1932

Abstract

The with no lysine (K) (WNK) kinases are an evolutionarily ancient group of kinases with atypical placement of the catalytic lysine and diverse physiological roles. Recent studies have shown that WNKs are directly regulated by chloride, potassium, and osmotic pressure. Here, we review the discovery of WNKs as chloride-sensitive kinases and discuss physiological contexts in which chloride regulation of WNKs has been demonstrated. These include the kidney, pancreatic duct, neurons, and inflammatory cells. We discuss the interdependent relationship of osmotic pressure and intracellular chloride in cell volume regulation. We review the recent demonstration of potassium regulation of WNKs and speculate on possible physiological roles. Finally, structural and mechanistic aspects of intracellular ion and osmotic pressure regulation of WNKs are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031522-080651
2023-02-10
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-031522-080651.html?itemId=/content/journals/10.1146/annurev-physiol-031522-080651&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. 2000. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J. Biol. Chem. 275:2216795–801
    [Google Scholar]
  2. 2.
    Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. 2014. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci. Signal. 7:324ra41
    [Google Scholar]
  3. 3.
    Wilson FH, Disse-Nicodème S, Choate KA, Ishikawa K, Nelson-Williams C et al. 2001. Human hypertension caused by mutations in WNK kinases. Science 293:55321107–12
    [Google Scholar]
  4. 4.
    Hadchouel J, Ellison DH, Gamba G. 2016. Regulation of renal electrolyte transport by WNK and SPAK-OSR1 kinases. Annu. Rev. Physiol. 78:367–89
    [Google Scholar]
  5. 5.
    Shekarabi M, Zhang J, Khanna AR, Ellison DH, Delpire E, Kahle KT. 2017. WNK kinase signaling in ion homeostasis and human disease. Cell Metab. 25:2285–99
    [Google Scholar]
  6. 6.
    Rodan AR, Jenny A 2017. WNK kinases in development and disease. Curr. Top. Dev. Biol. 123:1–47
    [Google Scholar]
  7. 7.
    Kankanamalage SG, Karra AS, Cobb MH. 2018. WNK pathways in cancer signaling networks. Cell Commun. Signal. 16:172
    [Google Scholar]
  8. 8.
    Dbouk HA, Huang C-L, Cobb MH. 2016. Hypertension: the missing WNKs. Am. J. Physiol. Ren. Physiol. 311:1F16–27
    [Google Scholar]
  9. 9.
    Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. 2020. Physiological processes modulated by the chloride-sensitive WNK-SPAK/OSR1 kinase signaling pathway and the cation-coupled chloride cotransporters. Front. Physiol. 11:585907
    [Google Scholar]
  10. 10.
    Cao-Pham AH, Urano D, Ross-Elliott TJ, Jones AM 2018. Nudge-nudge, WNK-WNK (kinases), say no more?. New Phytol. 220:135–48
    [Google Scholar]
  11. 11.
    Furusho T, Uchida S, Sohara E. 2020. The WNK signaling pathway and salt-sensitive hypertension. Hypertens. Res. 43:733–43
    [Google Scholar]
  12. 12.
    Lüscher BP, Vachel L, Ohana E, Muallem S. 2020. Cl as a bona fide signaling ion. Am. J. Physiol. Cell Physiol. 318:1C125–36
    [Google Scholar]
  13. 13.
    Valdivieso ÁG, Santa-Coloma TA. 2019. The chloride anion as a signalling effector. Biol. Rev. 94:51839–56
    [Google Scholar]
  14. 14.
    Delpire E, Gagnon KB. 2018. Na+-K+-2Cl cotransporter (NKCC) physiological function in nonpolarized cells and transporting epithelia. Compr. Physiol. 8:2871–901
    [Google Scholar]
  15. 15.
    Therien AG, Blostein R. 2000. Mechanisms of sodium pump regulation. Am. J. Physiol. Cell Physiol. 279:3C541–66
    [Google Scholar]
  16. 16.
    Burger JW, Hess WN. 1960. Function of the rectal gland in the spiny dogfish. Science 131:3401670–71
    [Google Scholar]
  17. 17.
    Riordan JR, Forbush B, Hanrahan JW. 1994. The molecular basis of chloride transport in shark rectal gland. J. Exp. Biol. 196:405–18
    [Google Scholar]
  18. 18.
    Lytle C, Forbush B. 1992. The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J. Biol. Chem. 267:3525438–43
    [Google Scholar]
  19. 19.
    Hoffmann EK, Lambert IH, Pedersen SF. 2009. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89:1193–277
    [Google Scholar]
  20. 20.
    Miyazaki H, Shiozaki A, Niisato N, Marunaka Y. 2007. Physiological significance of hypotonicity-induced regulatory volume decrease: reduction in intracellular Cl concentration acting as an intracellular signaling. Am. J. Physiol. Ren. Physiol. 292:5F1411–17
    [Google Scholar]
  21. 21.
    Haas M, Forbush B 3rd 2000. The Na-K-Cl cotransporter of secretory epithelia. Annu. Rev. Physiol. 62:515–34
    [Google Scholar]
  22. 22.
    Breitwieser GE, Altamirano AA, Russell JM. 1996. Elevated [Cl]i, and [Na+]i inhibit Na+, K+, Cl cotransport by different mechanisms in squid giant axons. J. Gen. Physiol. 107:2261–70
    [Google Scholar]
  23. 23.
    Piechotta K, Lu J, Delpire E. 2002. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J. Biol. Chem. 277:5250812–19
    [Google Scholar]
  24. 24.
    Dowd BFX, Forbush B. 2003. PASK (proline-alanine-rich STE20-related kinase), a regulatory kinase of the Na-K-Cl cotransporter (NKCC1). J. Biol. Chem. 278:3027347–53
    [Google Scholar]
  25. 25.
    Richardson C, Rafiqi FH, Karlsson HKR, Moleleki N, Vandewalle A et al. 2008. Activation of the thiazide-sensitive Na+-Cl cotransporter by the WNK-regulated kinases SPAK and OSR1. J. Cell Sci. 121:5675–84
    [Google Scholar]
  26. 26.
    Anselmo AN, Earnest S, Chen W, Juang Y-C, Kim SC et al. 2006. WNK1 and OSR1 regulate the Na+, K+, 2Cl cotransporter in HeLa cells. PNAS 103:2910883–88
    [Google Scholar]
  27. 27.
    Gagnon KBE, England R, Delpire E. 2006. Volume sensitivity of cation-Cl cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4. Am. J. Physiol. Cell Physiol. 290:1C134–42
    [Google Scholar]
  28. 28.
    Richardson C, Sakamoto K, de los Heros P, Deak M, Campbell DG et al. 2011. Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. J. Cell Sci. 124:5789–800
    [Google Scholar]
  29. 29.
    Vitari AC, Thastrup J, Rafiqi FH, Deak M, Morrice NA et al. 2006. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem. J. 397:1223–31
    [Google Scholar]
  30. 30.
    Gagnon KBE, England R, Delpire E. 2005. Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter. Mol. Cell. Biol. 26:2689–98
    [Google Scholar]
  31. 31.
    Vitari AC, Deak M, Morrice NA, Alessi DR. 2005. The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem. J. 391:117–24
    [Google Scholar]
  32. 32.
    Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S et al. 2005. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J. Biol. Chem. 280:5242685–93
    [Google Scholar]
  33. 33.
    Naito S, Ohta A, Sohara E, Ohta E, Rai T et al. 2010. Regulation of WNK1 kinase by extracellular potassium. Clin. Exp. Nephrol. 15:2195–202
    [Google Scholar]
  34. 34.
    Ponce-Coria J, San-Cristobal P, Kahle KT, Vazquez N, Pacheco-Alvarez D et al. 2008. Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases. PNAS 105:248458–63
    [Google Scholar]
  35. 35.
    Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, González-Rodríguez X, Vazquez N et al. 2015. The effect of WNK4 on the Na+-Cl cotransporter is modulated by intracellular chloride. J. Am. Soc. Nephrol. 26:81781–86
    [Google Scholar]
  36. 36.
    Subramanya AR, Ellison DH. 2014. Distal convoluted tubule. Clin. J. Am. Soc. Nephrol. 9:122147–63
    [Google Scholar]
  37. 37.
    Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ et al. 2018. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J. Am. Coll. Cardiol. 71:19e127–248
    [Google Scholar]
  38. 38.
    Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S Bouatia-Naji N et al. 2012. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat. Genet. 44:4456–60
    [Google Scholar]
  39. 39.
    Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A et al. 2012. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482:738398–102
    [Google Scholar]
  40. 40.
    Louis-Dit-Picard H, Kouranti I, Rafael C, Loisel-Ferreira I, Chavez-Canales M et al. 2020. Mutations affecting the conserved acidic WNK1 motif cause inherited hyperkalemic hyperchloremic acidosis. J. Clin. Investig. 130:126379–94
    [Google Scholar]
  41. 41.
    Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. 2020. Regulation of the renal NaCl cotransporter and its role in potassium homeostasis. Physiol. Rev. 100:1321–56
    [Google Scholar]
  42. 42.
    Castañeda-Bueno M, Cervantes-Perez LG, Rojas-Vega L, Arroyo-Garza I, Vázquez N et al. 2014. Modulation of NCC activity by low and high K+ intake: insights into the signaling pathways involved. Am. J. Physiol. Ren. Physiol. 306:12F1507–19
    [Google Scholar]
  43. 43.
    Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C et al. 2015. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 21:139–50
    [Google Scholar]
  44. 44.
    Yang Y-S, Xie J, Yang S-S, Lin S-H, Huang C-L. 2018. Differential roles of WNK4 in regulation of NCC in vivo. Am. J. Physiol. Ren. Physiol. 314:5F999–1007
    [Google Scholar]
  45. 45.
    Ferdaus MZ, Barber KW, López-Cayuqueo KI, Terker AS, Argaiz ER et al. 2016. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. J. Physiol. 594:174945–66
    [Google Scholar]
  46. 46.
    Castañeda-Bueno M, Cervantes-Pérez LG, Vázquez N, Uribe N, Kantesaria S et al. 2012. Activation of the renal Na+:Cl cotransporter by angiotensin II is a WNK4-dependent process. PNAS 109:207929–34
    [Google Scholar]
  47. 47.
    Takahashi D, Mori T, Nomura N, Khan MZH, Araki Y et al. 2014. WNK4 is the major WNK positively regulating NCC in the mouse kidney. Biosci. Rep. 34:3e00107
    [Google Scholar]
  48. 48.
    Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang C-L, Ellison DH. 2016. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int. 89:1127–34
    [Google Scholar]
  49. 49.
    Murthy M, O'Shaughnessy KM 2019. Modified HEK cells simulate DCT cells in their sensitivity and response to changes in extracellular K. Physiol. Rep. 7:22e14280
    [Google Scholar]
  50. 50.
    Cuevas CA, Su X-T, Wang M-X, Terker AS, Lin D-H et al. 2017. Potassium sensing by renal distal tubules requires Kir4.1. J. Am. Soc. Nephrol. 28:61814–25
    [Google Scholar]
  51. 51.
    Nomura N, Shoda W, Wang Y, Mandai S, Furusho T et al. 2018. Role of ClC-K and barttin in low potassium-induced sodium chloride cotransporter activation and hypertension in mouse kidney. Biosci. Rep. 38:1BSR20171243
    [Google Scholar]
  52. 52.
    Wang M-X, Cuevas CA, Su X-T, Wu P, Gao Z-X et al. 2018. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int. 93:4893–902
    [Google Scholar]
  53. 53.
    Malik S, Lambert E, Zhang J, Wang T, Clark HL et al. 2018. Potassium conservation is impaired in mice with reduced renal expression of Kir4.1. Am. J. Physiol. Ren. Physiol. 315:5F1271–82
    [Google Scholar]
  54. 54.
    Zhang C, Wang L, Zhang J, Su X-T, Lin D-H et al. 2014. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). PNAS 111:3211864–69
    [Google Scholar]
  55. 55.
    Wu P, Gao Z-X, Zhang D-D, Su X-T, Wang W-H, Lin D-H. 2019. Deletion of Kir5.1 impairs renal ability to excrete potassium during increased dietary potassium intake. J. Am. Soc. Nephrol. 30:81425–38
    [Google Scholar]
  56. 56.
    Rodan AR. 2019. The Drosophila Malpighian tubule as a model for mammalian tubule function. Curr. Opin. Nephrol. Hypertens. 28:5455–64
    [Google Scholar]
  57. 57.
    Rodan AR, Baum M, Huang C-L. 2012. The Drosophila NKCC Ncc69 is required for normal renal tubule function. Am. J. Physiol. Cell Physiol. 303:8C883–94
    [Google Scholar]
  58. 58.
    Wu Y, Schellinger JN, Huang C-L, Rodan AR. 2014. Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule. J. Biol. Chem. 289:3826131–42
    [Google Scholar]
  59. 59.
    Sun Q, Wu Y, Jonusaite S, Pleinis JM, Humphreys JM et al. 2018. Intracellular chloride and scaffold protein Mo25 cooperatively regulate transepithelial ion transport through WNK signaling in the Malpighian tubule. J. Am. Soc. Nephrol. 29:51449–61
    [Google Scholar]
  60. 60.
    Ianowski JP, O'Donnell MJ 2004. Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl cotransport and Cl conductance. J. Exp. Biol. 207:152599–2609
    [Google Scholar]
  61. 61.
    Su X-T, Klett NJ, Sharma A, Allen CN, Wang W-H et al. 2020. Distal convoluted tubule Cl concentration is modulated via K+ channels and transporters. Am. J. Physiol. Ren. Physiol. 319:3F534–40
    [Google Scholar]
  62. 62.
    Zajac M, Chakraborty K, Saha S, Mahadevan V, Infield DT et al. 2020. What biologists want from their chloride reporters—a conversation between chemists and biologists. J. Cell Sci. 133:2jcs240390
    [Google Scholar]
  63. 63.
    Baek K, Ji K, Peng W, Liyanaarachchi SM, Dodani SC 2021. The design and evolution of fluorescent protein-based sensors for monoatomic ions in biology. Protein Eng. Des. Sel. 34:gzab023
    [Google Scholar]
  64. 64.
    Engels M, Kalia M, Rahmati S, Petersilie L, Kovermann P et al. 2021. Glial chloride homeostasis under transient ischemic stress. Front. Cell. Neurosci. 15:735300
    [Google Scholar]
  65. 65.
    Mukherjee A, Yang C-L, McCormick JA, Martz K, Sharma A, Ellison DH. 2021. Roles of WNK4 and SPAK in K+-mediated dephosphorylation of the NaCl cotransporter. Am. J. Physiol. Ren. Physiol. 320:5F719–33
    [Google Scholar]
  66. 66.
    Chen J-C, Lo Y-F, Lin Y-W, Lin S-H, Huang C-L, Cheng C-J. 2019. WNK4 kinase is a physiological intracellular chloride sensor. PNAS 116:104502–7
    [Google Scholar]
  67. 67.
    Penton D, Czogalla J, Wengi A, Himmerkus N, Loffing-Cueni D et al. 2016. Extracellular K+ rapidly controls NaCl cotransporter phosphorylation in the native distal convoluted tubule by Cl-dependent and independent mechanisms. J. Physiol. 594:216319–31
    [Google Scholar]
  68. 68.
    Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA. 2014. Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am. J. Physiol. Ren. Physiol. 306:9F1059–68
    [Google Scholar]
  69. 69.
    Shoda W, Nomura N, Ando F, Mori Y, Mori T et al. 2017. Calcineurin inhibitors block sodium-chloride cotransporter dephosphorylation in response to high potassium intake. Kidney Int. 91:2402–11
    [Google Scholar]
  70. 70.
    Murali SK, Little R, Poulsen SB, Ferdaus MZ, Ellison DH et al. 2021. Potassium effects on NCC are attenuated during inhibition of Cullin E3–ubiquitin ligases. Cells 11:195
    [Google Scholar]
  71. 71.
    Ishizawa K, Xu N, Loffing J, Lifton RP, Fujita T et al. 2016. Potassium depletion stimulates Na-Cl cotransporter via phosphorylation and inactivation of the ubiquitin ligase Kelch-like 3. Biochem. Biophys. Res. Commun. 480:4745–51
    [Google Scholar]
  72. 72.
    Ishizawa K, Wang Q, Li J, Yamazaki O, Tamura Y et al. 2019. Calcineurin dephosphorylates Kelch-like 3, reversing phosphorylation by angiotensin II and regulating renal electrolyte handling. PNAS 116:83155–60
    [Google Scholar]
  73. 73.
    Kortenoeven MLA, Esteva-Font C, Dimke H, Poulsen SB, Murali SK, Fenton RA. 2021. High dietary potassium causes ubiquitin-dependent degradation of the kidney sodium-chloride cotransporter. J. Biol. Chem. 297:2100915
    [Google Scholar]
  74. 74.
    Glover M, Zuber AM, Figg N, O'Shaughnessy KM 2010. The activity of the thiazide-sensitive Na+-Cl cotransporter is regulated by protein phosphatase PP4. Can. J. Physiol. Pharmacol. 88:10986–95
    [Google Scholar]
  75. 75.
    Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP et al. 2013. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int. 83:5811–24
    [Google Scholar]
  76. 76.
    Grimm PR, Coleman R, Delpire E, Welling PA. 2017. Constitutively active SPAK causes hyperkalemia by activating NCC and remodeling distal tubules. J. Am. Soc. Nephrol. 28:92597–2606
    [Google Scholar]
  77. 77.
    Saritas T, Puelles VG, Su X-T, McCormick JA, Welling PA, Ellison DH. 2018. Optical clearing in the kidney reveals potassium-mediated tubule remodeling. Cell Rep 25:102668–75.e3
    [Google Scholar]
  78. 78.
    Delaloy C, Lu J, Houot A-M, Disse-Nicodeme S, Gasc J-M et al. 2003. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol. Cell. Biol. 23:249208–21
    [Google Scholar]
  79. 79.
    O'Reilly M, Marshall E, Speirs HJL, Brown RW 2003. WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J. Am. Soc. Nephrol. 14:102447–56
    [Google Scholar]
  80. 80.
    Boyd-Shiwarski CR, Beacham RT, Griffiths SE, Shiwarski DJ, Knoell SA et al. 2021. Kidney-specific WNK1 amplifies NCC responsiveness to potassium imbalance. bioRxiv 435046. https://doi.org/10.1101/2021.03.12.435046
    [Crossref]
  81. 81.
    Argaiz ER, Chavez-Canales M, Ostrosky-Frid M, Rodriguez-Gama A, Vázquez N et al. 2018. Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC. Am. J. Physiol. Ren. Physiol. 315:3F734–45
    [Google Scholar]
  82. 82.
    Thastrup JO, Rafiqi FH, Vitari AC, Pozo-Guisado E, Deak M et al. 2011. SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Biochem. J. 441:1325–37
    [Google Scholar]
  83. 83.
    Pacheco-Alvarez D, Carrillo-Pérez DL, Mercado A, Leyva-Ríos K, Moreno E et al. 2020. WNK3 and WNK4 exhibit opposite sensitivity with respect to cell volume and intracellular chloride concentration. Am. J. Physiol. Cell. Physiol. 319:2C371–80
    [Google Scholar]
  84. 84.
    Pleinis JM, Norrell L, Akella R, Humphreys JM, He H et al. 2021. WNKs are potassium-sensitive kinases. Am J. Physiol. Cell Physiol. 320:5C703–21
    [Google Scholar]
  85. 85.
    Lee MG, Ohana E, Park HW, Yang D, Muallem S 2012. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol. Rev. 92:139–74
    [Google Scholar]
  86. 86.
    Park HW, Nam JH, Kim JY, Namkung W, Yoon JS et al. 2010. Dynamic regulation of CFTR bicarbonate permeability by [Cl]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139:2620–31
    [Google Scholar]
  87. 87.
    Kim Y, Jun I, Shin DH, Yoon JG, Piao H et al. 2019. Regulation of CFTR bicarbonate channel activity by WNK1: implications for pancreatitis and CFTR-related disorders. Cell. Mol. Gastroenterol. Hepatol. 9:179–103
    [Google Scholar]
  88. 88.
    Akella R, Humphreys JM, Sekulski K, He H, Durbacz M et al. 2021. Osmosensing by WNK kinases. Mol. Biol. Cell 32:181614–23
    [Google Scholar]
  89. 89.
    Lytle C, McManus T. 2002. Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride. Am. J. Physiol. Cell Physiol. 283:5C1422–31
    [Google Scholar]
  90. 90.
    Zagórska A, Pozo-Guisado E, Boudeau J, Vitari AC, Rafiqi FH et al. 2007. Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. J. Cell Biol. 176:189–100
    [Google Scholar]
  91. 91.
    Roy A, Goodman JH, Begum G, Donnelly BF, Pittman G et al. 2015. Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing. Am. J. Physiol. Ren. Physiol. 308:4F366–76
    [Google Scholar]
  92. 92.
    Cruz-Rangel S, Gamba G, Ramos-Mandujano G, Pasantes-Morales H. 2012. Influence of WNK3 on intracellular chloride concentration and volume regulation in HEK293 cells. Pflügers Arch. 464:3317–30
    [Google Scholar]
  93. 93.
    Zhang J, Gao G, Begum G, Wang J, Khanna AR et al. 2016. Functional kinomics establishes a critical node of volume-sensitive cation-Cl cotransporter regulation in the mammalian brain. Sci. Rep. 6:135986
    [Google Scholar]
  94. 94.
    Zhu W, Begum G, Pointer K, Clark PA, Yang S-S et al. 2014. WNK1-OSR1 kinase-mediated phospho-activation of Na+-K+-2Cl cotransporter facilitates glioma migration. Mol. Cancer 13:131
    [Google Scholar]
  95. 95.
    Breitwieser GE, Altamirano AA, Russell JM. 1990. Osmotic stimulation of Na+-K+-Cl cotransport in squid giant axon is [Cl]i dependent. Am. J. Physiol. Cell Physiol. 258:4C749–53
    [Google Scholar]
  96. 96.
    Serra SA, Stojakovic P, Amat R, Rubio-Moscardo F, Latorre P et al. 2021. LRRC8A-containing chloride channel is crucial for cell volume recovery and survival under hypertonic conditions. PNAS 118:23e2025013118
    [Google Scholar]
  97. 97.
    Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. 2014. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat. Rev. Neurosci. 15:10637–54
    [Google Scholar]
  98. 98.
    Friedel P, Kahle KT, Zhang J, Hertz N, Pisella LI et al. 2015. WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons. Sci. Signal. 8:383ra65
    [Google Scholar]
  99. 99.
    Inoue K, Furukawa T, Kumada T, Yamada J, Wang T et al. 2012. Taurine inhibits K+-Cl cotransporter KCC2 to regulate embryonic Cl homeostasis via with-no-lysine (WNK) protein kinase signaling pathway. J. Biol. Chem. 287:2520839–50
    [Google Scholar]
  100. 100.
    Heubl M, Zhang J, Pressey JC, Awabdh SA, Renner M et al. 2017. GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl-sensitive WNK1 kinase. Nat. Commun. 8:1776
    [Google Scholar]
  101. 101.
    Wagner S, Castel M, Gainer H, Yarom Y. 1997. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387:6633598–603
    [Google Scholar]
  102. 102.
    Alamilla J, Perez-Burgos A, Quinto D, Aguilar-Roblero R. 2014. Circadian modulation of the Cl equilibrium potential in the rat suprachiasmatic nuclei. Biomed. Res. Int. 2014.424982
    [Google Scholar]
  103. 103.
    Choi HJ, Lee CJ, Schroeder A, Kim YS, Jung SH et al. 2008. Excitatory actions of GABA in the suprachiasmatic nucleus. J. Neurosci. 28:215450–59
    [Google Scholar]
  104. 104.
    Gribkoff VK, Pieschl RL, Wisialowski TA, Park WK, Strecker GJ et al. 1999. A reexamination of the role of GABA in the mammalian suprachiasmatic nucleus. J. Biol. Rhythms 14:2126–30
    [Google Scholar]
  105. 105.
    Irwin RP, Allen CN. 2009. GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network. Eur. J. Neurosci. 30:81462–75
    [Google Scholar]
  106. 106.
    Jeu MD, Pennartz C. 2002. Circadian modulation of GABA function in the rat suprachiasmatic nucleus: excitatory effects during the night phase. J. Neurophysiol. 87:2834–44
    [Google Scholar]
  107. 107.
    Shimura M, Akaike N, Harata N. 2002. Circadian rhythm in intracellular Cl activity of acutely dissociated neurons of suprachiasmatic nucleus. Am. J. Physiol. Cell Physiol. 282:2C366–73
    [Google Scholar]
  108. 108.
    Klett NJ, Allen CN. 2017. Intracellular chloride regulation in AVP+ and VIP+ neurons of the suprachiasmatic nucleus. Sci. Rep. 7:110226
    [Google Scholar]
  109. 109.
    Rosbash M. 2021. Circadian rhythms and the transcriptional feedback loop (Nobel Lecture). Angew. Chem. Int. Ed. 60:168650–66
    [Google Scholar]
  110. 110.
    Young MW. 2018. Time travels: a 40-year journey from Drosophila’s clock mutants to human circadian disorders (Nobel Lecture). Angew. Chem. Int Ed. 57:3611532–39
    [Google Scholar]
  111. 111.
    King AN, Sehgal A. 2020. Molecular and circuit mechanisms mediating circadian clock output in the Drosophila brain. Eur. J. Neurosci. 51:1268–81
    [Google Scholar]
  112. 112.
    Schellinger JN, Sun Q, Pleinis JM, An S-W, Hu J et al. 2022. Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade. Curr. Biol. 32:61429–38.e6
    [Google Scholar]
  113. 113.
    Allen CN, Nitabach MN, Colwell CS. 2017. Membrane currents, gene expression, and circadian clocks. Cold Spring Harb. Perspect. Biol. 9:5a027714
    [Google Scholar]
  114. 114.
    Cao G, Nitabach MN. 2008. Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons. J. Neurosci. 28:256493–6501
    [Google Scholar]
  115. 115.
    Eick AK, Ogueta M, Buhl E, Hodge JJL, Stanewsky R. 2022. The opposing chloride cotransporters KCC and NKCC control locomotor activity in constant light and during long days. Curr. Biol. 32:61420–28.e4
    [Google Scholar]
  116. 116.
    Perry JSA, Morioka S, Medina CB, Etchegaray JI, Barron B et al. 2019. Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway. Nat. Cell Biol. 21:121532–43
    [Google Scholar]
  117. 117.
    Swanson KV, Deng M, Ting JP-Y. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19:8477–89
    [Google Scholar]
  118. 118.
    Mayes-Hopfinger L, Enache A, Xie J, Huang C-L, Köchl R et al. 2021. Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis. Nat. Commun. 12:14546
    [Google Scholar]
  119. 119.
    Compan V, Baroja-Mazo A, López-Castejón G, Gomez AI, Martínez CM et al. 2012. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37:3487–500
    [Google Scholar]
  120. 120.
    Lopez-Rivas A, Adelberg EA, Rozengurt E. 1982. Intracellular K+ and the mitogenic response of 3T3 cells to peptide factors in serum-free medium. PNAS 79:206275–79
    [Google Scholar]
  121. 121.
    Larkin JM, Brown MS, Goldstein JL, Anderson RGW. 1983. Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell 33:1273–85
    [Google Scholar]
  122. 122.
    Olabisi OA, Zhang J-Y, VerPlank L, Zahler N, DiBartolo S et al. 2015. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases. PNAS 113:4830–37
    [Google Scholar]
  123. 123.
    McFarlin BE, Chen Y, Priver TS, Ralph DL, Mercado A et al. 2020. Coordinate adaptations of skeletal muscle and kidney to maintain extracellular [K+] during K+-deficient diet. Am. J. Physiol. Cell Physiol. 319:4C757–70
    [Google Scholar]
  124. 124.
    Choate KA, Kahle KT, Wilson FH, Nelson-Williams C, Lifton RP 2003. WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl-transporting epithelia. PNAS 100:2663–68
    [Google Scholar]
  125. 125.
    Kahle KT, Gimenez I, Hassan H, Wilson FH, Wong RD et al. 2004. WNK4 regulates apical and basolateral Cl flux in extrarenal epithelia. PNAS 101:72064–69
    [Google Scholar]
  126. 126.
    Park S, Ku SK, Ji HW, Choi J-H, Shin DM. 2015. Ca2+ is a regulator of the WNK/OSR1/NKCC pathway in a human salivary gland cell line. Korean J. Physiol. Pharmacol. 19:3249–55
    [Google Scholar]
  127. 127.
    Poulsen JH, Oakley B. 1979. Intracellular potassium ion activity in resting and stimulated mouse pancreas and submandibular gland. Proc. R. Soc. B 204: 1154.99–104
    [Google Scholar]
  128. 128.
    Saga K, Sato K. 1989. Electron probe X-ray microanalysis of cellular ions in the eccrine secretory coil cells during methacholine stimulation. J. Membr. Biol. 107:113–24
    [Google Scholar]
  129. 129.
    Sasaki S, Nakagaki I, Mori H, Imai Y. 1983. Intracellular calcium store and transport of elements in acinar cells of the salivary gland determined by electron probe X-ray microanalysis. Jpn. J. Physiol. 33:169–83
    [Google Scholar]
  130. 130.
    Izutsu KT, Johnson DE. 1986. Changes in elemental concentrations of rat parotid acinar cells following pilocarpine stimulation. J. Physiol. 381:1297–309
    [Google Scholar]
  131. 131.
    Foskett JK. 1990. [Ca2+]i modulation of Cl content controls cell volume in single salivary acinar cells during fluid secretion. Am. J. Physiol. Cell Physiol. 259:6C998–1004
    [Google Scholar]
  132. 132.
    Cemerikić D, Wilcox CS, Giebisch G. 1982. Intracellular potential and K+ activity in rat kidney proximal tubular cells in acidosis and K+ depletion. J. Membr. Biol. 69:2159–65
    [Google Scholar]
  133. 133.
    Khuri RN, Agulian SK, Kalloghlian A. 1972. Intracellular potassium in cells of the distal tubule. Pflügers Arch. 335:4297–308
    [Google Scholar]
  134. 134.
    Beck F, Dörge A, Mason J, Rick R, Thurau K 1982. Element concentrations of renal and hepatic cells under potassium depletion. Kidney Int. 22:3250–56
    [Google Scholar]
  135. 135.
    Beck F-X, Dörge A, Rick R, Schramm M, Thurau K. 1987. Effect of potassium adaptation on the distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells. Pflügers Arch 409:4–5477–85
    [Google Scholar]
  136. 136.
    Frindt G, Yang L, Uchida S, Weinstein AM, Palmer LG. 2017. Responses of distal nephron Na+ transporters to acute volume depletion and hyperkalemia. Am. J. Physiol. Ren. Physiol. 313:1F62–73
    [Google Scholar]
  137. 137.
    Cheng C-J, Truong T, Baum M, Huang C-L. 2012. Kidney-specific WNK1 inhibits sodium reabsorption in the cortical thick ascending limb. Am. J. Physiol. Ren. Physiol. 303:5F667–73
    [Google Scholar]
  138. 138.
    Terker AS, Castañeda-Bueno M, Ferdaus MZ, Cornelius RJ, Erspamer KJ et al. 2018. With no lysine kinase 4 modulates sodium potassium 2 chloride cotransporter activity in vivo. Am. J. Physiol. Ren. Physiol. 315:4F781–90
    [Google Scholar]
  139. 139.
    Bischof H, Rehberg M, Stryeck S, Artinger K, Eroglu E et al. 2017. Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat. Commun. 8:11422
    [Google Scholar]
  140. 140.
    Shen Y, Wu S-Y, Rancic V, Aggarwal A, Qian Y et al. 2019. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun. Biol. 2:118
    [Google Scholar]
  141. 141.
    Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. 2011. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol. Cell. 42:19–22
    [Google Scholar]
  142. 142.
    Taylor SS, Radzio-Andzelm E, Madhusudan, Cheng X, Eyck LT, Narayana N 1999. Catalytic subunit of cyclic AMP-dependent protein kinase structure and dynamics of the active site cleft. Pharmacol. Therapeut. 82:2–3133–41
    [Google Scholar]
  143. 143.
    Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. 2007. Substrate and docking interactions in serine/threonine protein kinases. Chem. Rev. 107:115065–81
    [Google Scholar]
  144. 144.
    Min X, Lee B-H, Cobb MH, Goldsmith EJ. 2004. Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension. Structure 12:71303–11
    [Google Scholar]
  145. 145.
    Yamada K, Park H-M, Rigel DF, DiPetrillo K, Whalen EJ et al. 2016. Small-molecule WNK inhibition regulates cardiovascular and renal function. Nat. Chem. Biol. 12:11896–98
    [Google Scholar]
  146. 146.
    Akella R, Drozdz MA, Humphreys JM, Jiou J, Durbacz MZ et al. 2020. A phosphorylated intermediate in the activation of WNK kinases. Biochemistry 59:181747–55
    [Google Scholar]
  147. 147.
    Rodan AR. 2019. Intracellular chloride: a regulator of transepithelial transport in the distal nephron. Curr. Opin. Nephrol. Hypertens. 28:4360–67
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031522-080651
Loading
/content/journals/10.1146/annurev-physiol-031522-080651
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error