograde signal for presynaptic differentiation. eLife 4e07266 [Google Scholar]
  74. Jaworski A, Tessier-Lavigne M. 74.  2012. Autocrine/juxtaparacrine regulation of axon fasciculation by Slit-Robo signaling. Nat. Neurosci. 15367–69 [Google Scholar]
  75. Chen J, Billings SE, Nishimune H. 75.  2011. Calcium channels link the muscle-derived synapse organizer laminin β2 to Bassoon and CAST/Erc2 to organize presynaptic active zones. J. Neurosci. 31512–25 [Google Scholar]
  76. Chand KK, Lee KM, Schenning MP, Lavidis NA, Noakes PG. 76.  2014. Loss of β2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction. J. Physiol. 593245–65 [Google Scholar]
  77. Paratcha G, Ledda F. 77.  2008. GDNF and GFRα: a versatile molecular complex for developing neurons. Trends Neurosci 31384–91 [Google Scholar]
  78. Keller-Peck CR, Feng G, Sanes JR, Yan Q, Lichtman JW, Snider WD. 78.  2001. Glial cell line-derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction. J. Neurosci. 216136–46 [Google Scholar]
  79. Baudet C, Pozas E, Adameyko I, Andersson E, Ericson J, Ernfors P. 79.  2008. Retrograde signaling onto Ret during motor nerve terminal maturation. J. Neurosci. 28963–75 [Google Scholar]
  80. Zahavi EE, Ionescu A, Gluska S, Gradus T, Ben-Yaakov K, Perlson E. 80.  2015. A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions. J. Cell Sci. 1281241–52 [Google Scholar]
  81. Klevanski M, Saar M, Baumkötter F, Weyer SW, Kins S, Müller UC. 81.  2014. Differential role of APP and APLPs for neuromuscular synaptic morphology and function. Mol. Cell. Neurosci. 61201–10 [Google Scholar]
  82. Stanga S, Zanou N, Audouard E, Tasiaux B, Contino S. 82.  et al. 2016. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation. FASEB J 301696–711 [Google Scholar]
  83. Henriquez JP, Webb A, Bence M, Bildsoe H, Sahores M. 83.  et al. 2008. Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin. PNAS 10518812–17 [Google Scholar]
  84. Messeant J, Ezan J, Delers P, Glebov K, Marchiol C. 84.  et al. 2017. Wnt proteins contribute to neuromuscular junction formation through distinct signaling pathways. Development 1441712–24 [Google Scholar]
  85. Zhang B, Liang C, Bates R, Yin Y, Xiong WC, Mei L. 85.  2012. Wnt proteins regulate acetylcholine receptor clustering in muscle cells. Mol. Brain 57 [Google Scholar]
  86. Strochlic L, Falk J, Goillot E, Sigoillot S, Bourgeois F. 86.  et al. 2012. Wnt4 participates in the formation of vertebrate neuromuscular junction. PLOS ONE 7e29976 [Google Scholar]
  87. Wang J, Luo ZG. 87.  2008. The role of Wnt/β-catenin signaling in postsynaptic differentiation. Comm. Integr. Biol. 1158–60 [Google Scholar]
  88. Remedio L, Gribble KD, Lee JK, Kim N, Hallock PT. 88.  et al. 2016. Diverging roles for Lrp4 and Wnt signaling in neuromuscular synapse development during evolution. Genes Dev 301058–69 [Google Scholar]
  89. Sienknecht UJ, Fekete DM. 89.  2008. Comprehensive Wnt-related gene expression during cochlear duct development in chicken. J. Comp. Neurol. 510378–95 [Google Scholar]
  90. Gordon LR, Gribble KD, Syrett CM, Granato M. 90.  2012. Initiation of synapse formation by Wnt-induced MuSK endocytosis. Development 1391023–33 [Google Scholar]
  91. Zhang J, Granato M. 91.  2000. The zebrafish unplugged gene controls motor axon pathway selection. Development 1272099–111 [Google Scholar]
  92. Messeant J, Dobbertin A, Girard E, Delers P, Manuel M. 92.  et al. 2015. MuSK Frizzled-like domain is critical for mammalian neuromuscular junction formation and maintenance. J. Neurosci. 354926–41 [Google Scholar]
  93. Zhu D, Yang Z, Luo Z, Luo S, Xiong WC, Mei L. 93.  2008. Muscle-specific receptor tyrosine kinase endocytosis in acetylcholine receptor clustering in response to agrin. J. Neurosci. 281688–96 [Google Scholar]
  94. Wang J, Jing Z, Zhang L, Zhou G, Braun J. 94.  et al. 2003. Regulation of acetylcholine receptor clustering by the tumor suppressor APC. Nat. Neurosci. 61017–18 [Google Scholar]
  95. Zhang B, Luo S, Dong XP, Zhang X, Liu C. 95.  et al. 2007. β-catenin regulates acetylcholine receptor clustering in muscle cells through interaction with rapsyn. J. Neurosci. 273968–73 [Google Scholar]
  96. Cheusova T, Khan MA, Schubert SW, Gavin AC, Buchou T. 96.  et al. 2006. Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction. Genes Dev 201800–16 [Google Scholar]
  97. Barik A, Zhang B, Sohal GS, Xiong WC, Mei L. 97.  2014. Crosstalk between Agrin and Wnt signaling pathways in development of vertebrate neuromuscular junction. Dev. Neurobiol. 74828–38 [Google Scholar]
  98. Shen C, Xiong WC, Mei L. 98.  2015. LRP4 in neuromuscular junction and bone development and diseases. Bone 80101–8 [Google Scholar]
  99. Lichtman JW, Colman H. 99.  2000. Synapse elimination and indelible memory. Neuron 25269–78 [Google Scholar]
  100. Fox MA, Tapia JC, Kasthuri N, Lichtman JW. 100.  2011. Delayed synapse elimination in mouse levator palpebrae superioris muscle. J. Comp. Neurol. 5192907–21 [Google Scholar]
  101. Favero M, Busetto G, Cangiano A. 101.  2012. Spike timing plays a key role in synapse elimination at the neuromuscular junction. PNAS 109E1667–75 [Google Scholar]
  102. Balice-Gordon RJ, Lichtman JW. 102.  1994. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372519–24 [Google Scholar]
  103. Bishop DL, Misgeld T, Walsh MK, Gan WB, Lichtman JW. 103.  2004. Axon branch removal at developing synapses by axosome shedding. Neuron 44651–61 [Google Scholar]
  104. Turney SG, Lichtman JW. 104.  2012. Reversing the outcome of synapse elimination at developing neuromuscular junctions in vivo: evidence for synaptic competition and its mechanism. PLOS Biol 10e1001352 [Google Scholar]
  105. Darabid H, Arbour D, Robitaille R. 105.  2013. Glial cells decipher synaptic competition at the mammalian neuromuscular junction. J. Neurosci. 331297–313 [Google Scholar]
  106. Smith IW, Mikesh M, Lee Y, Thompson WJ. 106.  2013. Terminal Schwann cells participate in the competition underlying neuromuscular synapse elimination. J. Neurosci. 3317724–36 [Google Scholar]
  107. Lee YI, Li Y, Mikesh M, Smith I, Nave KA. 107.  et al. 2016. Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. PNAS 113E479–87 [Google Scholar]
  108. Roche SL, Sherman DL, Dissanayake K, Soucy G, Desmazieres A. 108.  et al. 2014. Loss of glial neurofascin155 delays developmental synapse elimination at the neuromuscular junction. J. Neurosci. 3412904–18 [Google Scholar]
  109. Brill MS, Kleele T, Ruschkies L, Wang M, Marahori NA. 109.  et al. 2016. Branch-specific microtubule destabilization mediates axon branch loss during neuromuscular synapse elimination. Neuron 92845–56 [Google Scholar]
  110. Tetruashvily MM, McDonald MA, Boulanger LM. 110.  2016. MHCI promotes developmental synapse elimination and aging-related synapse loss at the vertebrate neuromuscular junction. Brain Behav. Immun. 56197–208 [Google Scholar]
  111. Yang F, Je HS, Ji Y, Nagappan G, Hempstead B, Lu B. 111.  2009. Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. J. Cell Biol. 185727–41 [Google Scholar]
  112. Couesnon A, Offner N, Bernard V, Chaverot N, Backer S. 112.  et al. 2013. CLIPR-59: a protein essential for neuromuscular junction stability during mouse late embryonic development. Development 1401583–93 [Google Scholar]
  113. Samuel MA, Valdez G, Tapia JC, Lichtman JW, Sanes JR. 113.  2012. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions. PLOS ONE 7e46663 [Google Scholar]
  114. Martinez-Peña y Valenzuela I, Mouslim C, Pires-Oliveira M, Adams ME, Froehner SC, Akaaboune M. 114.  2011. Nicotinic acetylcholine receptor stability at the NMJ deficient in α-syntrophin in vivo. . J. Neurosci. 3115586–96 [Google Scholar]
  115. Aittaleb M, Martinez-Peña y Valenzuela I, Akaaboune M. 115.  2017. Spatial distribution and molecular dynamics of dystrophin glycoprotein components at the neuromuscular junction in vivo. . J. Cell Sci. 1301752–59 [Google Scholar]
  116. Mouslim C, Aittaleb M, Hume RI, Akaaboune M. 116.  2012. A role for the calmodulin kinase II-related anchoring protein (αkap) in maintaining the stability of nicotinic acetylcholine receptors. J. Neurosci. 325177–85 [Google Scholar]
  117. Martinez-Peña y Valenzuela I, Pires-Oliveira M, Akaaboune M. 117.  2013. PKC and PKA regulate AChR dynamics at the neuromuscular junction of living mice. PLOS ONE 8e81311 [Google Scholar]
  118. Choi K-R, Berrera M, Reischl M, Strack S, Albrizio M. 118.  et al. 2012. Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo. J. Cell Sci. 125714–23 [Google Scholar]
  119. Barik A, Lu Y, Sathyamurthy A, Bowman A, Shen C. 119.  et al. 2014. LRP4 is critical for neuromuscular junction maintenance. J. Neurosci. 3413892–905 [Google Scholar]
  120. Eguchi T, Tezuka T, Miyoshi S, Yamanashi Y. 120.  2016. Postnatal knockdown of dok-7 gene expression in mice causes structural defects in neuromuscular synapses and myasthenic pathology. Genes Cells 21670–76 [Google Scholar]
  121. Kong XC, Barzaghi P, Ruegg MA. 121.  2004. Inhibition of synapse assembly in mammalian muscle in vivo by RNA interference. EMBO Rep 5183–88 [Google Scholar]
  122. Hesser BA, Henschel O, Witzemann V. 122.  2006. Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK. Mol. Cell. Neurosci. 31470–80 [Google Scholar]
  123. Schmidt N, Akaaboune M, Gajendran N, Martinez-Peña y Valenzuela I, Wakefield S. 123.  et al. 2011. Neuregulin/ErbB regulate neuromuscular junction development by phosphorylation of α-dystrobrevin. J. Cell Biol. 1951171–84 [Google Scholar]
  124. Khan MM, Lustrino D, Silveira WA, Wild F, Straka T. 124.  et al. 2016. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. PNAS 113746–50 [Google Scholar]
  125. Wright MC, Potluri S, Wang X, Dentcheva E, Gautam D. 125.  et al. 2009. Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses. J. Neurosci. 2914942–55 [Google Scholar]
  126. Sugiura Y, Lin W. 126.  2011. Neuron-glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function. Biosci. Rep. 31295–302 [Google Scholar]
  127. Barik A, Li L, Sathyamurthy A, Xiong WC, Mei L. 127.  2016. Schwann cells in neuromuscular junction formation and maintenance. J. Neurosci. 369770–81 [Google Scholar]
  128. Kang H, Tian L, Mikesh M, Lichtman JW, Thompson WJ. 128.  2014. Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J. Neurosci. 346323–33 [Google Scholar]
  129. Nguyen QT, Sanes JR, Lichtman JW. 129.  2002. Pre-existing pathways promote precise projection patterns. Nat. Neurosci. 5861–67 [Google Scholar]
  130. Son YJ, Thompson WJ. 130.  1995. Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14133–41 [Google Scholar]
  131. Ko CP, Thompson W. 131.  2003. Preface to the special issue. J. Neurocytol. 32423 [Google Scholar]
  132. Marques MJ, Pereira ECL, Minatel E, Neto HS. 132.  2006. Nerve-terminal and Schwann-cell response after nerve injury in the absence of nitric oxide. Muscle Nerve 34225–31 [Google Scholar]
  133. Rosenberg AF, Isaacman-Beck J, Franzini-Armstrong C, Granato M. 133.  2014. Schwann cells and deleted in colorectal carcinoma direct regenerating motor axons towards their original path. J. Neurosci. 3414668–81 [Google Scholar]
  134. Isaacman-Beck J, Schneider V, Franzini-Armstrong C, Granato M. 134.  2015. The lh3 glycosyltransferase directs target-selective peripheral nerve regeneration. Neuron 88691–703 [Google Scholar]
  135. Peng HB, Yang JF, Dai Z, Lee CW, Hung HW. 135.  et al. 2003. Differential effects of neurotrophins and Schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J. Neurosci. 235050–60 [Google Scholar]
  136. Ullian EM, Harris BT, Wu A, Chan JR, Barres BA. 136.  2004. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol. Cell. Neurosci. 25241–51 [Google Scholar]
  137. Fontana X, Hristova M, Da Costa C, Patodia S, Thei L. 137.  et al. 2012. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J. Cell Biol. 198127–41 [Google Scholar]
  138. Xu P, Rosen KM, Hedstrom K, Rey O, Guha S. 138.  et al. 2013. Nerve injury induces glial cell line-derived neurotrophic factor (GDNF) expression in Schwann cells through purinergic signaling and the PKC-PKD pathway. Glia 611029–40 [Google Scholar]
  139. Vincent A.139.  2002. Unravelling the pathogenesis of myasthenia gravis. Nat. Rev. Immunol. 2797–804 [Google Scholar]
  140. Phillips WD, Vincent A. 140.  2016. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Res 51513 [Google Scholar]
  141. Higuchi O, Hamuro J, Motomura M, Yamanashi Y. 141.  2011. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann. Neurol. 69418–22 [Google Scholar]
  142. Pevzner A, Schoser B, Peters K, Cosma NC, Karakatsani A. 142.  et al. 2012. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J. Neurol. 259427–35 [Google Scholar]
  143. Gasperi C, Melms A, Schoser B, Zhang Y, Meltoranta J. 143.  et al. 2014. Anti-agrin autoantibodies in myasthenia gravis. Neurology 821976–83 [Google Scholar]
  144. Zhang B, Shen C, Bealmear B, Ragheb S, Xiong WC. 144.  et al. 2014. Autoantibodies to agrin in myasthenia gravis patients. PLOS ONE 9e91816 [Google Scholar]
  145. Sanders DB, El-Salem K, Massey JM, McConville J, Vincent A. 145.  2003. Clinical aspects of MuSK antibody positive seronegative MG. Neurology 601978–80 [Google Scholar]
  146. Engel AG, Shen XM, Selcen D, Sine SM. 146.  2015. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14420–34 [Google Scholar]
  147. Berger MJ, Doherty TJ. 147.  2010. Sarcopenia: prevalence, mechanisms, and functional consequences. Interdiscip. Top. Gerontol. 3794–114 [Google Scholar]
  148. Valdez G, Tapia JC, Kang H, Clemenson GD Jr., Gage FH. 148.  et al. 2010. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. PNAS 10714863–68 [Google Scholar]
  149. Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T. 149.  2011. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLOS ONE 6e28090 [Google Scholar]
  150. Li Y, Lee Y, Thompson WJ. 150.  2011. Changes in aging mouse neuromuscular junctions are explained by degeneration and regeneration of muscle fiber segments at the synapse. J. Neurosci. 3114910–19 [Google Scholar]
  151. Li Y, Thompson WJ. 151.  2011. Nerve terminal growth remodels neuromuscular synapses in mice following regeneration of the postsynaptic muscle fiber. J. Neurosci. 3113191–203 [Google Scholar]
  152. Willadt S, Nash M, Slater CR. 152.  2016. Age-related fragmentation of the motor endplate is not associated with impaired neuromuscular transmission in the mouse diaphragm. Sci. Rep. 624849 [Google Scholar]
  153. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM. 153.  et al. 2014. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 81509–21 [Google Scholar]
  154. Butikofer L, Zurlinden A, Bolliger MF, Kunz B, Sonderegger P. 154.  2011. Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J 254378–93 [Google Scholar]
  155. Valdez G, Tapia JC, Lichtman JW, Fox MA, Sanes JR. 155.  2012. Shared resistance to aging and ALS in neuromuscular junctions of specific muscles. PLOS ONE 7e34640 [Google Scholar]
  156. Williams AH, Valdez G, Moresi V, Qi X, McAnally J. 156.  et al. 2009. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 3261549–54 [Google Scholar]
  157. Murray LM, Lee S, Baumer D, Parson SH, Talbot K, Gillingwater TH. 157.  2010. Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy. Hum. Mol. Genet. 19420–33 [Google Scholar]
  158. Lee YI, Mikesh M, Smith I, Rimer M, Thompson W. 158.  2011. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev. Biol. 356432–44 [Google Scholar]
  159. Hettwer S, Lin S, Kucsera S, Haubitz M, Oliveri F. 159.  et al. 2014. Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction. PLOS ONE 9e88739 [Google Scholar]
  160. Perez-Garcia MJ, Burden SJ. 160.  2012. Increasing MuSK activity delays denervation and improves motor function in ALS mice. Cell Rep 2497–502 [Google Scholar]
  161. Kim JK, Caine C, Awano T, Herbst R, Monani UR. 161.  2017. Motor neuronal repletion of the NMJ organizer, Agrin, modulates the severity of the spinal muscular atrophy disease phenotype in model mice. Hum. Mol. Genet. 262377–85 [Google Scholar]
  162. Ghazanfari N, Linsao EL, Trajanovska S, Morsch M, Gregorevic P. 162.  et al. 2015. Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiol. Rep. 3e12658 [Google Scholar]
  163. Dürnberger G, Camurdanoglu BZ, Tomschik M, Schutzbier M, Roitinger E. 163.  et al. 2014. Global analysis of muscle-specific kinase signaling by quantitative phosphoproteomics. Mol. Cell. Proteom. 131993–2003 [Google Scholar]
  164. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. 164.  2001. The architecture of active zone material at the frog's neuromuscular junction. Nature 409479–84 [Google Scholar]
  165. Yilmaz A, Kattamuri C, Ozdeslik RN, Schmiedel C, Mentzer S. 165.  2016. MuSK is a BMP co-receptor that shapes BMP responses and calcium signaling in muscle cells. Sci. Signal. 9ra87 [Google Scholar]
  166. York AL, Zheng JQ. 166.  2017. Super-resolution microscopy reveals a nanoscale organization of acetylcholine receptors for trans-synaptic alignment at neuromuscular synapses. eNeuro 4e0232–17 [Google Scholar]
  167. Polo-Parada L, Bose CM, Landmesser LT. 164.  2001. Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron 32815–28 [Google Scholar]
/content/journals/10.1146/annurev-physiol-022516-034255
Loading
/content/journals/10.1146/annurev-physiol-022516-034255
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error