1932

Abstract

Pulmonary arterial hypertension (PAH) is characterized by impaired regulation of pulmonary hemodynamics and vascular growth. Alterations of metabolism and bioenergetics are increasingly recognized as universal hallmarks of PAH, as metabolic abnormalities are identified in lungs and hearts of patients, animal models of the disease, and cells derived from lungs of patients. Mitochondria are the primary organelle critically mediating the complex and integrative metabolic pathways in bioenergetics, biosynthetic pathways, and cell signaling. Here, we review the alterations in metabolic pathways that are linked to the pathologic vascular phenotype of PAH, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, arginine metabolism, one-carbon metabolism, the reducing and oxidizing cell environment, and the tricarboxylic acid cycle, as well as the effects of PAH-associated nuclear and mitochondrial mutations on metabolism. Understanding of the metabolic mechanisms underlying PAH provides important knowledge for the design of new therapeutics for treatment of patients.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031620-123956
2021-02-10
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-031620-123956.html?itemId=/content/journals/10.1146/annurev-physiol-031620-123956&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Rabinovitch M. 2008. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Investig. 118:2372–79
    [Google Scholar]
  2. 2. 
    Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA et al. 2019. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 53:1801913
    [Google Scholar]
  3. 3. 
    Morrell NW, Aldred MA, Chung WK, Elliott CG, Nichols WC et al. 2019. Genetics and genomics of pulmonary arterial hypertension. Eur. Respir. J. 53:1801899
    [Google Scholar]
  4. 4. 
    Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S 2007. Pathology of pulmonary hypertension. Clin. Chest Med. 28:23–42
    [Google Scholar]
  5. 5. 
    Humbert M, Guignabert C, Bonnet S, Dorfmüller P, Klinger JR et al. 2019. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur. Respir. J. 53:1801887
    [Google Scholar]
  6. 6. 
    Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN et al. 2007. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–9
    [Google Scholar]
  7. 7. 
    Xu W, Erzurum SC. 2011. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension. Am. Physiol. Soc. Compr. Physiol. 1:357–72
    [Google Scholar]
  8. 8. 
    Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ et al. 2004. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J 18:1746–48
    [Google Scholar]
  9. 9. 
    Masri FA, Xu W, Comhair SA, Asosingh K, Koo M et al. 2007. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 293:L548–54
    [Google Scholar]
  10. 10. 
    Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP et al. 2007. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. PNAS 104:1342–47
    [Google Scholar]
  11. 11. 
    Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA et al. 2010. Hypoxia inducible-factor1α regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am. J. Pathol. 176:1130–38
    [Google Scholar]
  12. 12. 
    Xu W, Comhair SAA, Chen R, Hu B, Hou Y et al. 2019. Integrative proteomics and phosphoproteomics in pulmonary arterial hypertension. Sci. Rep. 9:18623
    [Google Scholar]
  13. 13. 
    Archer S, Rich S. 2000. Primary pulmonary hypertension: a vascular biology and translational research “work in progress.”. Circulation 102:2781–91
    [Google Scholar]
  14. 14. 
    Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK 2008. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am. J. Physiol. Heart Circ. Physiol. 294:H570–78
    [Google Scholar]
  15. 15. 
    Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B et al. 2006. An abnormal mitochondrial-hypoxia inducible factor-1α-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–41
    [Google Scholar]
  16. 16. 
    Hernandez-Saavedra D, Sanders L, Freeman S, Reisz JA, Lee MH et al. 2020. Stable isotope metabolomics of pulmonary artery smooth muscle and endothelial cells in pulmonary hypertension and with TGF-β treatment. Sci. Rep. 10:413
    [Google Scholar]
  17. 17. 
    Kaneko FT, Arroliga AC, Dweik RA, Comhair SA, Laskowski D et al. 1998. Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 158:917–23
    [Google Scholar]
  18. 18. 
    Fagan KA, McMurtry I, Rodman DM 2000. Nitric oxide synthase in pulmonary hypertension: lessons from knockout mice. Physiol. Res. 49:539–48
    [Google Scholar]
  19. 19. 
    Machado RF, Nerkar MVL, Dweik RA, Hammel J, Janocha A et al. 2004. Nitric oxide and pulmonary arterial pressures in pulmonary hypertension. Free Radic. Biol. Med. 37:1010–17
    [Google Scholar]
  20. 20. 
    Girgis RE, Champion HC, Diette GB, Johns RA, Permutt S, Sylvester JT 2005. Decreased exhaled nitric oxide in pulmonary arterial hypertension: response to bosentan therapy. Am. J. Respir. Crit. Care Med. 172:352–57
    [Google Scholar]
  21. 21. 
    Farber HW, Miller DP, Poms AD, Badesch DB, Frost AE et al. 2015. Five-year outcomes of patients enrolled in the REVEAL Registry. Chest 148:1043–54
    [Google Scholar]
  22. 22. 
    Aldred MA, Comhair SA, Varella-Garcia M, Asosingh K, Xu W et al. 2010. Somatic chromosome abnormalities in the lungs of patients with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 182:1153–60
    [Google Scholar]
  23. 23. 
    Asosingh K, Aldred MA, Vasanji A, Drazba J, Sharp J et al. 2008. Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am. J. Pathol. 172:615–27
    [Google Scholar]
  24. 24. 
    Asosingh K, Erzurum S. 2018. Mechanisms of right heart disease in pulmonary hypertension (2017 Grover Conference Series). Pulm. Circ 8: https://doi.org/10.1177/2045893217753121
    [Crossref] [Google Scholar]
  25. 25. 
    Cheong HI, Asosingh K, Stephens OR, Queisser KA, Xu W et al. 2016. Hypoxia sensing through β-adrenergic receptors. JCI Insight 1:e90240
    [Google Scholar]
  26. 26. 
    Farha S, Asosingh K, Xu W, Sharp J, George D et al. 2011. Hypoxia-inducible factors in human pulmonary arterial hypertension: a link to the intrinsic myeloid abnormalities. Blood 117:3485–93
    [Google Scholar]
  27. 27. 
    Farha S, Hu B, Comhair S, Zein J, Dweik R et al. 2016. Mitochondrial haplogroups and risk of pulmonary arterial hypertension. PLOS ONE 11:e0156042
    [Google Scholar]
  28. 28. 
    Ghosh S, Gupta M, Xu W, Mavrakis DA, Janocha AJ et al. 2016. Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 310:L1199–205
    [Google Scholar]
  29. 29. 
    Lundgrin EL, Park MM, Sharp J, Tang WH, Thomas JD et al. 2013. Fasting 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography to detect metabolic changes in pulmonary arterial hypertension hearts over 1 year. Ann. Am. Thorac. Soc. 10:1–9
    [Google Scholar]
  30. 30. 
    Kao CC, Wedes SH, Hsu JW, Bohren KM, Comhair SA et al. 2015. Arginine metabolic endotypes in pulmonary arterial hypertension. Pulm. Circ 5:124–34
    [Google Scholar]
  31. 31. 
    Saygin D, Highland KB, Farha S, Park M, Sharp J et al. 2017. Metabolic and functional evaluation of the heart and lungs in pulmonary hypertension by gated 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography. Pulm. Circ 7:428–38
    [Google Scholar]
  32. 32. 
    Owen OE, Kalhan SC, Hanson RW 2002. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277:30409–12
    [Google Scholar]
  33. 33. 
    Potente M, Carmeliet P. 2017. The link between angiogenesis and endothelial metabolism. Annu. Rev. Physiol. 79:43–66
    [Google Scholar]
  34. 34. 
    Zhao Y, Peng J, Lu C, Hsin M, Mura M et al. 2014. Metabolomic heterogeneity of pulmonary arterial hypertension. PLOS ONE 9:e88727
    [Google Scholar]
  35. 35. 
    Dai J, Zhou Q, Chen J, Rexius-Hall ML, Rehman J, Zhou G 2018. Alpha-enolase regulates the malignant phenotype of pulmonary artery smooth muscle cells via the AMPK-Akt pathway. Nat. Commun. 9:3850
    [Google Scholar]
  36. 36. 
    Zhao L, Ashek A, Wang L, Fang W, Dabral S et al. 2013. Heterogeneity in lung 18FDG uptake in pulmonary arterial hypertension: potential of dynamic 18FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation 128:1214–24
    [Google Scholar]
  37. 37. 
    Cao Y, Zhang X, Wang L, Yang Q, Ma Q et al. 2019. PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. PNAS 116:13394–403
    [Google Scholar]
  38. 38. 
    Can MM, Kaymaz C, Tanboga IH, Tokgoz HC, Canpolat N et al. 2011. Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension. Clin. Nucl. Med. 36:743–48
    [Google Scholar]
  39. 39. 
    Hemnes AR, Brittain EL, Trammell AW, Fessel JP, Austin ED et al. 2014. Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 189:325–34
    [Google Scholar]
  40. 40. 
    Sharma S, Sud N, Wiseman DA, Carter AL, Kumar S et al. 2008. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:L46–56
    [Google Scholar]
  41. 41. 
    Drake JI, Bogaard HJ, Mizuno S, Clifton B, Xie B et al. 2011. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 45:1239–47
    [Google Scholar]
  42. 42. 
    Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D et al. 2010. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J. Mol. Med. 88:47–60
    [Google Scholar]
  43. 43. 
    Piao L, Fang YH, Parikh K, Ryan JJ, Toth PT, Archer SL 2013. Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. J. Mol. Med. 91:1185–97
    [Google Scholar]
  44. 44. 
    Chen C, Luo F, Wu P, Huang Y, Das A et al. 2020. Metabolomics reveals metabolite changes of patients with pulmonary arterial hypertension in China. J. Cell. Mol. Med. 24:2484–96
    [Google Scholar]
  45. 45. 
    Sharma S, Aramburo A, Rafikov R, Sun X, Kumar S et al. 2013. l-carnitine preserves endothelial function in a lamb model of increased pulmonary blood flow. Pediatr. Res. 74:39–47
    [Google Scholar]
  46. 46. 
    Stanley WC, Recchia FA, Lopaschuk GD 2005. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85:1093–129
    [Google Scholar]
  47. 47. 
    Farha S, Saygin D, Park MM, Cheong HI, Asosingh K et al. 2017. Pulmonary arterial hypertension treatment with carvedilol for heart failure: a randomized controlled trial. JCI Insight 2:e95240
    [Google Scholar]
  48. 48. 
    Stephens OR, Weiss K, Frimel M, Rose JA, Sun Y et al. 2019. Interdependence of hypoxia and beta-adrenergic receptor signaling in pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 317:L369–80
    [Google Scholar]
  49. 49. 
    Semenza GL. 2010. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20:51–56
    [Google Scholar]
  50. 50. 
    Tang Z, Iqbal M, Cawthon D, Bottje WG 2002. Heart and breast muscle mitochondrial dysfunction in pulmonary hypertension syndrome in broilers (Gallus domesticus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132:527–40
    [Google Scholar]
  51. 51. 
    Iqbal M, Cawthon D, Wideman RF Jr., Bottje WG 2001. Lung mitochondrial dysfunction in pulmonary hypertension syndrome. II. Oxidative stress and inability to improve function with repeated additions of adenosine diphosphate. Poult. Sci. 80:656–65
    [Google Scholar]
  52. 52. 
    Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C et al. 2003. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–99
    [Google Scholar]
  53. 53. 
    Momken I, Fortin D, Serrurier B, Bigard X, Ventura-Clapier R, Veksler V 2002. Endothelial nitric oxide synthase (NOS) deficiency affects energy metabolism pattern in murine oxidative skeletal muscle. Biochem. J. 368:341–47
    [Google Scholar]
  54. 54. 
    Semenza GL. 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3:721–32
    [Google Scholar]
  55. 55. 
    Mingatto FE, Maioli MA, Bracht A, Ishii-Iwamoto EL 2008. Effects of monocrotaline on energy metabolism in the rat liver. Toxicol. Lett. 182:115–20
    [Google Scholar]
  56. 56. 
    Talati MH, Brittain EL, Fessel JP, Penner N, Atkinson J et al. 2016. Mechanisms of lipid accumulation in the bone morphogenetic protein receptor type 2 mutant right ventricle. Am. J. Respir. Crit. Care Med. 194:719–28
    [Google Scholar]
  57. 57. 
    Augustus AS, Buchanan J, Gutman E, Rengo G, Pestell RG et al. 2008. Hearts lacking caveolin-1 develop hypertrophy with normal cardiac substrate metabolism. Cell Cycle 7:2509–18
    [Google Scholar]
  58. 58. 
    Farahmand F, Hill MF, Singal PK 2004. Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol. Cell. Biochem. 260:21–29
    [Google Scholar]
  59. 59. 
    Graham BB, Kumar R, Mickael C, Sanders L, Gebreab L et al. 2015. Severe pulmonary hypertension is associated with altered right ventricle metabolic substrate uptake. Am. J. Physiol. Lung Cell. Mol. Physiol. 309:L435–40
    [Google Scholar]
  60. 60. 
    Nagaya N, Goto Y, Satoh T, Uematsu M, Hamada S et al. 1998. Impaired regional fatty acid uptake and systolic dysfunction in hypertrophied right ventricle. J. Nucl. Med. 39:1676–80
    [Google Scholar]
  61. 61. 
    Habets DD, Coumans WA, Voshol PJ, den Boer MA, Febbraio M et al. 2007. AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem. Biophys. Res. Commun. 355:204–10
    [Google Scholar]
  62. 62. 
    Kim Y, Goto H, Kobayashi K, Sawada Y, Miyake Y et al. 1997. Detection of impaired fatty acid metabolism in right ventricular hypertrophy: assessment by I-123 βa-methyl iodophenyl pentadecanoic acid (BMIPP) myocardial single-photon emission computed tomography. Ann. Nucl. Med. 11:207–12
    [Google Scholar]
  63. 63. 
    Zhuang W, Lian G, Huang B, Du A, Gong J et al. 2019. CPT1 regulates the proliferation of pulmonary artery smooth muscle cells through the AMPK-p53-p21 pathway in pulmonary arterial hypertension. Mol. Cell. Biochem. 455:169–83
    [Google Scholar]
  64. 64. 
    Brittain EL, Talati M, Fessel JP, Zhu H, Penner N et al. 2016. Fatty acid metabolic defects and right ventricular lipotoxicity in human pulmonary arterial hypertension. Circulation 133:1936–44
    [Google Scholar]
  65. 65. 
    Stanley WC, Lopaschuk GD, Hall JL, McCormack JG 1997. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc. Res. 33:243–57
    [Google Scholar]
  66. 66. 
    van der Vusse GJ, van Bilsen M, Glatz JF 2000. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc. Res. 45:279–93
    [Google Scholar]
  67. 67. 
    Krishnan J, Suter M, Windak R, Krebs T, Felley A et al. 2009. Activation of a HIF1α-PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 9:512–24
    [Google Scholar]
  68. 68. 
    Mylonis I, Simos G, Paraskeva E 2019. Hypoxia-inducible factors and the regulation of lipid metabolism. Cells 8:214
    [Google Scholar]
  69. 69. 
    Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV 2005. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-α gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res 65:6719–25
    [Google Scholar]
  70. 70. 
    Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V 2006. Acetyl-CoA carboxylase α is essential to breast cancer cell survival. Cancer Res 66:5287–94
    [Google Scholar]
  71. 71. 
    Vazquez-Martin A, Corominas-Faja B, Oliveras-Ferraros C, Cufi S, Dalla Venezia N, Menendez JA 2013. Serine79-phosphorylated acetyl-CoA carboxylase, a downstream target of AMPK, localizes to the mitotic spindle poles and the cytokinesis furrow. Cell Cycle 12:1639–41
    [Google Scholar]
  72. 72. 
    Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD et al. 2010. Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci. Transl. Med. 2:44ra58
    [Google Scholar]
  73. 73. 
    Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB et al. 2011. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–88
    [Google Scholar]
  74. 74. 
    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M et al. 2007. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. PNAS 104:19345–50
    [Google Scholar]
  75. 75. 
    Perez-Escuredo J, Dadhich RK, Dhup S, Cacace A, Van Hee VF et al. 2016. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle 15:72–83
    [Google Scholar]
  76. 76. 
    Egnatchik RA, Brittain EL, Shah AT, Fares WH, Ford HJ et al. 2017. Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension. Pulm. Circ 7:186–99
    [Google Scholar]
  77. 77. 
    Wise DR, Thompson CB. 2010. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35:427–33
    [Google Scholar]
  78. 78. 
    Bertero T, Oldham WM, Cottrill KA, Pisano S, Vanderpool RR et al. 2016. Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. J. Clin. Investig. 126:3313–35
    [Google Scholar]
  79. 79. 
    Kim B, Li J, Jang C, Arany Z 2017. Glutamine fuels proliferation but not migration of endothelial cells. EMBO J 36:2321–33
    [Google Scholar]
  80. 80. 
    Fischer-Zirnsak B, Escande-Beillard N, Ganesh J, Tan YX, Al Bughaili M et al. 2015. Recurrent de novo mutations affecting residue Arg138 of pyrroline-5-carboxylate synthase cause a progeroid form of autosomal-dominant cutis laxa. Am. J. Hum. Genet. 97:483–92
    [Google Scholar]
  81. 81. 
    Skidmore DL, Chitayat D, Morgan T, Hinek A, Fischer B et al. 2011. Further expansion of the phenotypic spectrum associated with mutations in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS). Am. J. Med. Genet. A 155A:1848–56
    [Google Scholar]
  82. 82. 
    Morris SM Jr 2006. Arginine: beyond protein. Am. J. Clin. Nutr. 83:508S–12S
    [Google Scholar]
  83. 83. 
    Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR 1990. The metabolism of l-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle l-citrulline to l-arginine. PNAS 87:8612–16
    [Google Scholar]
  84. 84. 
    Leiper J, Vallance P. 1999. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc. Res. 43:542–48
    [Google Scholar]
  85. 85. 
    Leiper JM, Santa Maria J, Chubb A, MacAllister RJ, Charles IG et al. 1999. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem. J. 343:Part 1209–14
    [Google Scholar]
  86. 86. 
    Sandqvist A, Schneede J, Kylhammar D, Henrohn D, Lundgren J et al. 2018. Plasma l-arginine levels distinguish pulmonary arterial hypertension from left ventricular systolic dysfunction. Heart Vessels 33:255–63
    [Google Scholar]
  87. 87. 
    Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC et al. 2005. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA 294:81–90
    [Google Scholar]
  88. 88. 
    Grasemann H, Dhaliwal R, Ivanovska J, Kantores C, McNamara PJ et al. 2015. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs. Am. J. Physiol. Lung Cell. Mol. Physiol. 308:L503–10
    [Google Scholar]
  89. 89. 
    Jung C, Grun K, Betge S, Pernow J, Kelm M et al. 2017. Arginase inhibition reverses monocrotaline-induced pulmonary hypertension. Int. J. Mol. Sci. 18:1609
    [Google Scholar]
  90. 90. 
    Steppan J, Tran HT, Bead VR, Oh YJ, Sikka G et al. 2016. Arginase inhibition reverses endothelial dysfunction, pulmonary hypertension, and vascular stiffness in transgenic sickle cell mice. Anesth. Analg. 123:652–58
    [Google Scholar]
  91. 91. 
    Xu W, Ghosh S, Comhair SA, Asosingh K, Janocha AJ et al. 2016. Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J. Clin. Investig. 126:2465–81
    [Google Scholar]
  92. 92. 
    Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T et al. 2012. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–44
    [Google Scholar]
  93. 93. 
    Martinez-Reyes I, Chandel NS. 2014. Mitochondrial one-carbon metabolism maintains redox balance during hypoxia. Cancer Discov 4:1371–73
    [Google Scholar]
  94. 94. 
    Izquierdo-Garcia JL, Arias T, Rojas Y, Garcia-Ruiz V, Santos A et al. 2018. Metabolic reprogramming in the heart and lung in a murine model of pulmonary arterial hypertension. Front. Cardiovasc. Med. 5:110
    [Google Scholar]
  95. 95. 
    Padron-Barthe L, Villalba-Orero M, Gomez-Salinero JM, Acin-Perez R, Cogliati S et al. 2018. Activation of serine one-carbon metabolism by calcineurin abeta1 reduces myocardial hypertrophy and improves ventricular function. J. Am. Coll. Cardiol. 71:654–67
    [Google Scholar]
  96. 96. 
    Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD 2014. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302
    [Google Scholar]
  97. 97. 
    Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE et al. 2015. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:186–91
    [Google Scholar]
  98. 98. 
    Ye J, Fan J, Venneti S, Wan YW, Pawel BR et al. 2014. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 4:1406–17
    [Google Scholar]
  99. 99. 
    Kraja AT, Liu C, Fetterman JL, Graff M, Have CT et al. 2019. Associations of mitochondrial and nuclear mitochondrial variants and genes with seven metabolic traits. Am. J. Hum. Genet. 104:112–38
    [Google Scholar]
  100. 100. 
    Masri FA, Comhair SAA, Dostanic-Larson I, Kaneko FT, Dweik RA et al. 2008. Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clin. Transl. Sci. 1:99–106
    [Google Scholar]
  101. 101. 
    Xu W, Erzurum SC. 2007. Airways inflammation and reactive oxygen/nitrogen species in pulmonary hypertension. Oxidative Stress: Clinical and Biomedical Implications BM Matata, MM Elahi 259–76 Hauppauge, NY: Nova Sci. Publ.
    [Google Scholar]
  102. 102. 
    Grobe AC, Wells SM, Benavidez E, Oishi P, Azakie A et al. 2006. Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am. J. Physiol. Lung Cell. Mol. Physiol. 290:L1069–77
    [Google Scholar]
  103. 103. 
    Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW et al. 2004. Oxidative stress in severe pulmonary hypertension. Am. J. Respir. Crit. Care Med. 169:764–69
    [Google Scholar]
  104. 104. 
    Iqbal M, Cawthon D, Wideman RF Jr., Bottje WG 2001. Lung mitochondrial dysfunction in pulmonary hypertension syndrome. I. Site-specific defects in the electron transport chain. Poult. Sci. 80:485–95
    [Google Scholar]
  105. 105. 
    Ghasemzadeh N, Patel RS, Eapen DJ, Veledar E, Al Kassem H et al. 2014. Oxidative stress is associated with increased pulmonary artery systolic pressure in humans. Hypertension 63:1270–75
    [Google Scholar]
  106. 106. 
    Guzy RD, Hoyos B, Robin E, Chen H, Liu L et al. 2005. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–8
    [Google Scholar]
  107. 107. 
    Sharp J, Farha S, Park MM, Comhair SA, Lundgrin EL et al. 2014. Coenzyme Q supplementation in pulmonary arterial hypertension. Redox. Biol. 2:884–91
    [Google Scholar]
  108. 108. 
    Fessel JP, Hamid R, Wittmann BM, Robinson LJ, Blackwell T et al. 2012. Metabolomic analysis of bone morphogenetic protein receptor type 2 mutations in human pulmonary endothelium reveals widespread metabolic reprogramming. Pulm. Circ. 2:201–13
    [Google Scholar]
  109. 109. 
    Nota B, Struys EA, Pop A, Jansen EE, Fernandez Ojeda MR et al. 2013. Deficiency in SLC25A1, encoding the mitochondrial citrate carrier, causes combined D-2- and L-2-hydroxyglutaric aciduria. Am. J. Hum. Genet. 92:627–31
    [Google Scholar]
  110. 110. 
    Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ et al. 2000. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 67:737–44
    [Google Scholar]
  111. 111. 
    Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd et al. 2000. Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat. Genet. 26:81–84
    [Google Scholar]
  112. 112. 
    Diebold I, Hennigs JK, Miyagawa K, Li CG, Nickel NP et al. 2015. BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension. Cell Metab 21:596–608
    [Google Scholar]
  113. 113. 
    Bryant AJ, Robinson LJ, Moore CS, Blackwell TR, Gladson S et al. 2015. Expression of mutant bone morphogenetic protein receptor II worsens pulmonary hypertension secondary to pulmonary fibrosis. Pulm. Circ. 5:681–90
    [Google Scholar]
  114. 114. 
    Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D et al. 2013. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J. Clin. Investig. 123:3600–13
    [Google Scholar]
  115. 115. 
    Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C et al. 2001. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345:325–34
    [Google Scholar]
  116. 116. 
    Mache CJ, Gamillscheg A, Popper HH, Haworth SG 2008. Early-life pulmonary arterial hypertension with subsequent development of diffuse pulmonary arteriovenous malformations in hereditary haemorrhagic telangiectasia type 1. Thorax 63:85–86
    [Google Scholar]
  117. 117. 
    Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM et al. 2011. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum. Mutat. 32:1385–89
    [Google Scholar]
  118. 118. 
    Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R 2009. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J. Med. Genet. 46:331–37
    [Google Scholar]
  119. 119. 
    Chen C, Grzegorzewski KJ, Barash S, Zhao Q, Schneider H et al. 2003. An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat. Biotechnol. 21:294–301
    [Google Scholar]
  120. 120. 
    Beiroa D, Romero-Pico A, Langa C, Bernabeu C, Lopez M et al. 2013. Heterozygous deficiency of endoglin decreases insulin and hepatic triglyceride levels during high fat diet. PLOS ONE 8:e54591
    [Google Scholar]
  121. 121. 
    Jerkic M, Rivas-Elena JV, Prieto M, Carron R, Sanz-Rodriguez F et al. 2004. Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J 18:609–11
    [Google Scholar]
  122. 122. 
    Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS et al. 2013. A novel channelopathy in pulmonary arterial hypertension. N. Engl. J. Med. 369:351–61
    [Google Scholar]
  123. 123. 
    Austin ED, Ma L, LeDuc C, Berman Rosenzweig E, Borczuk A et al. 2012. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ. Cardiovasc. Genet. 5:336–43
    [Google Scholar]
  124. 124. 
    Chen Y, Zeng X, Huang X, Serag S, Woolf CJ, Spiegelman BM 2017. Crosstalk between KCNK3-mediated ion current and adrenergic signaling regulates adipose thermogenesis and obesity. Cell 171:836–48.e13
    [Google Scholar]
  125. 125. 
    Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL et al. 2001. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276:38121–38
    [Google Scholar]
  126. 126. 
    Wallace DC. 2015. Mitochondrial DNA variation in human radiation and disease. Cell 163:33–38
    [Google Scholar]
  127. 127. 
    Liu C, Fetterman JL, Liu P, Luo Y, Larson MG et al. 2018. Deep sequencing of the mitochondrial genome reveals common heteroplasmic sites in NADH dehydrogenase genes. Hum. Genet. 137:203–13
    [Google Scholar]
  128. 128. 
    Wallace DC. 2013. A mitochondrial bioenergetic etiology of disease. J. Clin. Investig. 123:1405–12
    [Google Scholar]
  129. 129. 
    Huang J, Tan L, Shen R, Zhang L, Zuo H, Wang DW 2016. Decreased peripheral mitochondrial DNA copy number is associated with the risk of heart failure and long-term outcomes. Medicine 95:e3323
    [Google Scholar]
  130. 130. 
    Reznik E, Miller ML, Senbabaoglu Y, Riaz N, Sarungbam J et al. 2016. Mitochondrial DNA copy number variation across human cancers. eLife 5:e10769
    [Google Scholar]
  131. 131. 
    Yue P, Jing S, Liu L, Ma F, Zhang Y et al. 2018. Association between mitochondrial DNA copy number and cardiovascular disease: current evidence based on a systematic review and meta-analysis. PLOS ONE 13:e0206003
    [Google Scholar]
  132. 132. 
    Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT et al. 2010. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121:2661–71
    [Google Scholar]
  133. 133. 
    Michelakis ED, Gurtu V, Webster L, Barnes G, Watson G et al. 2017. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 9:eaao4583
    [Google Scholar]
  134. 134. 
    Houssaini A, Abid S, Mouraret N, Wan F, Rideau D et al. 2013. Rapamycin reverses pulmonary artery smooth muscle cell proliferation in pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 48:568–77
    [Google Scholar]
  135. 135. 
    Paddenberg R, Stieger P, von Lilien AL, Faulhammer P, Goldenberg A et al. 2007. Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice. Respir. Res. 8:15
    [Google Scholar]
  136. 136. 
    Seyfarth HJ, Hammerschmidt S, Halank M, Neuhaus P, Wirtz HR 2013. Everolimus in patients with severe pulmonary hypertension: a safety and efficacy pilot trial. Pulm. Circ. 3:632–38
    [Google Scholar]
  137. 137. 
    Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ et al. 2010. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am. J. Respir. Crit. Care Med. 182:652–60
    [Google Scholar]
  138. 138. 
    Fang YH, Piao L, Hong Z, Toth PT, Marsboom G et al. 2012. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle's cycle. J. Mol. Med. 90:31–43
    [Google Scholar]
  139. 139. 
    Morris CR, Morris SM Jr., Hagar W, Van Warmerdam J, Claster S et al. 2003. Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease. Am. J. Respir. Crit. Care Med. 168:63–69
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031620-123956
Loading
/content/journals/10.1146/annurev-physiol-031620-123956
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error