1932

Abstract

Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031522-084334
2023-02-10
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-031522-084334.html?itemId=/content/journals/10.1146/annurev-physiol-031522-084334&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K et al. 1995. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat. Genet. 10:151–60
    [Google Scholar]
  2. 2.
    Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B et al. 1996. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–42
    [Google Scholar]
  3. 3.
    Brasier JL, Henske EP. 1997. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J. Clin. Investig. 99:194–99
    [Google Scholar]
  4. 4.
    Veldhuisen B, Saris JJ, de Haij S, Hayashi T, Reynolds DM et al. 1997. A spectrum of mutations in the second gene for autosomal dominant polycystic kidney disease (PKD2). Am. J. Hum. Genet. 61:547–55
    [Google Scholar]
  5. 5.
    Nomura H, Turco AE, Pei Y, Kalaydjieva L, Schiavello T et al. 1998. Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J. Biol. Chem. 273:25967–73
    [Google Scholar]
  6. 6.
    Hughes J, Ward CJ, Aspinwall R, Butler R, Harris PC. 1999. Identification of a human homologue of the sea urchin receptor for egg jelly: a polycystic kidney disease-like protein. Hum. Mol. Genet. 8:543–49
    [Google Scholar]
  7. 7.
    Li A, Tian X, Sung SW, Somlo S. 2003. Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics 81:596–608
    [Google Scholar]
  8. 8.
    Wu G, Hayashi T, Park JH, Dixit M, Reynolds DM et al. 1998. Identification of PKD2L, a human PKD2-related gene: tissue-specific expression and mapping to chromosome 10q25. Genomics 54:564–68
    [Google Scholar]
  9. 9.
    Guo L, Schreiber TH, Weremowicz S, Morton CC, Lee C, Zhou J. 2000. Identification and characterization of a novel polycystin family member, polycystin-L2, in mouse and human: sequence, expression, alternative splicing, and chromosomal localization. Genomics 64:241–51
    [Google Scholar]
  10. 10.
    Veldhuisen B, Spruit L, Dauwerse HG, Breuning MH, Peters DJ. 1999. Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur. J. Hum. Genet. 7:860–72
    [Google Scholar]
  11. 11.
    Alexander SP, Mathie A, Peters JA, Veale EL, Striessnig J et al. 2021. The concise guide to pharmacology 2021/22: ion channels. Br. J. Pharmacol. 178:Suppl. 1S157–245
    [Google Scholar]
  12. 12.
    Ramsey IS, Delling M, Clapham DE. 2006. An introduction to TRP channels. Annu. Rev. Physiol. 68:619–47
    [Google Scholar]
  13. 13.
    Shen PS, Yang X, DeCaen PG, Liu X, Bulkley D et al. 2016. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167:763–73.e11
    [Google Scholar]
  14. 14.
    Grieben M, Pike AC, Shintre CA, Venturi E, El-Ajouz S et al. 2017. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24:114–22
    [Google Scholar]
  15. 15.
    Su Q, Hu F, Liu Y, Ge X, Mei C et al. 2018. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Nat. Commun. 9:1192
    [Google Scholar]
  16. 16.
    Su Q, Hu F, Ge X, Lei J, Yu S et al. 2018. Structure of the human PKD1-PKD2 complex. Science 361:922
    [Google Scholar]
  17. 17.
    Su Q, Chen M, Wang Y, Li B, Jing D et al. 2021. Structural basis for Ca2+ activation of the heteromeric PKD1L3/PKD2L1 channel. Nat. Commun. 12:4871
    [Google Scholar]
  18. 18.
    DeCaen PG, Delling M, Vien TN, Clapham DE. 2013. Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504:315–18
    [Google Scholar]
  19. 19.
    Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE. 2018. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 7:e33183
    [Google Scholar]
  20. 20.
    Palmer CP, Aydar E, Djamgoz MB. 2005. A microbial TRP-like polycystic-kidney-disease-related ion channel gene. Biochem. J. 387:211–19
    [Google Scholar]
  21. 21.
    Köttgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X et al. 2008. TRPP2 and TRPV4 form a polymodal sensory channel complex. J. Cell Biol. 182:437–47
    [Google Scholar]
  22. 22.
    Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP. 1999. Specific association of the gene product of PKD2 with the TRPC1 channel. PNAS 96:3934–39
    [Google Scholar]
  23. 23.
    Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. 2018. Polycystic kidney disease. Nat. Rev. Dis. Primers 4:50
    [Google Scholar]
  24. 24.
    Willey C, Kamat S, Stellhorn R, Blais J. 2019. Analysis of nationwide data to determine the incidence and diagnosed prevalence of autosomal dominant polycystic kidney disease in the USA: 2013–2015. Kidney Dis. 5:107–17
    [Google Scholar]
  25. 25.
    Happé H, Peters DJ. 2014. Translational research in ADPKD: lessons from animal models. Nat. Rev. Nephrol. 10:587–601
    [Google Scholar]
  26. 26.
    Torres VE, Harris PC. 2007. Polycystic kidney disease: genes, proteins, animal models, disease mechanisms and therapeutic opportunities. J. Intern. Med. 261:17–31
    [Google Scholar]
  27. 27.
    Watnick TJ, Torres VE, Gandolph MA, Qian F, Onuchic LF et al. 1998. Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol. Cell 2:247–51
    [Google Scholar]
  28. 28.
    Yoshiba S, Hamada H. 2014. Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry. Trends Genet. 30:10–17
    [Google Scholar]
  29. 29.
    Braun DA, Hildebrandt F. 2017. Ciliopathies. Cold Spring Harb. Perspect. Biol. 9:a0281911–28
    [Google Scholar]
  30. 30.
    Walker RV, Keynton JL, Grimes DT, Sreekumar V, Williams DJ et al. 2019. Ciliary exclusion of Polycystin-2 promotes kidney cystogenesis in an autosomal dominant polycystic kidney disease model. Nat. Commun. 10:4072
    [Google Scholar]
  31. 31.
    Vien TN, Ng LCT, Smith JM, Dong K, Krappitz M et al. 2020. Disrupting polycystin-2 EF hand Ca2+ affinity does not alter channel function or contribute to polycystic kidney disease. J. Cell Sci. 133:jcs255562
    [Google Scholar]
  32. 32.
    Norris DP. 2012. Cilia, calcium and the basis of left-right asymmetry. BMC Biol. 10:102
    [Google Scholar]
  33. 33.
    Vetrini F, D'Alessandro LC, Akdemir ZC, Braxton A, Azamian MS et al. 2016. Bi-allelic mutations in PKD1L1 are associated with laterality defects in humans. Am. J. Hum. Genet. 99:886–93
    [Google Scholar]
  34. 34.
    Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. 2005. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57:387–95
    [Google Scholar]
  35. 35.
    Clapham DE. 2003. TRP channels as cellular sensors. Nature 426:517–24
    [Google Scholar]
  36. 36.
    Hulse RE, Li Z, Huang RK, Zhang J, Clapham DE. 2018. Cryo-EM structure of the polycystin 2-l1 ion channel. eLife 7:e36931
    [Google Scholar]
  37. 37.
    Catterall WA, Wisedchaisri G, Zheng N. 2017. The chemical basis for electrical signaling. Nat. Chem. Biol. 13:455–63
    [Google Scholar]
  38. 38.
    Saotome K, Singh AK, Yelshanskaya MV, Sobolevsky AI. 2016. Crystal structure of the epithelial calcium channel TRPV6. Nature 534:506–11
    [Google Scholar]
  39. 39.
    Whicher JR, MacKinnon R. 2016. Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353:664–69
    [Google Scholar]
  40. 40.
    Ng LCT, Vien TN, Yarov-Yarovoy V, DeCaen PG. 2019. Opening TRPP2 (PKD2L1) requires the transfer of gating charges. PNAS 116:15540–49
    [Google Scholar]
  41. 41.
    DeCaen PG, Yarov-Yarovoy V, Sharp EM, Scheuer T, Catterall WA. 2009. Sequential formation of ion pairs during activation of a sodium channel voltage sensor. PNAS 106:22498–503
    [Google Scholar]
  42. 42.
    Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S et al. 2002. Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol. 4:191–97
    [Google Scholar]
  43. 43.
    Wilkes M, Madej MG, Kreuter L, Rhinow D, Heinz V et al. 2017. Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nat. Struct. Mol. Biol. 24:123–30
    [Google Scholar]
  44. 44.
    Wang Q, Corey RA, Hedger G, Aryal P, Grieben M et al. 2020. Lipid interactions of a ciliary membrane TRP channel: simulation and structural studies of polycystin-2. Structure 28:169–84.e5
    [Google Scholar]
  45. 45.
    Cao E, Liao M, Cheng Y, Julius D 2013. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–18
    [Google Scholar]
  46. 46.
    Duncan AL, Song W, Sansom MSP. 2020. Lipid-dependent regulation of ion channels and G protein-coupled receptors: insights from structures and simulations. Annu. Rev. Pharmacol. Toxicol. 60:31–50
    [Google Scholar]
  47. 47.
    Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B. 2010. Phosphoinositides: lipid regulators of membrane proteins. J. Physiol. 588:3179–85
    [Google Scholar]
  48. 48.
    Chen Q, She J, Zeng W, Guo J, Xu H et al. 2017. Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature 550:415–18
    [Google Scholar]
  49. 49.
    Song X, Li J, Tian M, Zhu H, Hu X et al. 2022. Cryo-EM structure of mouse TRPML2 in lipid nanodiscs. J. Biol. Chem. 298:101487
    [Google Scholar]
  50. 50.
    Hofherr A, Wagner C, Fedeles S, Somlo S, Kottgen M. 2014. N-glycosylation determines the abundance of the transient receptor potential channel TRPP2. J. Biol. Chem. 289:14854–67
    [Google Scholar]
  51. 51.
    Gout AM, Martin NC, Brown AF, Ravine D. 2007. PKDB: Polycystic Kidney Disease Mutation Database—a gene variant database for autosomal dominant polycystic kidney disease. Hum. Mutat. 28:654–59
    [Google Scholar]
  52. 52.
    Vien TN, Wang J, Ng LCT, Cao E, DeCaen PG. 2020. Molecular dysregulation of ciliary polycystin-2 channels caused by variants in the TOP domain. PNAS 117:10329–38
    [Google Scholar]
  53. 53.
    Jiang D, Tonggu L, Gamal El-Din TM, Banh R, Pomes R et al. 2021. Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin. Nat. Commun. 12:128
    [Google Scholar]
  54. 54.
    Xu H, Li T, Rohou A, Arthur CP, Tzakoniati F et al. 2019. Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin. Cell 176:1238–39
    [Google Scholar]
  55. 55.
    Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA 2012. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486:135–39
    [Google Scholar]
  56. 56.
    DeCaen PG, Liu X, Abiria S, Clapham DE. 2016. Atypical calcium regulation of the PKD2-L1 polycystin ion channel. eLife 5:e13413
    [Google Scholar]
  57. 57.
    Zubcevic L, Lee SY. 2019. The role of pi-helices in TRP channel gating. Curr. Opin. Struct. Biol. 58:314–23
    [Google Scholar]
  58. 58.
    Boiteux C, Posson DJ, Allen TW, Nimigean CM. 2020. Selectivity filter ion binding affinity determines inactivation in a potassium channel. PNAS 117:29968–78
    [Google Scholar]
  59. 59.
    Cai Y, Anyatonwu G, Okuhara D, Lee KB, Yu Z et al. 2004. Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. J. Biol. Chem. 279:19987–95
    [Google Scholar]
  60. 60.
    Kottgen M, Benzing T, Simmen T, Tauber R, Buchholz B et al. 2005. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 24:705–16
    [Google Scholar]
  61. 61.
    Park EYJ, Kwak M, Ha K, So I 2018. Identification of clustered phosphorylation sites in PKD2L1: how PKD2L1 channel activation is regulated by cyclic adenosine monophosphate signaling pathway. Pflügers Arch. 470:505–16
    [Google Scholar]
  62. 62.
    Zheng W, Yang J, Beauchamp E, Cai R, Hussein S et al. 2016. Regulation of TRPP3 channel function by N-terminal domain palmitoylation and phosphorylation. J. Biol. Chem. 291:25678–91
    [Google Scholar]
  63. 63.
    Allen MD, Qamar S, Vadivelu MK, Sandford RN, Bycroft M. 2014. A high-resolution structure of the EF-hand domain of human polycystin-2. Protein Sci. 23:1301–8
    [Google Scholar]
  64. 64.
    Petri ET, Celic A, Kennedy SD, Ehrlich BE, Boggon TJ, Hodsdon ME. 2010. Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity. PNAS 107:9176–81
    [Google Scholar]
  65. 65.
    Molland KL, Paul LN, Yernool DA. 2012. Crystal structure and characterization of coiled-coil domain of the transient receptor potential channel PKD2L1. Biochim. Biophys. Acta 1824:413–21
    [Google Scholar]
  66. 66.
    Zhu J, Yu Y, Ulbrich MH, Li MH, Isacoff EY et al. 2011. Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. PNAS 108:10133–38
    [Google Scholar]
  67. 67.
    Yang Y, Keeler C, Kuo IY, Lolis EJ, Ehrlich BE, Hodsdon ME. 2015. Oligomerization of the polycystin-2 C-terminal tail and effects on its Ca2+-binding properties. J. Biol. Chem. 290:10544–54
    [Google Scholar]
  68. 68.
    Molland KL, Narayanan A, Burgner JW, Yernool DA. 2010. Identification of the structural motif responsible for trimeric assembly of the C-terminal regulatory domains of polycystin channels PKD2L1 and PKD2. Biochem. J. 429:171–83
    [Google Scholar]
  69. 69.
    Li Q, Liu Y, Zhao W, Chen XZ. 2002. The calcium-binding EF-hand in polycystin-L is not a domain for channel activation and ensuing inactivation. FEBS Lett. 516:270–78
    [Google Scholar]
  70. 70.
    Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG. 1997. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat. Genet. 16:179–83
    [Google Scholar]
  71. 71.
    Field S, Riley KL, Grimes DT, Hilton H, Simon M et al. 2011. PKD1L1 establishes left-right asymmetry and physically interacts with PKD2. Development 138:1131–42
    [Google Scholar]
  72. 72.
    Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B et al. 2002. Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. Am. J. Pathol. 160:973–83
    [Google Scholar]
  73. 73.
    Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C et al. 2000. Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J. Am. Soc. Nephrol. 11:814–27
    [Google Scholar]
  74. 74.
    Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB et al. 2001. Polycystin-2 is a novel cation channel implicated in defective intracellular Ca2+ homeostasis in polycystic kidney disease. Biochem. Biophys. Res. Commun. 282:341–50
    [Google Scholar]
  75. 75.
    Santoso NG, Cebotaru L, Guggino WB. 2011. Polycystin-1, 2, and STIM1 interact with IP3R to modulate ER Ca2+ release through the PI3K/Akt pathway. Cell Physiol. Biochem. 27:715–26
    [Google Scholar]
  76. 76.
    Kuo IY, Brill AL, Lemos FO, Jiang JY, Falcone JL et al. 2019. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2. Sci. Signal. 12:eaat7397
    [Google Scholar]
  77. 77.
    Kleene SJ, Kleene NK. 2021. Inward Ca2+ current through the polycystin-2-dependent channels of renal primary cilia. Am. J. Physiol. Ren. Physiol. 320:F1165–73
    [Google Scholar]
  78. 78.
    Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE. 2013. Primary cilia are specialized calcium signalling organelles. Nature 504:311–14
    [Google Scholar]
  79. 79.
    Kleene SJ, Kleene NK. 2017. The native TRPP2-dependent channel of murine renal primary cilia. Am. J. Physiol. Ren. Physiol. 312:F96–108
    [Google Scholar]
  80. 80.
    Kuo IY, Chapman AB. 2020. Polycystins, ADPKD, and cardiovascular disease. Kidney Int. Rep. 5:396–406
    [Google Scholar]
  81. 81.
    Anyatonwu GI, Estrada M, Tian X, Somlo S, Ehrlich BE. 2007. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. PNAS 104:6454–59
    [Google Scholar]
  82. 82.
    Bulley S, Fernandez-Pena C, Hasan R, Leo MD, Muralidharan P et al. 2018. Arterial smooth muscle cell PKD2 (TRPP1) channels regulate systemic blood pressure. eLife 7:e42628
    [Google Scholar]
  83. 83.
    Narayanan D, Bulley S, Leo MD, Burris SK, Gabrick KS et al. 2013. Smooth muscle cell transient receptor potential polycystin-2 (TRPP2) channels contribute to the myogenic response in cerebral arteries. J. Physiol. 591:5031–46
    [Google Scholar]
  84. 84.
    MacKay CE, Leo MD, Fernandez-Pena C, Hasan R, Yin W et al. 2020. Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure. eLife 9:e56655
    [Google Scholar]
  85. 85.
    Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W et al. 2006. The cells and logic for mammalian sour taste detection. Nature 442:934–38
    [Google Scholar]
  86. 86.
    Yao G, Luo C, Harvey M, Wu M, Schreiber TH et al. 2016. Disruption of polycystin-L causes hippocampal and thalamocortical hyperexcitability. Hum. Mol. Genet. 25:448–58
    [Google Scholar]
  87. 87.
    Orts-Del'Immagine A, Wanaverbecq N, Tardivel C, Tillement V, Dallaporta M, Trouslard J. 2012. Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem. J. Physiol. 590:3719–41
    [Google Scholar]
  88. 88.
    Orts-Del'Immagine A, Seddik R, Tell F, Airault C, Er-Raoui G et al. 2016. A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem. Neuropharmacology 101:549–65
    [Google Scholar]
  89. 89.
    Sternberg JR, Prendergast AE, Brosse L, Cantaut-Belarif Y, Thouvenin O et al. 2018. Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat. Commun. 9:3804
    [Google Scholar]
  90. 90.
    Jalalvand E, Robertson B, Tostivint H, Wallen P, Grillner S. 2016. The spinal cord has an intrinsic system for the control of pH. Curr. Biol. 26:1346–51
    [Google Scholar]
  91. 91.
    Cole KS, Moore JW. 1960. Potassium ion current in the squid giant axon: dynamic characteristic. Biophys. J. 1:1–14
    [Google Scholar]
  92. 92.
    Shimizu T, Higuchi T, Toba T, Ohno C, Fujii T et al. 2017. The asparagine 533 residue in the outer pore loop region of the mouse PKD2L1 channel is essential for its voltage-dependent inactivation. FEBS Open Bio 7:1392–401
    [Google Scholar]
  93. 93.
    Numata T, Tsumoto K, Yamada K, Kurokawa T, Hirose S et al. 2017. Integrative approach with electrophysiological and theoretical methods reveals a new role of S4 positively charged residues in PKD2L1 channel voltage-sensing. Sci. Rep. 7:9760
    [Google Scholar]
  94. 94.
    Shimizu T, Janssens A, Voets T, Nilius B. 2009. Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflügers Arch. 457:795–807
    [Google Scholar]
  95. 95.
    Shimizu T, Higuchi T, Fujii T, Nilius B, Sakai H. 2011. Bimodal effect of alkalization on the polycystin transient receptor potential channel, PKD2L1. Pflügers Arch. 461:507–13
    [Google Scholar]
  96. 96.
    Hussein S, Zheng W, Dyte C, Wang Q, Yang J et al. 2015. Acid-induced off-response of PKD2L1 channel in Xenopus oocytes and its regulation by Ca2+. Sci. Rep. 5:15752
    [Google Scholar]
  97. 97.
    Chen Y, Zhang Z, Lv XY, Wang YD, Hu ZG et al. 2008. Expression of pkd2l2 in testis is implicated in spermatogenesis. Biol. Pharm. Bull. 31:1496–500
    [Google Scholar]
  98. 98.
    Sutton KA, Jungnickel MK, Ward CJ, Harris PC, Florman HM. 2006. Functional characterization of PKDREJ, a male germ cell-restricted polycystin. J. Cell. Physiol. 209:493–500
    [Google Scholar]
  99. 99.
    Xiao Y, Lv X, Cao G, Bian G, Duan J et al. 2010. Overexpression of Trpp5 contributes to cell proliferation and apoptosis probably through involving calcium homeostasis. Mol. Cell Biochem. 339:155–61
    [Google Scholar]
  100. 100.
    Ping YQ, Mao C, Xiao P, Zhao RJ, Jiang Y et al. 2021. Structures of the glucocorticoid-bound adhesion receptor GPR97-Go complex. Nature 589:620–26
    [Google Scholar]
  101. 101.
    Qu X, Qiu N, Wang M, Zhang B, Du J et al. 2022. Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1. Nature 604:779–85
    [Google Scholar]
  102. 102.
    Xu Y, Streets AJ, Hounslow AM, Tran U, Jean-Alphonse F et al. 2016. The polycystin-1, lipoxygenase, and α-toxin domain regulates polycystin-1 trafficking. J. Am. Soc. Nephrol. 27:1159–73
    [Google Scholar]
  103. 103.
    Ibraghimov-Beskrovnaya O, Bukanov NO, Donohue LC, Dackowski WR, Klinger KW, Landes GM. 2000. Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene. PKD1. Hum. Mol. Genet. 9:1641–49
    [Google Scholar]
  104. 104.
    Streets AJ, Newby LJ, O'Hare MJ, Bukanov NO, Ibraghimov-Beskrovnaya O, Ong AC 2003. Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion. J. Am. Soc. Nephrol. 14:1804–15
    [Google Scholar]
  105. 105.
    Arac D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM et al. 2012. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 31:1364–78
    [Google Scholar]
  106. 106.
    Kurbegovic A, Kim H, Xu H, Yu S, Cruanes J et al. 2014. Novel functional complexity of polycystin-1 by GPS cleavage in vivo: role in polycystic kidney disease. Mol. Cell. Biol. 34:3341–53
    [Google Scholar]
  107. 107.
    Wei W, Hackmann K, Xu H, Germino G, Qian F. 2007. Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J. Biol. Chem. 282:21729–37
    [Google Scholar]
  108. 108.
    Qian F, Boletta A, Bhunia AK, Xu H, Liu L et al. 2002. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. PNAS 99:16981–86
    [Google Scholar]
  109. 109.
    Yu S, Hackmann K, Gao J, He X, Piontek K et al. 2007. Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. PNAS 104:18688–93
    [Google Scholar]
  110. 110.
    Wu G, Tian X, Nishimura S, Markowitz GS, D'Agati V et al. 2002. Trans-heterozygous PKD1 and PKD2 mutations modify expression of polycystic kidney disease. Hum. Mol. Genet. 11:1845–54
    [Google Scholar]
  111. 111.
    Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K et al. 2000. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–94
    [Google Scholar]
  112. 112.
    Ha K, Nobuhara M, Wang Q, Walker RV, Qian F et al. 2020. The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus. eLife 9:e60684
    [Google Scholar]
  113. 113.
    Gainullin VG, Hopp K, Ward CJ, Hommerding CJ, Harris PC. 2015. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J. Clin. Investig. 125:607–20
    [Google Scholar]
  114. 114.
    Yoder BK. 2007. Role of primary cilia in the pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 18:1381–88
    [Google Scholar]
  115. 115.
    Geng L, Okuhara D, Yu Z, Tian X, Cai Y et al. 2006. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J. Cell Sci. 119:1383–95
    [Google Scholar]
  116. 116.
    Wang Z, Ng C, Liu X, Wang Y, Li B et al. 2019. The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. EMBO Rep. 20:e48336
    [Google Scholar]
  117. 117.
    Kawasumi A, Nakamura T, Iwai N, Yashiro K, Saijoh Y et al. 2011. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev. Biol. 353:321–30
    [Google Scholar]
  118. 118.
    Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A et al. 1998. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–37
    [Google Scholar]
  119. 119.
    Tabin CJ, Vogan KJ. 2003. A two-cilia model for vertebrate left-right axis specification. Genes Dev. 17:1–6
    [Google Scholar]
  120. 120.
    Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K et al. 2012. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338:226–31
    [Google Scholar]
  121. 121.
    Nonaka S, Shiratori H, Saijoh Y, Hamada H. 2002. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418:96–99
    [Google Scholar]
  122. 122.
    McGrath J, Somlo S, Makova S, Tian X, Brueckner M. 2003. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73
    [Google Scholar]
  123. 123.
    Ferreira RR, Vilfan A, Julicher F, Supatto W, Vermot J. 2017. Physical limits of flow sensing in the left-right organizer. eLife 6:e25078
    [Google Scholar]
  124. 124.
    Cartwright JH, Piro O, Tuval I. 2004. Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. PNAS 101:7234–39
    [Google Scholar]
  125. 125.
    Tanaka Y, Okada Y, Hirokawa N. 2005. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435:172–77
    [Google Scholar]
  126. 126.
    Reiter JF, Leroux MR. 2017. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18:533–47
    [Google Scholar]
  127. 127.
    Vogel P, Read R, Hansen GM, Freay LC, Zambrowicz BP, Sands AT. 2010. Situs inversus in Dpcd/Poll−/−, Nme7−/−, and Pkd1l1−/− mice. Vet. Pathol. 47:120–31
    [Google Scholar]
  128. 128.
    Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B et al. 2002. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol. 12:938–43
    [Google Scholar]
  129. 129.
    Liu DY, Baker HW. 1994. Disordered acrosome reaction of spermatozoa bound to the zona pellucida: a newly discovered sperm defect causing infertility with reduced sperm-zona pellucida penetration and reduced fertilization in vitro. Hum. Reprod. 9:1694–700
    [Google Scholar]
  130. 130.
    Butscheid Y, Chubanov V, Steger K, Meyer D, Dietrich A, Gudermann T. 2006. Polycystic kidney disease and receptor for egg jelly is a plasma membrane protein of mouse sperm head. Mol. Reprod. Dev. 73:350–60
    [Google Scholar]
  131. 131.
    Sutton KA, Jungnickel MK, Florman HM. 2008. A polycystin-1 controls postcopulatory reproductive selection in mice. PNAS 105:8661–66
    [Google Scholar]
  132. 132.
    Chiang C, Litingtung Y, Lee E, Young KE, Corden JL et al. 1996. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–13
    [Google Scholar]
  133. 133.
    Briscoe J, Therond PP. 2013. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14:416–29
    [Google Scholar]
  134. 134.
    Coste B, Xiao B, Santos JS, Syeda R, Grandl J et al. 2012. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–81
    [Google Scholar]
  135. 135.
    Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C. 1994. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–68
    [Google Scholar]
  136. 136.
    Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y et al. 2011. Sour taste responses in mice lacking PKD channels. PLOS ONE 6:e20007
    [Google Scholar]
  137. 137.
    LopezJimenez ND, Cavenagh MM, Sainz E, Cruz-Ithier MA, Battey JF, Sullivan SL. 2006. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem. 98:68–77
    [Google Scholar]
  138. 138.
    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. 2006. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. PNAS 103:12569–74
    [Google Scholar]
  139. 139.
    Wilson CE, Vandenbeuch A, Kinnamon SC. 2019. Physiological and behavioral responses to optogenetic stimulation of PKD2L1+ type III taste cells. eNeuro 6:2e0107–19.2019
    [Google Scholar]
  140. 140.
    Kawaguchi H, Yamanaka A, Uchida K, Shibasaki K, Sokabe T et al. 2010. Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells. J. Biol. Chem. 285:17277–81
    [Google Scholar]
  141. 141.
    Kataoka S, Yang R, Ishimaru Y, Matsunami H, Sevigny J et al. 2008. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem. Sens. 33:243–54
    [Google Scholar]
  142. 142.
    Teng B, Wilson CE, Tu YH, Joshi NR, Kinnamon SC, Liman ER. 2019. Cellular and neural responses to sour stimuli require the proton channel Otop1. Curr. Biol. 29:3647–56.e5
    [Google Scholar]
  143. 143.
    Saotome K, Teng B, Tsui CCA, Lee WH, Tu YH et al. 2019. Structures of the otopetrin proton channels Otop1 and Otop3. Nat. Struct. Mol. Biol. 26:518–25
    [Google Scholar]
  144. 144.
    Chen P, Wu JZ, Zhao J, Wang P, Luo J et al. 2015. PKD2L1/PKD1L3 channel complex with an alkali-activated mechanism and calcium-dependent inactivation. Eur. Biophys. J. 44:483–92
    [Google Scholar]
  145. 145.
    Fujimoto C, Ishimaru Y, Katano Y, Misaka T, Yamasoba T et al. 2011. The single pore residue Asp523 in PKD2L1 determines Ca2+ permeation of the PKD1L3/PKD2L1 complex. Biochem. Biophys. Res. Commun. 404:946–51
    [Google Scholar]
  146. 146.
    Kashyap P, Ng C, Wang Z, Li B, Pavel MA et al. 2019. A PKD1L3 splice variant in taste buds is not cleaved at the G protein-coupled receptor proteolytic site. Biochem. Biophys. Res. Commun. 512:812–18
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031522-084334
Loading
/content/journals/10.1146/annurev-physiol-031522-084334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error