1932

Abstract

Cholesterol homeostasis and trafficking are critical to the maintenance of the asymmetric plasma membrane of eukaryotic cells. Disruption or dysfunction of cholesterol trafficking leads to numerous human diseases. ATP-binding cassette (ABC) transporters play several critical roles in this process, and mutations in these sterol transporters lead to disorders such as Tangier disease and sitosterolemia. Biochemical and structural information on ABC sterol transporters is beginning to emerge, with published structures of ABCA1 and ABCG5/G8; these two proteins function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Although both of these transporters belong to the ABC family and mediate the efflux of a sterol substrate, they have many distinct differences. Here, we summarize the current understanding of sterol transport driven by ABC transporters, with an emphasis on these two extensively characterized transporters.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031620-094944
2021-02-10
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-031620-094944.html?itemId=/content/journals/10.1146/annurev-physiol-031620-094944&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lamari F, Mochel F, Sedel F, Saudubray JM 2013. Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J. Inherit. Metab. Dis. 36:411–25
    [Google Scholar]
  2. 2. 
    Ikonen E. 2008. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9:125–38
    [Google Scholar]
  3. 3. 
    Fadeel B, Xue D. 2009. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit. Rev. Biochem. Mol. Biol. 44:264–77
    [Google Scholar]
  4. 4. 
    Harayama T, Riezman H. 2018. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19:281–96
    [Google Scholar]
  5. 5. 
    Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH 2009. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res. 50:Suppl.S189–94
    [Google Scholar]
  6. 6. 
    Risselada HJ. 2019. Cholesterol: the plasma membrane's constituent that chooses sides. Biophys. J. 116:2235–36
    [Google Scholar]
  7. 7. 
    Riscal R, Skuli N, Simon MC 2019. Even cancer cells watch their cholesterol. ! Mol. Cell 76:220–31
    [Google Scholar]
  8. 8. 
    Chang TY, Yamauchi Y, Hasan MT, Chang C 2017. Cellular cholesterol homeostasis and Alzheimer's disease. J. Lipid Res. 58:2239–54
    [Google Scholar]
  9. 9. 
    Steck TL, Lange Y. 2018. Transverse distribution of plasma membrane bilayer cholesterol: picking sides. Traffic 19:750–60
    [Google Scholar]
  10. 10. 
    Rog T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M 2009. Ordering effects of cholesterol and its analogues. Biochim. Biophys. Acta 1788:97–121
    [Google Scholar]
  11. 11. 
    Yesylevskyy SO, Demchenko AP. 2012. How cholesterol is distributed between monolayers in asymmetric lipid membranes. Eur. Biophys. J. 41:1043–54
    [Google Scholar]
  12. 12. 
    Hamilton JA. 2003. Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr. Opin. Lipidol. 14:263–71
    [Google Scholar]
  13. 13. 
    Simons K, Vaz WL. 2004. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33:269–95
    [Google Scholar]
  14. 14. 
    Levental I, Levental KR, Heberle FA 2020. Lipid rafts: controversies resolved, mysteries remain. Trends Cell Biol 30:341–53
    [Google Scholar]
  15. 15. 
    Luo J, Yang H, Song BL 2019. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21:225–45
    [Google Scholar]
  16. 16. 
    Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR 2003. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis.. Arterioscler. Thromb. Vasc. Biol 23:160–67
    [Google Scholar]
  17. 17. 
    Duffy D, Rader DJ. 2006. Emerging therapies targeting high-density lipoprotein metabolism and reverse cholesterol transport. Circulation 113:1140–50
    [Google Scholar]
  18. 18. 
    Xiong J, Feng J, Yuan D, Zhou J, Miao W 2015. Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily. Sci. Rep. 5:16724
    [Google Scholar]
  19. 19. 
    Dean M, Hamon Y, Chimini G 2001. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42:1007–17
    [Google Scholar]
  20. 20. 
    Srikant S, Gaudet R. 2019. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat. Struct. Mol. Biol. 26:792–801
    [Google Scholar]
  21. 21. 
    Locher KP. 2016. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23:487–93
    [Google Scholar]
  22. 22. 
    Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS 2016. P4-ATPases as phospholipid flippases-structure, function, and enigmas. Front. Physiol. 7:275
    [Google Scholar]
  23. 23. 
    Perez C, Gerber S, Boilevin J, Bucher M, Darbre T et al. 2015. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524:433–38
    [Google Scholar]
  24. 24. 
    Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X 2017. Structure of the human lipid exporter ABCA1. Cell 169:1228–39.e10
    [Google Scholar]
  25. 25. 
    Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M 2017. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549:233–37
    [Google Scholar]
  26. 26. 
    Olsen JA, Alam A, Kowal J, Stieger B, Locher KP 2019. Structure of the human lipid exporter ABCB4 in a lipid environment. Nat. Struct. Mol. Biol. 27:62–70
    [Google Scholar]
  27. 27. 
    van Meer G, Halter D, Sprong H, Somerharju P, Egmond MR 2006. ABC lipid transporters: Extruders, flippases, or flopless activators. FEBS Lett 580:1171–77
    [Google Scholar]
  28. 28. 
    Small DM. 2003. Role of ABC transporters in secretion of cholesterol from liver into bile. PNAS 100:4–6
    [Google Scholar]
  29. 29. 
    Sano O, Ito S, Kato R, Shimizu Y, Kobayashi A et al. 2014. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane. PLOS ONE 9:e109886
    [Google Scholar]
  30. 30. 
    Dean M, Rzhetsky A, Allikmets R 2001. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–66
    [Google Scholar]
  31. 31. 
    Ile KE, Davis W Jr, Boyd JT, Soulika AM, Tew KD 2004. Identification of a novel first exon of the human ABCA2 transporter gene encoding a unique N-terminus. Biochim. Biophys. Acta 1678:22–32
    [Google Scholar]
  32. 32. 
    Mace S, Cousin E, Ricard S, Genin E, Spanakis E et al. 2005. ABCA2 is a strong genetic risk factor for early-onset Alzheimer's disease. Neurobiol. Dis. 18:119–25
    [Google Scholar]
  33. 33. 
    Davis W Jr 2011. The ATP-binding cassette transporter-2 (ABCA2) regulates cholesterol homeostasis and low-density lipoprotein receptor metabolism in N2a neuroblastoma cells. Biochim. Biophys. Acta 1811:1152–64
    [Google Scholar]
  34. 34. 
    Kubo Y, Sekiya S, Ohigashi M, Takenaka C, Tamura K et al. 2005. ABCA5 resides in lysosomes, and ABCA5 knockout mice develop lysosomal disease-like symptoms. Mol. Cell. Biol. 25:4138–49
    [Google Scholar]
  35. 35. 
    Ohtsuki S, Kamoi M, Watanabe Y, Suzuki H, Hori S, Terasaki T 2007. Correlation of induction of ATP binding cassette transporter A5 (ABCA5) and ABCB1 mRNAs with differentiation state of human colon tumor. Biol. Pharm. Bull. 30:1144–46
    [Google Scholar]
  36. 36. 
    Ye D, Meurs I, Ohigashi M, Calpe-Berdiel L, Habets KL et al. 2010. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice. Biochem. Biophys. Res. Commun. 395:387–94
    [Google Scholar]
  37. 37. 
    Fredrickson DS. 1964. The inheritance of high density lipoprotein deficiency (Tangier disease). J. Clin. Investig. 43:228–36
    [Google Scholar]
  38. 38. 
    Ordovas JM. 2000. ABC1: the gene for Tangier disease and beyond. Nutr. Rev. 58:76–79
    [Google Scholar]
  39. 39. 
    Schumacher T, Benndorf RA. 2017. ABC transport proteins in cardiovascular disease—a brief summary. Molecules 22:589
    [Google Scholar]
  40. 40. 
    Orsó E, Broccardo C, Kaminski WE, Böttcher A, Liebisch G et al. 2000. Transport of lipids from golgi to plasma membrane is defective in Tangier disease patients and Abc1-deficient mice. Nat. Genet. 24:192–96
    [Google Scholar]
  41. 41. 
    Oram JF, Lawn RM. 2001. ABCA1: the gatekeeper for eliminating excess tissue cholesterol. J. Lipid Res. 42:1173–79
    [Google Scholar]
  42. 42. 
    Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjærg-Hansen A 2004. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J. Clin. Investig. 114:1343–53
    [Google Scholar]
  43. 43. 
    Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K et al. 1999. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Investig. 104:R25–31
    [Google Scholar]
  44. 44. 
    Singaraja RR, Visscher H, James ER, Chroni A, Coutinho JM et al. 2006. Specific mutations in ABCA1 have discrete effects on ABCA1 function and lipid phenotypes both in vivo and in vitro. Circ. Res. 99:389–97
    [Google Scholar]
  45. 45. 
    Tietjen I, Hovingh GK, Singaraja R, Radomski C, McEwen J et al. 2012. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. . Biochim. Biophys. Acta 1821:416–24
    [Google Scholar]
  46. 46. 
    Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N 2008. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 7:365–75
    [Google Scholar]
  47. 47. 
    Bielicki JK. 2016. ABCA1 agonist peptides for the treatment of disease. Curr. Opin. Lipidol. 27:40–46
    [Google Scholar]
  48. 48. 
    Fitz NF, Cronican AA, Saleem M, Fauq AH, Chapman R et al. 2012. Abca1 deficiency affects Alzheimer's disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J. Neurosci. 32:13125–36
    [Google Scholar]
  49. 49. 
    Luciani MF, Denizot F, Savary S, Mattei MG, Chimini G 1994. Cloning of two novel ABC transporters mapping on human chromosome 9. Genomics 21:150–59
    [Google Scholar]
  50. 50. 
    Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF et al. 1999. Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem. Biophys. Res. Commun. 257:29–33
    [Google Scholar]
  51. 51. 
    Frambach S, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ 2020. Brothers in arms: ABCA1- and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment. Pharmacol. Rev. 72:152–90
    [Google Scholar]
  52. 52. 
    Bortnick AE, Rothblat GH, Stoudt G, Hoppe KL, Royer LJ et al. 2000. The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines. J. Biol. Chem. 275:28634–40
    [Google Scholar]
  53. 53. 
    Denis M, Bissonnette R, Haidar B, Krimbou L, Bouvier M, Genest J 2003. Expression, regulation, and activity of ABCA1 in human cell lines. Mol. Genet. Metab. 78:265–74
    [Google Scholar]
  54. 54. 
    Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L et al. 2000. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289:1524–29
    [Google Scholar]
  55. 55. 
    Wang N, Chen W, Linsel-Nitschke P, Martinez LO, Agerholm-Larsen B et al. 2003. A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J. Clin. Investig. 111:99–107
    [Google Scholar]
  56. 56. 
    Hozoji M, Kimura Y, Kioka N, Ueda K 2009. Formation of two intramolecular disulfide bonds is necessary for ApoA-I-dependent cholesterol efflux mediated by ABCA1. J. Biol. Chem. 284:11293–300
    [Google Scholar]
  57. 57. 
    Vaughan AM, Tang C, Oram JF 2009. ABCA1 mutants reveal an interdependency between lipid export function, apoA-I binding activity, and Janus kinase 2 activation. J. Lipid Res. 50:285–92
    [Google Scholar]
  58. 58. 
    Tanaka AR, Abe-Dohmae S, Ohnishi T, Aoki R, Morinaga G et al. 2003. Effects of mutations of ABCA1 in the first extracellular domain on subcellular trafficking and ATP binding/hydrolysis. J. Biol. Chem. 278:8815–19
    [Google Scholar]
  59. 59. 
    Vedhachalam C, Liu L, Nickel M, Dhanasekaran P, Anantharamaiah GM et al. 2004. Influence of ApoA-I structure on the ABCA1-mediated efflux of cellular lipids. J. Biol. Chem. 279:49931–39
    [Google Scholar]
  60. 60. 
    Yamauchi Y, Yokoyama S, Chang TY 2016. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis. J. Lipid Res. 57:77–88
    [Google Scholar]
  61. 61. 
    Smith JD, Le Goff W, Settle M, Brubaker G, Waelde C et al. 2004. ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J. Lipid Res. 45:635–44
    [Google Scholar]
  62. 62. 
    Ishigami M, Ogasawara F, Nagao K, Hashimoto H, Kimura Y et al. 2018. Temporary sequestration of cholesterol and phosphatidylcholine within extracellular domains of ABCA1 during nascent HDL generation. Sci. Rep. 8:6170
    [Google Scholar]
  63. 63. 
    Liu M, Mei X, Herscovitz H, Atkinson D 2019. N-terminal mutation of apoA-I and interaction with ABCA1 reveal mechanisms of nascent HDL biogenesis. J. Lipid Res. 60:44–57
    [Google Scholar]
  64. 64. 
    Duong PT, Collins HL, Nickel M, Lund-Katz S, Rothblat GH, Phillips MC 2006. Characterization of nascent HDL particles and microparticles formed by ABCA1-mediated efflux of cellular lipids to apoA-I. J. Lipid Res. 47:832–43
    [Google Scholar]
  65. 65. 
    Sorci-Thomas MG, Owen JS, Fulp B, Bhat S, Zhu X et al. 2012. Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers. J. Lipid Res. 53:1890–909
    [Google Scholar]
  66. 66. 
    Vaughan AM, Oram JF. 2003. ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions. J. Lipid Res. 44:1373–80
    [Google Scholar]
  67. 67. 
    Landry YD, Denis M, Nandi S, Bell S, Vaughan AM, Zha X 2006. ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J. Biol. Chem. 281:36091–101
    [Google Scholar]
  68. 68. 
    Quazi F, Molday RS. 2013. Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants. J. Biol. Chem. 288:34414–26
    [Google Scholar]
  69. 69. 
    Hamon Y, Broccardo C, Chambenoit O, Luciani MF, Toti F et al. 2000. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat. Cell Biol. 2:399–406
    [Google Scholar]
  70. 70. 
    Gulshan K, Brubaker G, Conger H, Wang S, Zhang R et al. 2016. PI(4,5)P2 is translocated by ABCA1 to the cell surface where it mediates apolipoprotein A1 binding and nascent HDL assembly. Circ. Res. 119:827–38
    [Google Scholar]
  71. 71. 
    Ogasawara F, Kano F, Murata M, Kimura Y, Kioka N, Ueda K 2019. Changes in the asymmetric distribution of cholesterol in the plasma membrane influence streptolysin O pore formation. Sci. Rep. 9:4548
    [Google Scholar]
  72. 72. 
    Okamoto Y, Tomioka M, Ogasawara F, Nagaiwa K, Kimura Y et al. 2020. C-terminal of ABCA1 separately regulates cholesterol floppase activity and cholesterol efflux activity. Biosci. Biotechnol. Biochem. 84:764–73
    [Google Scholar]
  73. 73. 
    Chroni A, Liu T, Fitzgerald ML, Freeman MW, Zannis VI 2004. Cross-linking and lipid efflux properties of apoA-I mutants suggest direct association between apoA-I helices and ABCA1. Biochemistry 43:2126–39
    [Google Scholar]
  74. 74. 
    Wang N, Silver DL, Costet P, Tall AR 2000. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J. Biol. Chem. 275:33053–58
    [Google Scholar]
  75. 75. 
    Vedhachalam C, Ghering AB, Davidson WS, Lund-Katz S, Rothblat GH, Phillips MC 2007. ABCA1-induced cell surface binding sites for ApoA-I. Arterioscler. Thromb. Vasc. Biol. 27:1603–9
    [Google Scholar]
  76. 76. 
    Fitzgerald ML, Morris AL, Chroni A, Mendez AJ, Zannis VI, Freeman MW 2004. ABCA1 and amphipathic apolipoproteins form high-affinity molecular complexes required for cholesterol efflux. J. Lipid Res. 45:287–94
    [Google Scholar]
  77. 77. 
    Nagao K, Kimura Y, Ueda K 2012. Lysine residues of ABCA1 are required for the interaction with apoA-I. Biochim. Biophys. Acta 1821:530–35
    [Google Scholar]
  78. 78. 
    Chambenoit O, Hamon Y, Marguet D, Rigneault H, Rosseneu M, Chimini G 2001. Specific docking of apolipoprotein A-I at the cell surface requires a functional ABCA1 transporter. J. Biol. Chem. 276:9955–60
    [Google Scholar]
  79. 79. 
    Lin G, Oram JF. 2000. Apolipoprotein binding to protruding membrane domains during removal of excess cellular cholesterol. Atherosclerosis 149:359–70
    [Google Scholar]
  80. 80. 
    Vedhachalam C, Duong PT, Nickel M, Nguyen D, Dhanasekaran P et al. 2007. Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles. J. Biol. Chem. 282:25123–30
    [Google Scholar]
  81. 81. 
    Islam RM, Pourmousa M, Sviridov D, Gordon SM, Neufeld EB et al. 2018. Structural properties of apolipoprotein A-I mimetic peptides that promote ABCA1-dependent cholesterol efflux. Sci. Rep. 8:2956
    [Google Scholar]
  82. 82. 
    Wang S, Gulshan K, Brubaker G, Hazen SL, Smith JD 2013. ABCA1 mediates unfolding of apolipoprotein AI N terminus on the cell surface before lipidation and release of nascent high-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 33:1197–205
    [Google Scholar]
  83. 83. 
    Roosbeek S, Caster H, Liu QZ, Berne PF, Duverger N et al. 2004. Expression and activity of the nucleotide-binding domains of the human ABCA1 transporter. Protein Expr. Purif. 35:102–10
    [Google Scholar]
  84. 84. 
    Nagao K, Takahashi K, Azuma Y, Takada M, Kimura Y et al. 2012. ATP hydrolysis-dependent conformational changes in the extracellular domain of ABCA1 are associated with apoA-I binding. J. Lipid Res. 53:126–36
    [Google Scholar]
  85. 85. 
    Szakacs G, Langmann T, Ozvegy C, Orso E, Schmitz G et al. 2001. Characterization of the ATPase cycle of human ABCA1: implications for its function as a regulator rather than an active transporter. Biochem. Biophys. Res. Commun. 288:1258–64
    [Google Scholar]
  86. 86. 
    Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW 2002. Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J. Biol. Chem. 277:33178–87
    [Google Scholar]
  87. 87. 
    Nagata KO, Nakada C, Kasai RS, Kusumi A, Ueda K 2013. ABCA1 dimer-monomer interconversion during HDL generation revealed by single-molecule imaging. PNAS 110:5034–39
    [Google Scholar]
  88. 88. 
    Denis M, Haidar B, Marcil M, Bouvier M, Krimbou L, Genest J 2004. Characterization of oligomeric human ATP binding cassette transporter A1. Potential implications for determining the structure of nascent high density lipoprotein particles. J. Biol. Chem. 279:41529–36
    [Google Scholar]
  89. 89. 
    Phillips MC. 2018. Is ABCA1 a lipid transfer protein. J. Lipid Res. 59:749–63
    [Google Scholar]
  90. 90. 
    Bojanic DD, Tarr PT, Gale GD, Smith DJ, Bok D et al. 2010. Differential expression and function of ABCG1 and ABCG4 during development and aging. J. Lipid Res. 51:169–81
    [Google Scholar]
  91. 91. 
    Tarr PT, Edwards PA. 2008. ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2. J. Lipid Res. 49:169–82
    [Google Scholar]
  92. 92. 
    Mauldin JP, Srinivasan S, Mulya A, Gebre A, Parks JS et al. 2006. Reduction in ABCG1 in type 2 diabetic mice increases macrophage foam cell formation. J. Biol. Chem. 281:21216–24
    [Google Scholar]
  93. 93. 
    Wang N, Lan D, Chen W, Matsuura F, Tall AR 2004. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. PNAS 101:9774–79
    [Google Scholar]
  94. 94. 
    Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K et al. 2006. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J. Lipid Res. 47:1791–802
    [Google Scholar]
  95. 95. 
    Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC et al. 2001. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61:3458–64
    [Google Scholar]
  96. 96. 
    Rocchi E, Khodjakov A, Volk EL, Yang CH, Litman T et al. 2000. The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem. Biophys. Res. Commun. 271:42–46
    [Google Scholar]
  97. 97. 
    Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M 1998. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58:5337–39
    [Google Scholar]
  98. 98. 
    Mo W, Zhang JT. 2012. Human ABCG2: structure, function, and its role in multidrug resistance. Int. J. Biochem. Mol. Biol. 3:1–27
    [Google Scholar]
  99. 99. 
    Yang G, Wang XJ, Huang LJ, Zhou YA, Tian F et al. 2015. High ABCG4 expression is associated with poor prognosis in non-small-cell lung cancer patients treated with cisplatin-based chemotherapy. PLOS ONE 10:e0135576
    [Google Scholar]
  100. 100. 
    Xavier BM, Jennings WJ, Zein AA, Wang J, Lee JY 2018. Structural snapshot of the cholesterol-transport ABC proteins. Biochem. Cell Biol. 97:224–33
    [Google Scholar]
  101. 101. 
    Lee JY, Kinch LN, Borek DM, Wang J, Wang J et al. 2016. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533:561–64
    [Google Scholar]
  102. 102. 
    Hazard SE, Patel SB. 2007. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflügers Arch 453:745–52
    [Google Scholar]
  103. 103. 
    Patel SB, Graf GA, Temel RE 2018. ABCG5 and ABCG8: more than a defense against xenosterols. J. Lipid Res. 59:1103–13
    [Google Scholar]
  104. 104. 
    Bhattacharyya AK, Connor WE. 1974. β-Sitosterolemia and xanthomatosis: a newly described lipid storage disease in two sisters. J. Clin. Investig. 53:1033–43
    [Google Scholar]
  105. 105. 
    Berge KE, Tian H, Graf GA, Yu L, Grishin NV et al. 2000. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–75
    [Google Scholar]
  106. 106. 
    Wang J, Mitsche MA, Lutjohann D, Cohen JC, Xie XS, Hobbs HH 2015. Relative roles of ABCG5/ABCG8 in liver and intestine. J. Lipid Res. 56:319–30
    [Google Scholar]
  107. 107. 
    Yu L, von Bergmann K, Lutjohann D, Hobbs HH, Cohen JC 2004. Selective sterol accumulation in ABCG5/ABCG8-deficient mice. J. Lipid Res. 45:301–7
    [Google Scholar]
  108. 108. 
    Gregg RE, Connor WE, Lin DS, Brewer HB Jr 1986. Abnormal metabolism of shellfish sterols in a patient with sitosterolemia and xanthomatosis. J. Clin. Investig. 77:1864–72
    [Google Scholar]
  109. 109. 
    Veit L, Allegri Machado G, Bürer C, Speer O, Haberle J 2019. Sitosterolemia—10 years observation in two sisters. JIMD Rep 48:4–10
    [Google Scholar]
  110. 110. 
    Graf GA, Li W-P, Gerard RD, Gelissen I, White A et al. 2002. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J. Clin. Investig. 110:659–69
    [Google Scholar]
  111. 111. 
    Hirata T, Okabe M, Kobayashi A, Ueda K, Matsuo M 2009. Molecular mechanisms of subcellular localization of ABCG5 and ABCG8. Biosci. Biotechnol. Biochem. 73:619–26
    [Google Scholar]
  112. 112. 
    Plosch T, Bloks VW, Terasawa Y, Berdy S, Siegler K et al. 2004. Sitosterolemia in ABC-transporter G5-deficient mice is aggravated on activation of the liver-X receptor. Gastroenterology 126:290–300
    [Google Scholar]
  113. 113. 
    Klett EL, Lu K, Kosters A, Vink E, Lee MH et al. 2004. A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol. BMC Med 2:5
    [Google Scholar]
  114. 114. 
    Yu L, Hammer RE, Li-Hawkins J, Von Bergmann K, Lutjohann D et al. 2002. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. PNAS 99:16237–42
    [Google Scholar]
  115. 115. 
    Zhang DW, Graf GA, Gerard RD, Cohen JC, Hobbs HH 2006. Functional asymmetry of nucleotide-binding domains in ABCG5 and ABCG8. J. Biol. Chem. 281:4507–16
    [Google Scholar]
  116. 116. 
    Wang J, Grishin N, Kinch L, Cohen JC, Hobbs HH, Xie XS 2011. Sequences in the nonconsensus nucleotide-binding domain of ABCG5/ABCG8 required for sterol transport. J. Biol. Chem. 286:7308–14
    [Google Scholar]
  117. 117. 
    Kosters A, Kunne C, Looije N, Patel SB, Oude Elferink RP, Groen AK 2006. The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice. J. Lipid Res. 47:1959–66
    [Google Scholar]
  118. 118. 
    Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD et al. 2002. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J. Clin. Investig. 110:671–80
    [Google Scholar]
  119. 119. 
    Yu L, Gupta S, Xu F, Liverman AD, Moschetta A et al. 2005. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J. Biol. Chem. 280:8742–47
    [Google Scholar]
  120. 120. 
    Wilund KR, Yu L, Xu F, Hobbs HH, Cohen JC 2004. High-level expression of ABCG5 and ABCG8 attenuates diet-induced hypercholesterolemia and atherosclerosis in Ldlr/− mice. J. Lipid Res. 45:1429–36
    [Google Scholar]
  121. 121. 
    Langheim S, Yu L, von Bergmann K, Lütjohann D, Xu F et al. 2005. ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile. J. Lipid Res. 46:1732–38
    [Google Scholar]
  122. 122. 
    Smit JJ, Schinkel AH, Oude Elferink RPJ, Groen AK, Wagenaar E et al. 1993. Homozygous disruption of the murine MDR2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75:451–62
    [Google Scholar]
  123. 123. 
    Sumi K, Tanaka T, Uchida A, Magoori K, Urashima Y et al. 2007. Cooperative interaction between hepatocyte nuclear factor 4α and GATA transcription factors regulates ATP-binding cassette sterol transporters ABCG5 and ABCG8. Mol. Cell. Biol. 27:4248–60
    [Google Scholar]
  124. 124. 
    Freeman LA, Kennedy A, Wu J, Bark S, Remaley AT et al. 2004. The orphan nuclear receptor LRH-1 activates the ABCG5/ABCG8 intergenic promoter. J. Lipid Res. 45:1197–206
    [Google Scholar]
  125. 125. 
    Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ 2002. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J. Biol. Chem. 277:18793–800
    [Google Scholar]
  126. 126. 
    Kamisako T, Ogawa H, Yamamoto K 2007. Effect of cholesterol, cholic acid and cholestyramine administration on the intestinal mRNA expressions related to cholesterol and bile acid metabolism in the rat. J. Gastroenterol. Hepatol. 22:1832–37
    [Google Scholar]
  127. 127. 
    Graf GA, Cohen JC, Hobbs HH 2004. Missense mutations in ABCG5 and ABCG8 disrupt heterodimerization and trafficking. J. Biol. Chem. 279:24881–88
    [Google Scholar]
  128. 128. 
    Wang Z, Stalcup LD, Harvey BJ, Weber J, Chloupkova M et al. 2006. Purification and ATP hydrolysis of the putative cholesterol transporters ABCG5 and ABCG8. Biochemistry 45:9929–39
    [Google Scholar]
  129. 129. 
    Graf GA, Yu L, Li WP, Gerard R, Tuma PL et al. 2003. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J. Biol. Chem. 278:48275–82
    [Google Scholar]
  130. 130. 
    Johnson BJ, Lee JY, Pickert A, Urbatsch IL 2010. Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8. Biochemistry 49:3403–11
    [Google Scholar]
  131. 131. 
    Vrins C, Vink E, Vandenberghe KE, Frijters R, Seppen J, Groen AK 2007. The sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to mediate cholesterol efflux. FEBS Lett 581:4616–20
    [Google Scholar]
  132. 132. 
    Wang J, Zhang DW, Lei Y, Xu F, Cohen JC et al. 2008. Purification and reconstitution of sterol transfer by native mouse ABCG5 and ABCG8. Biochemistry 47:5194–204
    [Google Scholar]
  133. 133. 
    Wang J, Sun F, Zhang DW, Ma Y, Xu F et al. 2006. Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution. J. Biol. Chem. 281:27894–904
    [Google Scholar]
  134. 134. 
    Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP 2017. Structure of the human multidrug transporter ABCG2. Nature 546:504–9
    [Google Scholar]
  135. 135. 
    Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI et al. 2018. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25:333–40
    [Google Scholar]
  136. 136. 
    Manolaridis I, Jackson SM, Taylor NMI, Kowal J, Stahlberg H, Locher KP 2018. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563:426–30
    [Google Scholar]
  137. 137. 
    Telbisz A, Hegedus C, Varadi A, Sarkadi B, Ozvegy-Laczka C 2014. Regulation of the function of the human ABCG2 multidrug transporter by cholesterol and bile acids: effects of mutations in potential substrate and steroid binding sites. Drug Metab. Dispos 42:575–85
    [Google Scholar]
  138. 138. 
    Hohl M, Hurlimann LM, Bohm S, Schoppe J, Grutter MG et al. 2014. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter. PNAS 111:11025–30
    [Google Scholar]
  139. 139. 
    Esser L, Zhou F, Pluchino KM, Shiloach J, Ma J et al. 2017. Structures of the multidrug transporter P-glycoprotein reveal asymmetric ATP binding and the mechanism of polyspecificity. J. Biol. Chem. 292:446–61
    [Google Scholar]
  140. 140. 
    Crawford AR, Smith AJ, Hatch VC, Oude Elferink RP, Borst P, Crawford JM 1997. Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy. J. Clin. Investig. 100:2562–67
    [Google Scholar]
  141. 141. 
    Lee AG. 2019. Interfacial binding sites for cholesterol on TRP ion channels. Biophys. J. 117:2020–33
    [Google Scholar]
  142. 142. 
    Jo S, Kim T, Iyer VG, Im W 2008. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29:1859–65
    [Google Scholar]
  143. 143. 
    Russell DW. 2003. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72:137–74
    [Google Scholar]
  144. 144. 
    Neufeld EB, O'Brien K, Walts AD, Stonik JA, Demosky SJ et al. 2014. Cellular localization and trafficking of the human ABCG1 transporter. Biology 3:781–800
    [Google Scholar]
  145. 145. 
    von Eckardstein A, Nofer JR, Assmann G 2001. High density lipoproteins and arteriosclerosis: role of cholesterol efflux and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 21:13–27
    [Google Scholar]
  146. 146. 
    Esmaili M, Overduin M. 2018. Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers. Biochim. Biophys. Acta Biomembr. 1860:257–63
    [Google Scholar]
  147. 147. 
    Hirayama H, Kimura Y, Kioka N, Matsuo M, Ueda K 2013. ATPase activity of human ABCG1 is stimulated by cholesterol and sphingomyelin. J. Lipid Res. 54:496–502
    [Google Scholar]
  148. 148. 
    Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK et al. 2009. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–31
    [Google Scholar]
  149. 149. 
    Kawai T, Caaveiro JM, Abe R, Katagiri T, Tsumoto K 2011. Catalytic activity of MsbA reconstituted in nanodisc particles is modulated by remote interactions with the bilayer. FEBS Lett 585:3533–37
    [Google Scholar]
  150. 150. 
    Neumann J, Rose-Sperling D, Hellmich UA 2017. Diverse relations between ABC transporters and lipids: an overview. Biochim. Biophys. Acta Biomembr. 1859:605–18
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031620-094944
Loading
/content/journals/10.1146/annurev-physiol-031620-094944
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error