1932

Abstract

The regenerative capacity of the heart has long fascinated scientists. In contrast to other organs such as liver, skin, and skeletal muscle, the heart possesses only a minimal regenerative capacity. It lacks a progenitor cell population, and cardiomyocytes exit the cell cycle shortly after birth and do not re-enter after injury. Thus, any loss of cardiomyocytes is essentially irreversible and can lead to or exaggerate heart failure, which represents a major public health problem. New therapeutic options are urgently needed, but regenerative therapies have remained an unfulfilled promise in cardiovascular medicine until today. Yet, through a clearer comprehension of signaling pathways that regulate the cardiomyocyte cell cycle and advances in stem cell technology, strategies have evolved that demonstrate the potential to generate new myocytes and thereby fulfill an essential central criterion for heart repair.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031120-103629
2021-02-10
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-031120-103629.html?itemId=/content/journals/10.1146/annurev-physiol-031120-103629&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Goldenberg B. 1886. Ueber Atrophie und Hypertrophie der Muskelfasern des Herzens. Arch. Pathol. Anat. Physiol. Klin. Med. 103:188–130
    [Google Scholar]
  2. 2. 
    Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K et al. 2015. Dynamics of cell generation and turnover in the human heart. Cell 161:71566–75
    [Google Scholar]
  3. 3. 
    Khera R, Pandey A, Ayers CR, Agusala V, Pruitt SL et al. 2017. Contemporary epidemiology of heart failure in fee-for-service Medicare beneficiaries across healthcare settings. Circ. Heart Fail. 10:11e004402
    [Google Scholar]
  4. 4. 
    Crespo-Leiro MG, Anker SD, Maggioni AP, Coats AJ, Filippatos G et al. 2016. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur. J. Heart Fail. 18:6613–25
    [Google Scholar]
  5. 5. 
    Brockes JP, Kumar A. 2008. Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol. 24:525–49
    [Google Scholar]
  6. 6. 
    Pfeffer MA, Braunwald E. 1990. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81:41161–72
    [Google Scholar]
  7. 7. 
    Chareonthaitawee P, Christian TF, Hirose K, Gibbons RJ, Rumberger JA 1995. Relation of initial infarct size to extent of left ventricular remodeling in the year after acute myocardial infarction. J. Am. Coll. Cardiol. 25:3567–73
    [Google Scholar]
  8. 8. 
    Burns RJ, Gibbons RJ, Yi Q, Roberts RS, Miller TD et al. 2002. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J. Am. Coll. Cardiol. 39:130–36
    [Google Scholar]
  9. 9. 
    Kanoh M, Takemura G, Misao J, Hayakawa Y, Aoyama T et al. 1999. Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy. Circulation 99:212757–64
    [Google Scholar]
  10. 10. 
    Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W et al. 1997. Apoptosis in the failing human heart. N. Engl. J. Med. 336:161131–41
    [Google Scholar]
  11. 11. 
    Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD et al. 1996. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 335:161182–89
    [Google Scholar]
  12. 12. 
    Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S et al. 2003. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Investig. 111:101497–504
    [Google Scholar]
  13. 13. 
    Zielonko J. 1874. Pathologisch-anatomische und experimentelle Studien über Hypertrophie des Herzens. Arch. Pathol. Anat. Physiol. Klin. Med. 62:129–57
    [Google Scholar]
  14. 14. 
    Eschenhagen T, Bolli R, Braun T, Field LJ, Fleischmann BK et al. 2017. Cardiomyocyte regeneration: a consensus statement. Circulation 136:7680–86
    [Google Scholar]
  15. 15. 
    Brockes JP, Kumar A. 2008. Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol. 24:525–49
    [Google Scholar]
  16. 16. 
    Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL 2011. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476:7361409–13
    [Google Scholar]
  17. 17. 
    He L, Li Y, Li Y, Pu W, Huang X et al. 2017. Enhancing the precision of genetic lineage tracing using dual recombinases. Nat. Med. 23:121488–98
    [Google Scholar]
  18. 18. 
    Li Y, Lv Z, He L, Huang X, Zhang S et al. 2019. Genetic tracing identifies early segregation of the cardiomyocyte and nonmyocyte lineages. Circ. Res. 125:3343–55
    [Google Scholar]
  19. 19. 
    Bittner RE, Schöfer C, Weipoltshammer K, Ivanova S, Streubel B et al. 1999. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. 199:5391–96
    [Google Scholar]
  20. 20. 
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM et al. 2001. Bone marrow cells regenerate infarcted myocardium. Nature 410:6829701–5
    [Google Scholar]
  21. 21. 
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F et al. 2003. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:6763–76
    [Google Scholar]
  22. 22. 
    Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA et al. 2002. Chimerism of the transplanted heart. N. Engl. J. Med. 346:15–15
    [Google Scholar]
  23. 23. 
    Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO et al. 2004. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:13–15
    [Google Scholar]
  24. 24. 
    Nygren JM, Jovinge S, Breitbach M, Säwén P, Röll W et al. 2004. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10:5494–501
    [Google Scholar]
  25. 25. 
    Müller P, Pfeiffer P, Koglin J, Schäfers H-J, Seeland U et al. 2002. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106:131–35
    [Google Scholar]
  26. 26. 
    Vagnozzi RJ, Maillet M, Sargent MA, Khalil H, Johansen AKZ et al. 2020. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577:7790405–9
    [Google Scholar]
  27. 27. 
    Uygur A, Lee RT. 2016. Mechanisms of cardiac regeneration. Dev. Cell 36:4362–74
    [Google Scholar]
  28. 28. 
    Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V et al. 2003. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. PNAS 100:2112313–18
    [Google Scholar]
  29. 29. 
    Genead R, Danielsson C, Andersson AB, Corbascio M, Franco-Cereceda A et al. 2010. Islet-1 cells are cardiac progenitors present during the entire lifespan: from the embryonic stage to adulthood. Stem Cells Dev 19:101601–15
    [Google Scholar]
  30. 30. 
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S et al. 2004. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95:9911–21
    [Google Scholar]
  31. 31. 
    Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA 2002. The post-natal heart contains a myocardial stem cell population. FEBS Lett 530:1–3239–43
    [Google Scholar]
  32. 32. 
    Hsieh PCH, Segers VFM, Davis ME, MacGillivray C, Gannon J et al. 2007. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13:8970–74
    [Google Scholar]
  33. 33. 
    van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J et al. 2014. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509:7500337–41
    [Google Scholar]
  34. 34. 
    Neidig LE, Weinberger F, Palpant NJ, Mignone J, Martinson AM et al. 2018. Evidence for minimal cardiogenic potential of stem cell antigen 1-positive cells in the adult mouse heart. Circulation 138:252960–62
    [Google Scholar]
  35. 35. 
    Weinberger F, Mehrkens D, Friedrich FW, Stubbendorff M, Hua X et al. 2012. Localization of islet-1-positive cells in the healthy and infarcted adult murine heart. Circ. Res. 110:101303–10
    [Google Scholar]
  36. 36. 
    Li Y, He L, Huang X, Bhaloo SI, Zhao H et al. 2018. Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138:8793–805
    [Google Scholar]
  37. 37. 
    Smart N, Bollini S, Dubé KN, Vieira JM, Zhou B et al. 2011. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474:7353640–44
    [Google Scholar]
  38. 38. 
    Chien KR, Frisén J, Fritsche-Danielson R, Melton DA, Murry CE, Weissman IL 2019. Regenerating the field of cardiovascular cell therapy. Nat. Biotechnol. 37:3232–37
    [Google Scholar]
  39. 39. 
    Shankle WR, Landing BH, Gregg J 1983. Normal organ weights of infants and children: graphs of values by age, with confidence intervals. Pediatr. Pathol. 1:4399–408
    [Google Scholar]
  40. 40. 
    Mollova M, Bersell K, Walsh S, Savla J, Das LT et al. 2013. Cardiomyocyte proliferation contributes to heart growth in young humans. PNAS 110:41446–51
    [Google Scholar]
  41. 41. 
    Bensley JG, De Matteo R, Harding R, Black MJ 2016. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci. Rep. 6:23756
    [Google Scholar]
  42. 42. 
    Alkass K, Panula J, Westman M, Wu T-D, Guerquin-Kern J-L, Bergmann O 2015. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163:41026–36
    [Google Scholar]
  43. 43. 
    Martínez-Lagunas K, Yamaguchi Y, Becker C, Geisen C, DeRuiter MC et al. 2020. In vivo detection of programmed cell death during mouse heart development. Cell Death Differ 27:41398–414
    [Google Scholar]
  44. 44. 
    Fernandez E, Siddiquee Z, Shohet RV 2001. Apoptosis and proliferation in the neonatal murine heart. Dev. Dyn. 221:3302–10
    [Google Scholar]
  45. 45. 
    Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ 1996. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 271:5 Part 2H2183–89
    [Google Scholar]
  46. 46. 
    Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP et al. 2014. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 157:4795–807
    [Google Scholar]
  47. 47. 
    Hirai M, Cattaneo P, Chen J, Evans SM 2016. Revisiting preadolescent cardiomyocyte proliferation in mice. Circ. Res. 118:6916–19
    [Google Scholar]
  48. 48. 
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L et al. 2013. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:7432433–36
    [Google Scholar]
  49. 49. 
    Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R 2014. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. PNAS 111:248850–55
    [Google Scholar]
  50. 50. 
    Lin Z, von Gise A, Zhou P, Gu F et al. 2014. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ. Res. 115:3354–63
    [Google Scholar]
  51. 51. 
    Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S et al. 2015. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 523:7559226–30
    [Google Scholar]
  52. 52. 
    Drenckhahn JD, Schwarz QP, Gray S, Laskowski A, Kiriazis H et al. 2008. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev. Cell 15:4521–33
    [Google Scholar]
  53. 53. 
    Drenckhahn JD, Strasen J, Heinecke K, Langner P, Yin KV et al. 2015. Impaired myocardial development resulting in neonatal cardiac hypoplasia alters postnatal growth and stress response in the heart. Cardiovasc. Res. 106:143–54
    [Google Scholar]
  54. 54. 
    Sturzu AC, Rajarajan K, Passer D, Plonowska K, Riley A et al. 2015. Fetal mammalian heart generates a robust compensatory response to cell loss. Circulation 132:2109–21
    [Google Scholar]
  55. 55. 
    Robledo M. 1956. Myocardial regeneration in young rats. Am. J. Pathol. 32:61215–39
    [Google Scholar]
  56. 56. 
    Rumyantsev PP. 1991. Growth and Hyperplasia of Cardiac Muscle Cells London/New York: Harwood Acad.
    [Google Scholar]
  57. 57. 
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA et al. 2011. Transient regenerative potential of the neonatal mouse heart. Science 331:60201078–80
    [Google Scholar]
  58. 58. 
    Ye L, D'Agostino G, Loo SJ, Wang CX, Su LP et al. 2018. Early regenerative capacity in the porcine heart. Circulation 138:242798–808
    [Google Scholar]
  59. 59. 
    Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W et al. 2016. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res. 118:2216–21
    [Google Scholar]
  60. 60. 
    Meckert PC, Rivello HG, Vigliano C, González P, Favaloro R, Laguens R 2005. Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc. Res. 67:1116–23
    [Google Scholar]
  61. 61. 
    Soonpaa MH, Field LJ. 1997. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am. J. Physiol. 272:1 Part 2H220–26
    [Google Scholar]
  62. 62. 
    Hesse M, Raulf A, Pilz G-A, Haberlandt C, Klein AM et al. 2012. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat. Commun. 3:1076
    [Google Scholar]
  63. 63. 
    Kretzschmar K, Post Y, Bannier-Hélaouët M, Mattiotti A, Drost J et al. 2018. Profiling proliferative cells and their progeny in damaged murine hearts. PNAS 115:52E12245–54
    [Google Scholar]
  64. 64. 
    Leone M, Magadum A, Engel FB 2015. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am. J. Physiol. Heart Circ. Physiol. 309:8H1237–50
    [Google Scholar]
  65. 65. 
    Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF et al. 2014. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157:3565–79
    [Google Scholar]
  66. 66. 
    Patterson M, Barske L, Van Handel B, Rau CD, Gan P et al. 2017. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat. Genet. 49:91346–53
    [Google Scholar]
  67. 67. 
    Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG et al. 2017. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. PNAS 114:40E8372–81
    [Google Scholar]
  68. 68. 
    Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Umansky KB et al. 2017. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547:7662179–84
    [Google Scholar]
  69. 69. 
    Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H et al. 2019. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 188:eaar2038
    [Google Scholar]
  70. 70. 
    Field LJ. 1988. Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science 239:48431029–33
    [Google Scholar]
  71. 71. 
    Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L et al. 2019. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569:7756418–22
    [Google Scholar]
  72. 72. 
    Yoshizumi M, Lee WS, Hsieh CM, Tsai JC, Li J et al. 1995. Disappearance of cyclin A correlates with permanent withdrawal of cardiomyocytes from the cell cycle in human and rat hearts. J. Clin. Investig. 95:52275–80
    [Google Scholar]
  73. 73. 
    Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ 2005. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ. Res. 96:1110–18
    [Google Scholar]
  74. 74. 
    Hassink RJ, Pasumarthi KB, Nakajima H, Rubart M, Soonpaa MH et al. 2008. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc. Res. 78:118–25
    [Google Scholar]
  75. 75. 
    Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G et al. 2012. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:7429376–81
    [Google Scholar]
  76. 76. 
    Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X et al. 2004. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J. Biol. Chem. 279:3435858–66
    [Google Scholar]
  77. 77. 
    Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ et al. 2007. Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ. Res. 100:121741–48
    [Google Scholar]
  78. 78. 
    Shapiro SD, Ranjan AK, Kawase Y, Cheng RK, Kara RJ et al. 2014. Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci. Transl. Med. 6:224224ra27
    [Google Scholar]
  79. 79. 
    Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E et al. 2011. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:6028458–61
    [Google Scholar]
  80. 80. 
    Xin M, Kim Y, Sutherland LB, Qi X, McAnally J et al. 2011. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci. Signal. 4:196ra70
    [Google Scholar]
  81. 81. 
    von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM et al. 2012. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. PNAS 109:72394–99
    [Google Scholar]
  82. 82. 
    Xin M, Kim Y, Sutherland LB, Murakami M, Qi X et al. 2013. Hippo pathway effector Yap promotes cardiac regeneration. PNAS 110:3413839–44
    [Google Scholar]
  83. 83. 
    Monroe TO, Hill MC, Morikawa Y, Leach JP, Heallen T et al. 2019. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48:6765–79.e7
    [Google Scholar]
  84. 84. 
    Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y et al. 2017. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550:7675260–64
    [Google Scholar]
  85. 85. 
    Li J, Gao E, Vite A, Yi R, Gomez L et al. 2015. Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ. Res. 116:170–79
    [Google Scholar]
  86. 86. 
    Morikawa Y, Heallen T, Leach J, Xiao Y, Martin JF 2017. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature 547:7662227–31
    [Google Scholar]
  87. 87. 
    Lesizza P, Prosdocimo G, Martinelli V, Sinagra G, Zacchigna S, Giacca M 2017. Single-dose intra-cardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction. Circ. Res. 120:81298–304
    [Google Scholar]
  88. 88. 
    Torrini C, Cubero RJ, Dirkx E, Braga L, Ali H et al. 2019. Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation. Cell Rep 27:92759–2771.e5
    [Google Scholar]
  89. 89. 
    Tian Y, Liu Y, Wang T, Zhou N, Kong J et al. 2015. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med. 7:279279ra38
    [Google Scholar]
  90. 90. 
    Ikeda S, Mizushima W, Sciarretta S, Abdellatif M, Zhai P et al. 2019. Hippo deficiency leads to cardiac dysfunction accompanied by cardiomyocyte dedifferentiation during pressure overload. Circ. Res. 124:2292–305
    [Google Scholar]
  91. 91. 
    Morgan TH. 1898. Experimental studies of the regeneration of Planaria maculata. Arch. Entwickelungsmech. Org 7:2–3364–97
    [Google Scholar]
  92. 92. 
    Del Rio-Tsonis K, Tsonis PA 2003. Eye regeneration at the molecular age. Dev. Dyn. 226:2211–24
    [Google Scholar]
  93. 93. 
    Davis RL, Weintraub H, Lassar AB 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:6987–1000
    [Google Scholar]
  94. 94. 
    Takeuchi JK, Bruneau BG. 2009. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459:7247708–11
    [Google Scholar]
  95. 95. 
    Ieda M, Fu J-D, Delgado-Olguin P, Vedantham V, Hayashi Y et al. 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:3375–86
    [Google Scholar]
  96. 96. 
    Liu Z, Wang L, Welch JD, Ma H, Zhou Y et al. 2017. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature 551:7678100–4
    [Google Scholar]
  97. 97. 
    Qian L, Huang Y, Spencer CI, Foley A, Vedantham V et al. 2012. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:7400593–98
    [Google Scholar]
  98. 98. 
    Song K, Nam Y-J, Luo X, Qi X, Tan W et al. 2012. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:7400599–604
    [Google Scholar]
  99. 99. 
    Wang L, Liu Z, Yin C, Asfour H, Chen O et al. 2015. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming. Circ. Res. 116:2237–44
    [Google Scholar]
  100. 100. 
    Zhao Y, Londono P, Cao Y, Sharpe EJ, Proenza C et al. 2015. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat. Commun. 6:8243
    [Google Scholar]
  101. 101. 
    Nam Y-J, Song K, Luo X, Daniel E, Lambeth K et al. 2013. Reprogramming of human fibroblasts toward a cardiac fate. PNAS 110:145588–93
    [Google Scholar]
  102. 102. 
    Mohamed TMA, Stone NR, Berry EC, Radzinsky E, Huang Y et al. 2017. Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation 135:10978–95
    [Google Scholar]
  103. 103. 
    Miyamoto K, Akiyama M, Tamura F, Isomi M, Yamakawa H et al. 2018. Direct in vivo reprogramming with Sendai virus vectors improves cardiac function after myocardial infarction. Cell Stem Cell 22:191–103.e5
    [Google Scholar]
  104. 104. 
    Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y et al. 2016. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352:62901216–20
    [Google Scholar]
  105. 105. 
    Mahmoudi S, Mancini E, Xu L, Moore A, Jahanbani F et al. 2019. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 574:7779553–58
    [Google Scholar]
  106. 106. 
    Bader D, Oberpriller JO. 1978. Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J. Morphol. 155:3349–57
    [Google Scholar]
  107. 107. 
    Soonpaa MH, Koh GY, Klug MG, Field LJ 1994. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264:515598–101
    [Google Scholar]
  108. 108. 
    Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M et al. 2001. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Investig. 108:3407–14
    [Google Scholar]
  109. 109. 
    Breckwoldt K, Letuffe-Brenière D, Mannhardt I, Schulze T, Ulmer B et al. 2017. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat. Protoc. 12:61177–97
    [Google Scholar]
  110. 110. 
    Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M et al. 2011. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:2228–40
    [Google Scholar]
  111. 111. 
    Müller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T et al. 2002. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell. Cardiol. 34:2107–16
    [Google Scholar]
  112. 112. 
    Dow J, Simkhovich BZ, Kedes L, Kloner RA 2005. Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc. Res. 67:2301–7
    [Google Scholar]
  113. 113. 
    Reinecke H, Zhang M, Bartosek T, Murry CE 1999. Survival, integration, and differentiation of cardiomyocyte grafts a study in normal and injured rat hearts—a study in normal and injured rat hearts. Circulation 100:1193–202
    [Google Scholar]
  114. 114. 
    Pritchett-Corning KR. 2009. Euthanasia of neonatal rats with carbon dioxide. J. Am. Assoc. Lab. Anim. Sci. 48:123–27
    [Google Scholar]
  115. 115. 
    Zimmermann W, Didié M, Wasmeier GH, Nixdorff U, Hess A et al. 2002. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106:12151–57
    [Google Scholar]
  116. 116. 
    Zimmermann W-H, Melnychenko I, Wasmeier G, Didié M, Naito H et al. 2006. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12:4452–58
    [Google Scholar]
  117. 117. 
    Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J et al. 2008. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118:14 Suppl. 1S145–52
    [Google Scholar]
  118. 118. 
    Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E et al. 2005. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. 167:3663–71
    [Google Scholar]
  119. 119. 
    van Laake LW, Passier R, Monshouwer-Kloots J, Verkleij AJ, Lips DJ et al. 2007. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1:19–24
    [Google Scholar]
  120. 120. 
    Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R et al. 2004. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22:101282–89
    [Google Scholar]
  121. 121. 
    Hattori F, Chen H, Yamashita H, Tohyama S, Satoh Y-S et al. 2010. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat. Methods 7:161–66
    [Google Scholar]
  122. 122. 
    Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA et al. 2007. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25:91015–24
    [Google Scholar]
  123. 123. 
    Shiba Y, Fernandes S, Zhu W-Z, Filice D, Muskheli V et al. 2012. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322–25
    [Google Scholar]
  124. 124. 
    Shiba Y, Filice D, Fernandes S, Minami E, Dupras SK et al. 2014. Electrical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig chronic infarct model. J. Cardiovasc. Pharmacol. Ther. 19:4368–81
    [Google Scholar]
  125. 125. 
    Zhu W, Zhao M, Mattapally S, Chen S, Zhang J 2018. CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: remuscularization of injured ventricle. Circ. Res. 122:188–96
    [Google Scholar]
  126. 126. 
    Bargehr J, Ong LP, Colzani M, Davaapil H, Hofsteen P et al. 2019. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nat. Biotechnol. 37:8895–906
    [Google Scholar]
  127. 127. 
    Chong JJH, Yang X, Don CW, Minami E, Liu Y-W et al. 2014. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:7504273–77
    [Google Scholar]
  128. 128. 
    Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H et al. 2016. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538:7625388–91
    [Google Scholar]
  129. 129. 
    Liu Y-W, Chen B, Yang X, Fugate JA, Kalucki FA et al. 2018. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36:7597–605
    [Google Scholar]
  130. 130. 
    Zhu K, Wu Q, Ni C, Zhang P, Zhong Z et al. 2018. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates. Circ. Res. 122:7958–69
    [Google Scholar]
  131. 131. 
    Ye L, Chang Y-H, Xiong Q, Zhang P, Zhang L et al. 2014. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15:6750–61
    [Google Scholar]
  132. 132. 
    Romagnuolo R, Masoudpour H, Porta-Sánchez A, Qiang B, Barry J et al. 2019. Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Rep 12:5967–81
    [Google Scholar]
  133. 133. 
    Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T et al. 2016. Enhanced engraftment, proliferation and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci. Rep. 6:119111
    [Google Scholar]
  134. 134. 
    CONSENSUS Trial Study Group 1987. Effects of enalapril on mortality in severe congestive heart failure. N. Engl. J. Med. 316:231429–35
    [Google Scholar]
  135. 135. 
    Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M et al. 2015. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525:7570479–85
    [Google Scholar]
  136. 136. 
    Weinberger F, Mannhardt I, Eschenhagen T 2017. Engineering cardiac muscle tissue: a maturating field of research. Circ. Res. 120:91487–500
    [Google Scholar]
  137. 137. 
    Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A et al. 2014. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci. Rep. 4:6716
    [Google Scholar]
  138. 138. 
    Matsuo T, Masumoto H, Tajima S, Ikuno T, Katayama S et al. 2015. Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells. Sci. Rep. 5:16842
    [Google Scholar]
  139. 139. 
    Riegler J, Tiburcy M, Ebert A, Tzatzalos E, Raaz U et al. 2015. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 117:8720–30
    [Google Scholar]
  140. 140. 
    Weinberger F, Breckwoldt K, Pecha S, Kelly A, Geertz B et al. 2016. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci. Transl. Med. 8:363363ra148
    [Google Scholar]
  141. 141. 
    Shadrin IY, Allen BW, Qian Y, Jackman CP, Carlson AL et al. 2017. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8:11825
    [Google Scholar]
  142. 142. 
    Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y et al. 2018. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137:161712–30
    [Google Scholar]
  143. 143. 
    Gerbin KA, Yang X, Murry CE, Coulombe KLK 2015. Enhanced electrical integration of engineered human myocardium via intramyocardial versus epicardial delivery in infarcted rat hearts. PLOS ONE 10:7e0131446
    [Google Scholar]
  144. 144. 
    Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B et al. 2018. Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 71:4429–38
    [Google Scholar]
  145. 145. 
    Aron Badin R, Bugi A, Williams S, Vadori M, Michael M et al. 2019. MHC matching fails to prevent long-term rejection of iPSC-derived neurons in non-human primates. Nat. Commun. 10:14357
    [Google Scholar]
  146. 146. 
    Söderlund C, Rådegran G. 2015. Immunosuppressive therapies after heart transplantation—the balance between under- and over-immunosuppression. Transplant. Rev. 29:3181–89
    [Google Scholar]
  147. 147. 
    Eschenhagen T, Weinberger F. 2019. Heart repair with myocytes. Circ. Res. 124:6843–45
    [Google Scholar]
  148. 148. 
    Deuse T, Hu X, Agbor-Enoh S, Koch M, Spitzer MH et al. 2019. De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nat. Biotechnol. 37:1137–44
    [Google Scholar]
  149. 149. 
    Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS et al. 2017. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35:8765–72
    [Google Scholar]
  150. 150. 
    Deuse T, Hu X, Gravina A, Wang D, Tediashvili G et al. 2019. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37:3252–58
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031120-103629
Loading
/content/journals/10.1146/annurev-physiol-031120-103629
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error