The exteroceptive somatosensory system is important for reflexive and adaptive behaviors and for the dynamic control of movement in response to external stimuli. This review outlines recent efforts using genetic approaches in the mouse to map the spinal cord circuits that transmit and gate the cutaneous somatosensory modalities of touch, pain, and itch. Recent studies have revealed an underlying modular architecture in which nociceptive, pruritic, and innocuous stimuli are processed by distinct molecularly defined interneuron cell types. These include excitatory populations that transmit information about both innocuous and painful touch and inhibitory populations that serve as a gate to prevent innocuous stimuli from activating the nociceptive and pruritic transmission pathways. By dissecting the cellular composition of dorsal-horn networks, studies are beginning to elucidate the intricate computational logic of somatosensory transformation in health and disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Windhorst U.1.  2007. Muscle proprioceptive feedback and spinal networks. Brain Res. Bull. 73155–202 [Google Scholar]
  2. Janig W.2.  2006. The Integrative Action of the Autonomic Nervous System Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  3. Abraira VE, Ginty DD. 3.  2013. The sensory neurons of touch. Neuron 79618–39 [Google Scholar]
  4. Lallemend F, Ernfors P. 4.  2012. Molecular interactions underlying the specification of sensory neurons. Trends Neurosci 35373–81 [Google Scholar]
  5. Bautista DM, Wilson SR, Hoon MA. 5.  2014. Why we scratch an itch: the molecules, cells and circuits of itch. Nat. Neurosci. 17175–82 [Google Scholar]
  6. Amann M, Sidhu SK, Weavil JC, Mangum TS, Venturelli M. 6.  2015. Autonomic responses to exercise: group III/IV muscle afferents and fatigue. Auton. Neurosci. 18819–23 [Google Scholar]
  7. Pearson KG.7.  2004. Generating the walking gait: role of sensory feedback. Prog. Brain Res. 143123–29 [Google Scholar]
  8. Rossignol S.8.  2006. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 8689–154 [Google Scholar]
  9. Akay T, Tourtellotte WG, Arber S, Jessell TM. 9.  2014. Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. PNAS 11116877–82 [Google Scholar]
  10. Fink AJP, Croce KR, Huang ZJ, Abbott LF, Jessell TM, Azim E. 10.  2014. Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature 50943–48 [Google Scholar]
  11. Jankowska E.11.  1998. Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 38335–78 [Google Scholar]
  12. Hasan Z, Stuart DG. 12.  1988. Animal solutions to problems of movement control: the role of proprioceptors. Annu. Rev. Neurosci. 11199–223 [Google Scholar]
  13. LaMotte RH, Dong X, Ringkamp M. 13.  2014. Sensory neurons and circuits mediating itch. Nat. Rev. Neurosci. 1519–31 [Google Scholar]
  14. Bourane S, Garces A, Venteo S, Pattyn A, Hubert T. 14.  et al. 2009. Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by ret signaling. Neuron 64857–70 [Google Scholar]
  15. Luo W, Enomoto H, Rice FL, Milbrandt J, Ginty DD. 15.  2009. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron 64841–56 [Google Scholar]
  16. Wende H, Lechner SG, Cheret C, Bourane S, Kolanczyk ME. 16.  et al. 2012. The transcription factor c-Maf controls touch receptor development and function. Science 3351373–76 [Google Scholar]
  17. McGlone F, Wessberg J, Olausson H. 17.  2014. Discriminative and affective touch: sensing and feeling. Neuron 82737–5 [Google Scholar]
  18. Brown AG.18.  1981. Organization in the Spinal Cord New York: Springer [Google Scholar]
  19. Basbaum AI, Bautista DM, Scherrer G, Julius D. 19.  2009. Cellular and molecular mechanisms of pain. Cell 139267–84 [Google Scholar]
  20. Julius D, Basbaum AI. 20.  2001. Molecular mechanisms of nociception. Nature 413203–10 [Google Scholar]
  21. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. 21.  2007. TRPM8 is required for cold sensation in mice. Neuron 54371–78 [Google Scholar]
  22. Zylka MJ, Rice FL, Anderson DJ. 22.  2005. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. . Neuron 4517–25 [Google Scholar]
  23. Fukuoka M, Miyachi Y, Ikoma A. 23.  2013. Mechanically evoked itch in humans. Pain 154897–904 [Google Scholar]
  24. Jessell TM. 24.  2000. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 120–29 [Google Scholar]
  25. Goulding M, Lanuza G, Sapir T, Narayan S. 25.  2002. The formation of sensorimotor circuits. Curr. Opin. Neurobiol. 5508–515 [Google Scholar]
  26. Lei Q, Jeong Y, Misra K, Li A, Zelman AK. 26.  et al. 2006. Wnt signaling inhibitors regulate the transcriptional response to morphogenetic Shh-Gli signaling in the neural tube. Dev. Cell 11325–37 [Google Scholar]
  27. Lee KJ, Mendelsohn Jessell TM. 27.  1998. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 123394–407 [Google Scholar]
  28. Le Dréau G Martí E. 28.  2012. Dorsal-ventral patterning of the neural tube: a tale of three signals. Dev. Neurobiol. 721471–81 [Google Scholar]
  29. Müller T, Anlag K, Wildner H, Britsch S, Treier M, Birchmeier C. 29.  2005. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev 19733–43 [Google Scholar]
  30. Müller T, Brohmann H, Pierani A, Heppenstall PA, Lewin GR. 30.  et al. 2002. The homeodomain factor Lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34551–62 [Google Scholar]
  31. Gross MK, Dottori M, Goulding M. 31.  2002. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34535–49 [Google Scholar]
  32. Glasgow SM, Henke RM, Macdonald RJ, Wright CVE, Johnson JE. 32.  2005. Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development5461–69 [Google Scholar]
  33. Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A. 33.  et al. 2004. Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat. Neurosci. 7510–17 [Google Scholar]
  34. Guo Z, Zhao C, Huang M, Huang T, Fan M. 34.  et al. 2012. Tlx1/3 and Ptf1a control the expression of distinct sets of transmitter and peptide receptor genes in the developing dorsal spinal cord. J. Neurosci. 328509–20 [Google Scholar]
  35. Schouenborg J.35.  2003. Somatosensory imprinting in spinal reflex modules. J. Rehabil. Med. 4173–80 [Google Scholar]
  36. Bröhl D, Strehle M, Wende H, Hori K, Bormuth I. 36.  et al. 2008. A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal cord. Dev. Biol. 322381–93 [Google Scholar]
  37. Del Barrio MG, Bourane S, Grossman K, Schüle R, Britsch S. 37.  et al. 2013. A transcription factor code defines nine sensory interneuron subtypes in the mechanosensory area of the spinal cord. PLOS ONE 8e77928 [Google Scholar]
  38. Wildner H, Das Gupta R, Bröhl D, Heppenstall PA, Zeilhofer HU, Birchmeier C. 38.  2013. Genome-wide expression analysis of Ptf1a- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive reflex plasticity. J. Neurosci. 337299–303 [Google Scholar]
  39. Xu Y, Lopes C, Wende H, Guo Z, Cheng L. 39.  et al. 2013. Ontogeny of excitatory spinal neurons processing distinct somatic sensory modalities. J. Neurosci. 3314738–48 [Google Scholar]
  40. Abraira VE, Kuehn ED, Chirila AM, Springel MW, Toliver AA. 40.  et al. 2017. The cellular and synaptic architecture of the mechanosensory dorsal horn. Cell 168295–310 [Google Scholar]
  41. Bourane S, Grossmann KS, Britz O, Dalet A, Del Barrio MG. 41.  et al. 2015. Identification of a spinal circuit for light touch and fine motor control. Cell 160503–15 [Google Scholar]
  42. Todd AJ.42.  2010. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11823–36 [Google Scholar]
  43. Grudt TJ, Perl ER. 43.  2002. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J. Physiol. 540189–207 [Google Scholar]
  44. Light AR, Trevino DL, Perl ER. 44.  1979. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J. Comp. Neurol. 186151–71 [Google Scholar]
  45. Christensen AJ, Iyer SM, Francois A, Vyas S, Ramakrishnan C. 45.  et al. 2016. In vivo interrogation of spinal mechanosensory circuits. Cell Rep 171699–710 [Google Scholar]
  46. Duan B, Cheng L, Bourane S, Britz O, Padilla C. 46.  et al. 2014. Identification of spinal circuits transmitting and gating mechanical pain. Cell 1591417–32 [Google Scholar]
  47. Cheng L, Duan B, Huang T, Zhang Y, Chen Y. 47.  et al. 2017. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain. Nat. Neurosci. 20804–14 [Google Scholar]
  48. Sun S, Xu Q, Guo C, Guan Y, Liu Q, Dong X. 48.  2017. Leaky gate model: intensity-dependent coding of pain and itch in the spinal cord. Neuron 93840–53 [Google Scholar]
  49. Melzack R, Wall PD. 49.  1965. Pain mechanisms: a new theory. Science 150971–79 [Google Scholar]
  50. Lima D, Avelino A, Coimbra A. 50.  1993. Morphological characterization of marginal (lamina I) neurons immunoreactive for substance P, enkephalin, dynorphin and gamma-aminobutyric acid in the rat spinal cord. J. Chem. Neuroanat. 643–52 [Google Scholar]
  51. Sardella T, Polgár E, Garzillo F, Furuta T, Kaneko T. 51.  et al. 2011. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol. Pain 776 [Google Scholar]
  52. Noguchi K, Kowalski K, Traub R, Solodkin A, Iadarola MJ, Ruda MA. 52.  1991. Dynorphin expression and Fos-like immunoreactivity following inflammation induced hyperalgesia are colocalized in spinal cord neurons. Mol. Brain Res. 10227–33 [Google Scholar]
  53. Polgár E, Sardella TCP, Tiong SYX, Locke S, Watanabe M, Todd AJ. 53.  2013. Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn. Pain 1542606–15 [Google Scholar]
  54. Kardon AP, Polgár E, Hachisuka J, Snyder LM, Cameron D. 54.  et al. 2014. Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 82573–86 [Google Scholar]
  55. Liuzzi FJ, Wu W, Scoville SA, Schinco FP. 55.  1993. Development of nitric oxide synthase expression in the superficial dorsal horn of the rat spinal cord. Exp. Neurol. 121275–78 [Google Scholar]
  56. Puskár Z, Polgár E, Todd AJ. 56.  2001. A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord. Neuroscience 102167–76 [Google Scholar]
  57. Hughes AS, Averill S, King VR, Molander C, Shortland PJ. 57.  2008. Neurochemical characterization of neuronal populations expressing protein kinase C gamma isoform in the spinal cord and gracile nucleus of the rat. Neuroscience 153507–17 [Google Scholar]
  58. Sardella TCP, Polgá E, Watanabe M, Todd AJ. 58.  2011. A quantitative study of neuronal nitric oxide synthase expression in laminae I–III of the rat spinal dorsal horn. Neuroscience 192708–20 [Google Scholar]
  59. Spike RC, Todd AJ, Johnston HM. 59.  1993. Coexistence of NADPH diaphorase with GABA, glycine, and acetylcholine in rat spinal cord. J. Comp. Neurol. 335320–33 [Google Scholar]
  60. Boettger MK, Üceyler N, Zelenka M, Schmitt A, Reif A. 60.  et al. 2007. Differences in inflammatory pain in nNOS-, iNOS- and eNOS-deficient mice. Eur. J. Pain 11810–18 [Google Scholar]
  61. Chu Y, Guan Y, Skinner J, Raja S, Johns R, Tao Y-X. 61.  2005. Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund's adjuvant-induced persistent pain. Pain 119113–23 [Google Scholar]
  62. Guan Y, Yaster M, Raja S, Tao Y-X. 62.  2007. Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Mol. Pain 329 [Google Scholar]
  63. Iwamoto ET, Marion L. 63.  1994. Pharmacologic evidence that spinal muscarinic analgesia is mediated by an L-arginine/nitric oxide/cyclic GMP cascade in rats. J. Pharmacol. Exp. Ther. 271601–8 [Google Scholar]
  64. Luo ZD, Cizkova D. 64.  2000. The role of nitric oxide in nociception. Curr. Rev. Pain 4459–66 [Google Scholar]
  65. Meller S, Pechman P, Gebhart G, Maves T. 65.  1992. Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience 507–10 [Google Scholar]
  66. Osborne MG, Coderre TJ. 66.  1999. Effects of intrathecal administration of nitric oxide synthase inhibitors on carrageenan-induced thermal hyperalgesia. Br. J. Pharmacol. 1261840–46 [Google Scholar]
  67. Tao F, Tao YX, Zhao C, Doré S, Liaw WJ. 67.  et al. 2004. Differential roles of neuronal and endothelial nitric oxide synthases during carrageenan-induced inflammatory hyperalgesia. Neuroscience 128421–30 [Google Scholar]
  68. Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ. 68.  et al. 2002. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J. Neurosci. 221010–19 [Google Scholar]
  69. Cui L, Miao X, Liang L, Abdus-Saboor I, Olson W. 69.  et al. 2016. Identification of early RET+ deep dorsal spinal cord interneurons in gating pain. Neuron 911137–53 [Google Scholar]
  70. Hughes DI, Sikander S, Kinnon CM, Boyle KA, Watanabe M. 70.  et al. 2012. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J. Physiol. 5903927–51 [Google Scholar]
  71. Petitjean H, Pawlowski SA, Fraine SL, Sharif B, Hamad D. 71.  et al. 2015. Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury. Cell Rep 131246–57 [Google Scholar]
  72. Antal M, Polgár E, Chalmers J, Minson JB, Llewellyn-Smith I. 72.  et al. 1991. Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord. J. Comp. Neurol. 314114–24 [Google Scholar]
  73. Mineta Y, Koyanagi H, Morimoto M, Harano K, Totoki T, Jacobowitz D. 73.  1996. Immunocytochemical study of parvalbumin, calbindin D-28k, and calretinin in the superficial dorsal horn of the rat spinal cord following unilateral hindpaw inflammation. J. Anesth. 10211–17 [Google Scholar]
  74. Yamamoto T, Carr PA, Baimbridge KG, Nagy JI. 74.  1989. Parvalbumin- and calbindin D28k-immunoreactive neurons in the superficial layers of the spinal cord dorsal horn of rat. Brain Res. Bull. 23493–508 [Google Scholar]
  75. Zacharova G, Sojka D, Palecek J. 75.  2009. Changes of parvalbumin expression in the spinal cord after peripheral inflammation. Physiol. Res. 58435–42 [Google Scholar]
  76. Kuner R.76.  2010. Central mechanisms of pathological pain. Nat. Med. 161258–66 [Google Scholar]
  77. Sandkühler J.77.  2009. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89707–58 [Google Scholar]
  78. Scholz J, Woolf CJ. 78.  2007. The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 101361–8 [Google Scholar]
  79. Duggan AW, Hope PJ, Lang CW. 79.  1991. Microinjection of neuropeptide-Y into the superficial dorsal horn reduces stimulus-evoked release of immunoreactive substance-P in the anesthetized cat. Neuroscience 44733–40 [Google Scholar]
  80. Schaible HG, Jarrott B, Hope PJ, Duggan AW. 80.  1990. Release of immunoreactive substance P in the spinal cord during development of acute arthritis in the knee joint of the cat: a study with antibody microprobes. Brain Res 529214–23 [Google Scholar]
  81. Al-Khater KM, Kerr R, Todd AJ. 81.  2008. A quantitative study of spinothalamic neurons in laminae I, III, and IV in lumbar and cervical segments of the rat spinal cord. J. Comp. Neurol. 5111–18 [Google Scholar]
  82. Spike RC, Puskár Z, Andrew D, Todd AJ. 82.  2003. A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur. J. Neurosci. 182433–48 [Google Scholar]
  83. Torsney C, MacDermott AB. 83.  2006. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J. Neurosci. 261833–43 [Google Scholar]
  84. Baseer N, Polgár E, Watanabe M, Furuta T, Kaneko T, Todd AJ. 84.  2012. Projection neurons in lamina III of the rat spinal cord are selectively innervated by local dynorphin-containing excitatory neurons. J. Neurosci. 3211854–63 [Google Scholar]
  85. Mantyh PW, Rogers SD, Honore P, Allen BJ, Ghilardi JR. 85.  et al. 1997. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278275–79 [Google Scholar]
  86. Peirs C, Williams SP, Zhao X, Walsh CE, Gedeon JY. 86.  et al. 2015. Dorsal horn circuits for persistent mechanical pain. Neuron 87797–812 [Google Scholar]
  87. Doly S, Fischer J, Conrath M. 87.  2004. The vanilloid receptor-1 (TRPV1) is expressed in some rat dorsal horn NK1 cells. Brain Res 1004203–7 [Google Scholar]
  88. Ferrini F, Salio C, Lossi L, Gambino G, Merighi A. 88.  2010. Modulation of inhibitory neurotransmission by the vanilloid receptor type 1 (TRPV1) in organotypically cultured mouse substantia gelatinosa neurons. Pain 150128–40 [Google Scholar]
  89. Kim YH, Back SK, Davies AJ, Jeong H, Jo HJ. 89.  et al. 2012. TRPV1 in GABAergic interneurons mediates neuropathic mechanical allodynia and disinhibition of the nociceptive circuitry in the spinal cord. Neuron 74640–47 [Google Scholar]
  90. Valtschanoff JG, Rustioni A, Guo A, Hwang SJ. 90.  2001. Vanilloid receptor VR1 is both presynaptic and postsynaptic in the superficial laminae of the rat dorsal horn. J. Comp. Neurol. 436225–35 [Google Scholar]
  91. Zhou HY, Chen SR, Chen H, Pan HL. 91.  2009. The glutamatergic nature of TRPV1-expressing neurons in the spinal dorsal horn. J. Neurochem. 108305–18 [Google Scholar]
  92. Costigan M, Scholz J, Woolf CJ. 92.  2009. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 321–32 [Google Scholar]
  93. Coull JAM, Boudreau D, Bachand K, Prescott SA, Nault F. 93.  et al. 2003. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424938–42 [Google Scholar]
  94. Patapoutian A, Tate S, Woolf CJ. 94.  2009. Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov. 855–68 [Google Scholar]
  95. Woolf CJ, Shortland P, Coggeshall RE. 95.  1992. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 35575–78 [Google Scholar]
  96. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J. 96.  et al. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288306–13 [Google Scholar]
  97. Malmberg AB, Chen C, Tonegawa S, Basbaum AI. 97.  1997. Preserved acute pain and reduced neuropathic pain in mice lacking PKCγ. Science 278279–83 [Google Scholar]
  98. Pham-Dang N, Descheemaeker A, Dallel R, Artola A. 98.  2016. Activation of medullary dorsal horn γ isoform of protein kinase C interneurons is essential to the development of both static and dynamic facial mechanical allodynia. Eur. J. Neurosci. 43802–10 [Google Scholar]
  99. Alba-Delgado C, El Khoueiry C, Peirs C, Dallel R, Artola A, Antri M. 99.  2015. Subpopulations of PKCγ interneurons within the medullary dorsal horn revealed by electrophysiologic and morphologic approach. Pain 1561714–28 [Google Scholar]
  100. Miraucourt LS, Moisset X, Dallel R, Voisin DL. 100.  2009. Glycine inhibitory dysfunction induces a selectively dynamic, morphine-resistant, and neurokinin 1 receptor-independent mechanical allodynia. J. Neurosci. 292519–27 [Google Scholar]
  101. Neumann S, Braz JM, Skinner K, Llewellyn-Smith IJ, Basbaum AI. 101.  2008. Innocuous, not noxious, input activates PKCγ interneurons of the spinal dorsal horn via myelinated afferent fibers. J. Neurosci. 287936–44 [Google Scholar]
  102. Sun YG, Zhao ZQ, Meng XL, Yin J, Liu XY, Chen ZF. 102.  2009. Cellular basis of itch sensation. Science 3251531–34 [Google Scholar]
  103. Bourane S, Duan B, Koch SC, Dalet A, Britz O. 103.  et al. 2015. Gate control of mechanical itch by a subpopulation of spinal cord interneurons. Science 350550–54 [Google Scholar]
  104. Barry DV, Munanairi A, Chen ZF. 104.  2017. Spinal mechanisms of itch transmission. Neurosci. Bull. https://doi.org/10.1007/s12264-017-0125-2 [Crossref] [Google Scholar]
  105. Mishra SK, Hoon MA. 105.  2013. The cells and circuitry for itch responses in mice. Science 340968–71 [Google Scholar]
  106. Fleming MS, Ramos D, Han SB, Zhao J, Son YJ, Luo W. 106.  2012. The majority of dorsal spinal cord gastrin releasing peptide is synthesized locally whereas neuromedin B is highly expressed in pain- and itch-sensing somatosensory neurons. Mol. Pain 852 [Google Scholar]
  107. Solorzano C, Villafuerte D, Meda K, Cevikbas F, Braz J. 107.  et al. 2015. Primary afferent and spinal cord expression of gastrin-releasing peptide: message, protein, and antibody concerns. J. Neurosci. 35648–57 [Google Scholar]
  108. Liu X-Y, Liu Z-C, Sun Y-G, Ross M, Kim S. 108.  et al. 2011. Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell 147447–58 [Google Scholar]
  109. Akiyama T, Nguyen T, Curtis E, Nishida K, Devireddy J. 109.  et al. 2015. A central role for spinal dorsal horn neurons that express neurokinin-1 receptors in chronic itch. Pain 1561240–46 [Google Scholar]
  110. Ross S, Mardinly A, McCord A, Zurawski J, Cohen S. 110.  et al. 2010. Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65886–98 [Google Scholar]
  111. Chiang MC, Hachisuka J, Todd AJ, Ross SE. 111.  2016. Insight into B5-I spinal interneurons and their role in the inhibition of itch and pain. Pain 157544–45 [Google Scholar]
  112. Hachisuka J, Baumbauer KM, Omori Y, Snyder LM, Koerber HR, Ross SE. 112.  2016. Semi-intact ex vivo approach to investigate spinal somatosensory circuits. eLife 5e22866 [Google Scholar]
  113. Naveilhan P, Hassani H, Lucas G, Blakeman KH, Hao J-X. 113.  et al. 2001. Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor. Nature 409513–17 [Google Scholar]
  114. Intondi AB, Dahlgren MN, Eilers MA, Taylor BK. 114.  2008. Intrathecal neuropeptide Y reduces behavioral and molecular markers of inflammatory or neuropathic pain. Pain 137352–65 [Google Scholar]
  115. Iwagaki N, Ganley RP, Dickie AC, Polgár E, Hughes DI. 115.  et al. 2016. A combined electrophysiological and morphological study of NPY-expressing inhibitory interneurons in the spinal dorsal horn of the mouse. Pain 157598–612 [Google Scholar]
  116. Solway B, Bose SC, Corder G, Donahue RR, Taylor BK. 116.  2011. Tonic inhibition of chronic pain by neuropeptide Y. PNAS 1087224–29 [Google Scholar]
  117. Ma Q.117.  2010. Labeled lines meet and talk: population coding of somatic sensations. J. Clin. Investig. 1203773–78 [Google Scholar]
  118. Prescott SA, Ma Q, De Koninck Y. 118.  2014. Normal and abnormal coding of somatosensory stimuli causing pain. Nat. Neurosci. 17183–91 [Google Scholar]
  119. Ma Q.119.  2012. Population coding of somatic sensations. Neurosci. Bull. 2891–99 [Google Scholar]
  120. Sun YG, Chen ZF. 120.  2007. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448700–3 [Google Scholar]
  121. Berkowitz A.121.  2010. Multifunctional and specialized spinal interneurons for turtle limb movements. Ann. N.Y. Acad. Sci. 1198119–32 [Google Scholar]
  122. Burke RE.122.  1999. The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp. Brain Res. 128263–77 [Google Scholar]
  123. Li M-Z, Wang J-S, Jiang D-J, Xiang C-X, Wang F-Y. 123.  et al. 2006. Molecular mapping of developing dorsal horn-enriched genes by microarray and dorsal/ventral subtractive screening. Dev. Biol. 292555–64 [Google Scholar]
  124. Nichols ML, Allen BJ, Rogers SD, Ghilardi JR, Honore P. 124.  et al. 1999. Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science 2861558–61 [Google Scholar]
  125. Polgár E, Campbell AD, MacIntyre LM, Watanabe M, Todd AJ. 125.  2007. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation. Mol. Pain 34 [Google Scholar]
  126. Wakisaka S, Kajander KC, Bennett GJ. 126.  1992. Effects of peripheral nerve injuries and tissue inflammation on the levels of neuropeptide Y-like immunoreactivity in rat primary afferent neurons. Brain Res 598349–52 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error