1932

Abstract

Atrial fibrillation (AF) contributes to morbidity and mortality of millions of individuals. Its molecular, cellular, neurohumoral, and hemodynamic pathophysiological mechanisms are complex, and there is increasing awareness that a wide range of comorbidities can contribute to AF-promoting atrial remodeling. Moreover, recent research has highlighted that AF risk is not constant and that the temporal variation in concomitant conditions contributes to the complexity of AF dynamics. In this review, we provide an overview of fundamental AF mechanisms related to established and emerging comorbidities or risk factors and their role in the AF-promoting effects. We focus on the accumulating evidence for the relevance of temporally dynamic changes in these risk factors and the consequence for AF initiation and maintenance. Finally, we highlight the important implications for future research and clinical practice resulting from the dynamic interaction between AF risk factors and mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031720-085307
2021-02-10
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-031720-085307.html?itemId=/content/journals/10.1146/annurev-physiol-031720-085307&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M et al. 2014. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129:837–47
    [Google Scholar]
  2. 2. 
    Kirchhof P. 2017. The future of atrial fibrillation management: integrated care and stratified therapy. Lancet 390:1873–87
    [Google Scholar]
  3. 3. 
    Wineinger NE, Barrett PM, Zhang Y, Irfanullah I, Muse ED et al. 2019. Identification of paroxysmal atrial fibrillation subtypes in over 13,000 individuals. Heart Rhythm 16:26–30
    [Google Scholar]
  4. 4. 
    Groh CA, Faulkner M, Getabecha S, Taffe V, Nah G et al. 2019. Patient-reported triggers of paroxysmal atrial fibrillation. Heart Rhythm 16:996–1002
    [Google Scholar]
  5. 5. 
    Blum S, Meyre P, Aeschbacher S, Berger S, Auberson C et al. 2019. Incidence and predictors of atrial fibrillation progression: a systematic review and meta-analysis. Heart Rhythm 16:502–10
    [Google Scholar]
  6. 6. 
    Middeldorp ME, Pathak RK, Meredith M, Mehta AB, Elliott AD et al. 2018. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: the REVERSE-AF study. Europace 20:1929–35
    [Google Scholar]
  7. 7. 
    Goette A, Kalman JM, Aguinaga L, Akar J, Cabrera JA et al. 2016. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace 18:1455–90
    [Google Scholar]
  8. 8. 
    Andrade J, Khairy P, Dobrev D, Nattel S 2014. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114:1453–68
    [Google Scholar]
  9. 9. 
    Odening KE, Deiss S, Dilling-Boer D, Didenko M, Eriksson U et al. 2019. Mechanisms of sex differences in atrial fibrillation: role of hormones and differences in electrophysiology, structure, function, and remodelling. Europace 21:366–76
    [Google Scholar]
  10. 10. 
    Wyse DG, Van Gelder IC, Ellinor PT, Go AS, Kalman JM et al. 2014. Lone atrial fibrillation: Does it exist. J. Am. Coll. Cardiol. 63:1715–23
    [Google Scholar]
  11. 11. 
    Weijs B, de Vos CB, Tieleman RG, Peeters FE, Limantoro I et al. 2013. The occurrence of cardiovascular disease during 5-year follow-up in patients with idiopathic atrial fibrillation. Europace 15:18–23
    [Google Scholar]
  12. 12. 
    De With RR, Marcos EG, Van Gelder IC, Rienstra M 2018. Atrial fibrillation progression and outcome in patients with young-onset atrial fibrillation. Europace 20:1750–57
    [Google Scholar]
  13. 13. 
    Schotten U, Verheule S, Kirchhof P, Goette A 2011. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol. Rev. 91:265–325
    [Google Scholar]
  14. 14. 
    Heijman J, Guichard JB, Dobrev D, Nattel S 2018. Translational challenges in atrial fibrillation. Circ. Res. 122:752–73
    [Google Scholar]
  15. 15. 
    Heijman J, Voigt N, Nattel S, Dobrev D 2014. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 114:1483–99
    [Google Scholar]
  16. 16. 
    Berenfeld O, Jalife J. 2016. Mechanisms of atrial fibrillation: rotors, ionic determinants, and excitation frequency. Heart Fail Clinics 12:167–78
    [Google Scholar]
  17. 17. 
    Diker E, Ozdemir M, Aydogdu S, Tezcan UK, Korkmaz S et al. 1998. Dispersion of repolarization in paroxysmal atrial fibrillation. Int. J. Cardiol. 63:281–86
    [Google Scholar]
  18. 18. 
    Eckstein J, Maesen B, Linz D, Zeemering S, van Hunnik A et al. 2011. Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat. Cardiovasc. Res. 89:816–24
    [Google Scholar]
  19. 19. 
    Gharaviri A, Bidar E, Potse M, Zeemering S, Verheule S et al. 2020. Epicardial fibrosis explains increased endo–epicardial dissociation and epicardial breakthroughs in human atrial fibrillation. Front. Physiol. 11: https://doi.org/10.3389/fphys.2020.00068
    [Crossref] [Google Scholar]
  20. 20. 
    Schmidt C, Wiedmann F, Zhou XB, Heijman J, Voigt N et al. 2017. Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy. Eur. Heart J. 38:1764–74
    [Google Scholar]
  21. 21. 
    Allessie M, Ausma J, Schotten U 2002. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc. Res. 54:230–46
    [Google Scholar]
  22. 22. 
    Goette A, Honeycutt C, Langberg JJ 1996. Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation 94:2968–74
    [Google Scholar]
  23. 23. 
    Voigt N, Heijman J, Wang Q, Chiang DY, Li N et al. 2014. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129:145–56
    [Google Scholar]
  24. 24. 
    Molina CE, Abu-Taha IH, Wang Q, Rosello-Diez E, Kamler M et al. 2018. Profibrotic, electrical, and calcium-handling remodeling of the atria in heart failure patients with and without atrial fibrillation. Front. Physiol. 9:1383
    [Google Scholar]
  25. 25. 
    Hobbs WJ, Fynn S, Todd DM, Wolfson P, Galloway M, Garratt CJ 2000. Reversal of atrial electrical remodeling after cardioversion of persistent atrial fibrillation in humans. Circulation 101:1145–51
    [Google Scholar]
  26. 26. 
    De Jong AM, Maass AH, Oberdorf-Maass SU, Van Veldhuisen DJ, Van Gilst WH, Van Gelder IC 2011. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc. Res. 89:754–65
    [Google Scholar]
  27. 27. 
    Nattel S. 2017. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin. Electrophysiol. 3:425–35
    [Google Scholar]
  28. 28. 
    Verheule S, Tuyls E, Gharaviri A, Hulsmans S, van Hunnik A et al. 2013. Loss of continuity in the thin epicardial layer because of endomysial fibrosis increases the complexity of atrial fibrillatory conduction. Circ. Arrhythm. Electrophysiol. 6:202–11
    [Google Scholar]
  29. 29. 
    Jennings MM, Donahue JK. 2013. Connexin remodeling contributes to atrial fibrillation. J. Atr. Fibrillation 6:839
    [Google Scholar]
  30. 30. 
    Noureldin M, Chen H, Bai D 2018. Functional characterization of novel atrial fibrillation-linked GJA5 (Cx40) mutants. Int. J. Mol. Sci. 19:977
    [Google Scholar]
  31. 31. 
    Sun Y, Hills MD, Ye WG, Tong X, Bai D 2014. Atrial fibrillation-linked germline GJA5/connexin40 mutants showed an increased hemichannel function. PLOS ONE 9:e95125
    [Google Scholar]
  32. 32. 
    Sutanto H, Lyon A, Lumens J, Schotten U, Dobrev D, Heijman J 2020. Cardiomyocyte calcium handling in health and disease: insights from in vitro and in silico studies. Prog. Biophys. Mol. Biol. 157:5475
    [Google Scholar]
  33. 33. 
    Hove-Madsen L, Llach A, Bayes-Genis A, Roura S, Font ER et al. 2004. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation 110:1358–63
    [Google Scholar]
  34. 34. 
    Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N et al. 2010. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ. Res. 106:1134–44
    [Google Scholar]
  35. 35. 
    Christ T, Rozmaritsa N, Engel A, Berk E, Knaut M et al. 2014. Arrhythmias, elicited by catecholamines and serotonin, vanish in human chronic atrial fibrillation. PNAS 111:11193–98
    [Google Scholar]
  36. 36. 
    Greiser M, Kerfant BG, Williams GS, Voigt N, Harks E et al. 2014. Tachycardia-induced silencing of subcellular Ca2+ signaling in atrial myocytes. J. Clin. Investig. 124:4759–72
    [Google Scholar]
  37. 37. 
    Greiser M, Schotten U. 2013. Dynamic remodeling of intracellular Ca2+ signaling during atrial fibrillation. J. Mol. Cell. Cardiol. 58:134–42
    [Google Scholar]
  38. 38. 
    Beavers DL, Wang W, Ather S, Voigt N, Garbino A et al. 2013. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J. Am. Coll. Cardiol. 62:2010–19
    [Google Scholar]
  39. 39. 
    Landstrom AP, Dobrev D, Wehrens XHT 2017. Calcium signaling and cardiac arrhythmias. Circ. Res. 120:1969–93
    [Google Scholar]
  40. 40. 
    Linz D, Elliott AD, Hohl M, Malik V, Schotten U et al. 2019. Role of autonomic nervous system in atrial fibrillation. Int. J. Cardiol. 287:181–88
    [Google Scholar]
  41. 41. 
    Linz D, Ukena C, Mahfoud F, Neuberger HR, Bohm M 2014. Atrial autonomic innervation: a target for interventional antiarrhythmic therapy. J. Am. Coll. Cardiol. 63:215–24
    [Google Scholar]
  42. 42. 
    Liu G, Papa A, Katchman AN, Zakharov SI, Roybal D et al. 2020. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature 577:695–700
    [Google Scholar]
  43. 43. 
    Zipes DP, Mihalick MJ, Robbins GT 1974. Effects of selective vagal and stellate ganglion stimulation of atrial refractoriness. Cardiovasc. Res. 8:647–55
    [Google Scholar]
  44. 44. 
    Sharifov OF, Fedorov VV, Beloshapko GG, Glukhov AV, Yushmanova AV, Rosenshtraukh LV 2004. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J. Am. Coll. Cardiol. 43:483–90
    [Google Scholar]
  45. 45. 
    Burstein B, Libby E, Calderone A, Nattel S 2008. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 117:1630–41
    [Google Scholar]
  46. 46. 
    Tadevosyan A, Vaniotis G, Allen BG, Hebert TE, Nattel S 2012. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function. J. Physiol. 590:1313–30
    [Google Scholar]
  47. 47. 
    Tadevosyan A, Letourneau M, Folch B, Doucet N, Villeneuve LR et al. 2015. Photoreleasable ligands to study intracrine angiotensin II signalling. J. Physiol. 593:521–39
    [Google Scholar]
  48. 48. 
    Hu YF, Chen YJ, Lin YJ, Chen SA 2015. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 12:230–43
    [Google Scholar]
  49. 49. 
    Yao C, Veleva T, Scott L Jr., Cao S, Li L et al. 2018. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation 138:2227–42
    [Google Scholar]
  50. 50. 
    Bukowska A, Zacharias I, Weinert S, Skopp K, Hartmann C et al. 2013. Coagulation factor Xa induces an inflammatory signalling by activation of protease-activated receptors in human atrial tissue. Eur. J. Pharmacol. 718:114–23
    [Google Scholar]
  51. 51. 
    Spronk HM, De Jong AM, Verheule S, De Boer HC, Maass AH et al. 2017. Hypercoagulability causes atrial fibrosis and promotes atrial fibrillation. Eur. Heart J. 38:38–50
    [Google Scholar]
  52. 52. 
    Thanigaimani S, McLennan E, Linz D, Mahajan R, Agbaedeng TA et al. 2017. Progression and reversibility of stretch induced atrial remodeling: characterization and clinical implications. Prog. Biophys. Mol. Biol. 130:376–86
    [Google Scholar]
  53. 53. 
    Ravelli F, Allessie M. 1997. Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation 96:1686–95
    [Google Scholar]
  54. 54. 
    Hunter RJ, Liu Y, Lu Y, Wang W, Schilling RJ 2012. Left atrial wall stress distribution and its relationship to electrophysiologic remodeling in persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 5:351–60
    [Google Scholar]
  55. 55. 
    Zhang Y, Qi Y, Li JJ, He WJ, Gao XH et al. 2020. Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts. Cardiovasc. Res. cvaa163. https://doi.org/10.1093/cvr/cvaa163
    [Crossref] [Google Scholar]
  56. 56. 
    Kuijpers NH, Potse M, van Dam PM, ten Eikelder HM, Verheule S et al. 2011. Mechanoelectrical coupling enhances initiation and affects perpetuation of atrial fibrillation during acute atrial dilation. Heart Rhythm 8:429–36
    [Google Scholar]
  57. 57. 
    Cardin S, Li D, Thorin-Trescases N, Leung TK, Thorin E, Nattel S 2003. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc. Res. 60:315–25
    [Google Scholar]
  58. 58. 
    Rudolph TK, Ravekes T, Klinke A, Friedrichs K, Mollenhauer M et al. 2016. Nitrated fatty acids suppress angiotensin II-mediated fibrotic remodelling and atrial fibrillation. Cardiovasc. Res. 109:174–84
    [Google Scholar]
  59. 59. 
    Koura T, Hara M, Takeuchi S, Ota K, Okada Y et al. 2002. Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping: preferential direction of conduction block changes from longitudinal to transverse with increasing age. Circulation 105:2092–98
    [Google Scholar]
  60. 60. 
    Laredo M, Waldmann V, Khairy P, Nattel S 2018. Age as a critical determinant of atrial fibrillation: a two-sided relationship. Can. J. Cardiol. 34:1396–406
    [Google Scholar]
  61. 61. 
    Yan J, Thomson JK, Zhao W, Wu X, Gao X et al. 2018. The stress kinase JNK regulates gap junction Cx43 gene expression and promotes atrial fibrillation in the aged heart. J. Mol. Cell. Cardiol. 114:105–15
    [Google Scholar]
  62. 62. 
    Biliczki P, Boon RA, Girmatsion Z, Bukowska A, Ordog B et al. 2019. Age-related regulation and region-specific distribution of ion channel subunits promoting atrial fibrillation in human left and right atria. Europace 21:1261–69
    [Google Scholar]
  63. 63. 
    Yan J, Zhao W, Thomson JK, Gao X, DeMarco DM et al. 2018. Stress signaling JNK2 crosstalk with CaMKII underlies enhanced atrial arrhythmogenesis. Circ. Res. 122:821–35
    [Google Scholar]
  64. 64. 
    Clarke JD, Caldwell JL, Pearman CM, Eisner DA, Trafford AW, Dibb KM 2017. Increased Ca buffering underpins remodelling of Ca2+ handling in old sheep atrial myocytes. J. Physiol. 595:6263–79
    [Google Scholar]
  65. 65. 
    Sheydina A, Riordon DR, Boheler KR 2011. Molecular mechanisms of cardiomyocyte aging. Clin. Sci. 121:315–29
    [Google Scholar]
  66. 66. 
    Zhang H, Cannell MB, Kim SJ, Watson JJ, Norman R et al. 2015. Cellular hypertrophy and increased susceptibility to spontaneous calcium-release of rat left atrial myocytes due to elevated afterload. PLOS ONE 10:e0144309
    [Google Scholar]
  67. 67. 
    Sutanto H, van Sloun B, Schonleitner P, van Zandvoort M, Antoons G, Heijman J 2018. The subcellular distribution of ryanodine receptors and L-Type Ca2+ channels modulates Ca2+-transient properties and spontaneous Ca2+-release events in atrial cardiomyocytes. Front. Physiol. 9:1108
    [Google Scholar]
  68. 68. 
    Tasaki H, Serita T, Ueyama C, Kitano K, Seto S et al. 2006. Longitudinal age-related changes in 24-hour total heart beats and premature beats and their relationship in healthy elderly subjects. Int. Heart J. 47:549–63
    [Google Scholar]
  69. 69. 
    Abhishekh HA, Nisarga P, Kisan R, Meghana A, Chandran S et al. 2013. Influence of age and gender on autonomic regulation of heart. J. Clin. Monit. Comput. 27:259–64
    [Google Scholar]
  70. 70. 
    Ferrucci L, Fabbri E. 2018. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15:505–22
    [Google Scholar]
  71. 71. 
    Ribeiro Mesquita TR, Zhang R, de Couto G, Valle J, Sanchez L et al. 2020. Mechanisms of atrial fibrillation in aged rats with heart failure with preserved ejection fraction. Heart Rhythm 17:1025–33
    [Google Scholar]
  72. 72. 
    Pandit SV, Workman AJ. 2016. Atrial electrophysiological remodeling and fibrillation in heart failure. Clin. Med. Insights Cardiol. 10:41–46
    [Google Scholar]
  73. 73. 
    Li D, Fareh S, Leung TK, Nattel S 1999. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100:87–95
    [Google Scholar]
  74. 74. 
    Sridhar A, Nishijima Y, Terentyev D, Khan M, Terentyeva R et al. 2009. Chronic heart failure and the substrate for atrial fibrillation. Cardiovasc. Res. 84:227–36
    [Google Scholar]
  75. 75. 
    Chang SL, Chen YC, Yeh YH, Lin YK, Wu TJ et al. 2011. Heart failure enhanced pulmonary vein arrhythmogenesis and dysregulated sodium and calcium homeostasis with increased calcium sparks. J. Cardiovasc. Electrophysiol. 22:1378–86
    [Google Scholar]
  76. 76. 
    Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P et al. 2008. Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ. Arrhythm. Electrophysiol. 1:93–102
    [Google Scholar]
  77. 77. 
    Ogawa M, Zhou S, Tan AY, Song J, Gholmieh G et al. 2007. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J. Am. Coll. Cardiol. 50:335–43
    [Google Scholar]
  78. 78. 
    Sugumar H, Nanayakkara S, Prabhu S, Voskoboinik A, Kaye DM et al. 2019. Pathophysiology of atrial fibrillation and heart failure: dangerous interactions. Cardiol. Clin. 37:131–38
    [Google Scholar]
  79. 79. 
    Hohendanner F, Bode D, Primessnig U, Guthof T, Doerr R et al. 2018. Cellular mechanisms of metabolic syndrome-related atrial decompensation in a rat model of HFpEF. J. Mol. Cell. Cardiol. 115:10–19
    [Google Scholar]
  80. 80. 
    Prabhu S, Taylor AJ, Costello BT, Kaye DM, McLellan AJA et al. 2017. Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA-MRI Study. J. Am. Coll. Cardiol. 70:1949–61
    [Google Scholar]
  81. 81. 
    Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L et al. 2018. Catheter ablation for atrial fibrillation with heart failure. N. Engl. J. Med. 378:417–27
    [Google Scholar]
  82. 82. 
    Hohl M, Lau DH, Müller A, Elliott AD, Linz B et al. 2017. Concomitant obesity and metabolic syndrome add to the atrial arrhythmogenic phenotype in male hypertensive rats. J. Am. Heart Assoc. 6: https://doi.org/10.1161/JAHA.117.006717
    [Crossref] [Google Scholar]
  83. 83. 
    Lau DH, Mackenzie L, Kelly DJ, Psaltis PJ, Brooks AG et al. 2010. Hypertension and atrial fibrillation: evidence of progressive atrial remodeling with electrostructural correlate in a conscious chronically instrumented ovine model. Heart Rhythm 7:1282–90
    [Google Scholar]
  84. 84. 
    Okazaki H, Minamino T, Tsukamoto O, Kim J, Okada K et al. 2006. Angiotensin II type 1 receptor blocker prevents atrial structural remodeling in rats with hypertension induced by chronic nitric oxide inhibition. Hypertens. Res. 29:277–84
    [Google Scholar]
  85. 85. 
    Verdecchia P, Angeli F, Reboldi G 2018. Hypertension and atrial fibrillation: doubts and certainties from basic and clinical studies. Circ. Res. 122:352–68
    [Google Scholar]
  86. 86. 
    Li X, Deng CY, Xue YM, Yang H, Wei W et al. 2020. High hydrostatic pressure induces atrial electrical remodeling through angiotensin upregulation mediating FAK/Src pathway activation. J. Mol. Cell. Cardiol. 140:10–21
    [Google Scholar]
  87. 87. 
    Verheule S, Wilson E, Everett T, Shanbhag S, Golden C, Olgin J 2003. Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation 107:2615–22
    [Google Scholar]
  88. 88. 
    Li B, Luo F, Luo X, Li B, Qi L et al. 2019. Effects of atrial fibrosis induced by mitral regurgitation on atrial electrophysiology and susceptibility to atrial fibrillation in pigs. Cardiovasc. Pathol. 40:32–40
    [Google Scholar]
  89. 89. 
    Ruaengsri C, Schill MR, Lancaster TS, Khiabani AJ, Manghelli JL et al. 2018. The hemodynamic and atrial electrophysiologic consequences of chronic left atrial volume overload in a controllable canine model. J. Thorac. Cardiovasc. Surg. 156:1871–79.e1
    [Google Scholar]
  90. 90. 
    Maesen B, Nijs J, Maessen J, Allessie M, Schotten U 2012. Post-operative atrial fibrillation: a maze of mechanisms. Europace 14:159–74
    [Google Scholar]
  91. 91. 
    Dobrev D, Aguilar M, Heijman J, Guichard JB, Nattel S 2019. Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat. Rev. Cardiol. 16:417–36
    [Google Scholar]
  92. 92. 
    Park YM, Cha MS, Park CH, Choi CH, Jeon YB et al. 2017. Newly developed post-operative atrial fibrillation is associated with an increased risk of late recurrence of atrial fibrillation in patients who underwent open heart surgery: long-term follow up. Cardiol. J. 24:633–41
    [Google Scholar]
  93. 93. 
    Lennerz C, Barman M, Tantawy M, Sopher M, Whittaker P 2017. Colchicine for primary prevention of atrial fibrillation after open-heart surgery: systematic review and meta-analysis. Int. J. Cardiol. 249:127–37
    [Google Scholar]
  94. 94. 
    Salih M, Smer A, Charnigo R, Ayan M, Darrat YH et al. 2017. Colchicine for prevention of post-cardiac procedure atrial fibrillation: meta-analysis of randomized controlled trials. Int. J. Cardiol. 243:258–62
    [Google Scholar]
  95. 95. 
    Marcos EG, De With RR, Mulder BA, Van Gelder IC, Rienstra M 2019. Young-onset atrial fibrillation: Sex differences in clinical profile, progression rate and cardiovascular outcome. Int. J. Cardiol. Heart Vasc. 25:100429
    [Google Scholar]
  96. 96. 
    Kostopoulou A, Zeljko HM, Bogossian H, Ciudin R, Costa F et al. 2020. Atrial fibrillation-related stroke in women: evidence and inequalities in epidemiology, mechanisms, clinical presentation, and management. Clin. Cardiol. 43:14–23
    [Google Scholar]
  97. 97. 
    Ko D, Rahman F, Schnabel RB, Yin X, Benjamin EJ, Christophersen IE 2016. Atrial fibrillation in women: epidemiology, pathophysiology, presentation, and prognosis. Nat. Rev. Cardiol. 13:321–32
    [Google Scholar]
  98. 98. 
    Gaborit N, Varro A, Le Bouter S, Szuts V, Escande D et al. 2010. Gender-related differences in ion-channel and transporter subunit expression in non-diseased human hearts. J. Mol. Cell. Cardiol. 49:639–46
    [Google Scholar]
  99. 99. 
    Hatem SN, Sanders P. 2014. Epicardial adipose tissue and atrial fibrillation. Cardiovasc. Res. 102:205–13
    [Google Scholar]
  100. 100. 
    Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A et al. 2015. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur. Heart J. 36:795–805
    [Google Scholar]
  101. 101. 
    Schofield SE, Parkinson JR, Henley AB, Sahuri-Arisoylu M, Sanchez-Canon GJ, Bell JD 2017. Metabolic dysfunction following weight cycling in male mice. Int. J. Obes. 41:402–11
    [Google Scholar]
  102. 102. 
    Schram-Serban C, Heida A, Roos-Serote MC, Knops P, Kik C et al. 2020. Heterogeneity in conduction underlies obesity-related atrial fibrillation vulnerability. Circ. Arrhythm. Electrophysiol. 13:e008161
    [Google Scholar]
  103. 103. 
    Lee HJ, Choi EK, Han KD, Lee E, Moon I et al. 2020. Bodyweight fluctuation is associated with increased risk of incident atrial fibrillation. Heart Rhythm 17:365–71
    [Google Scholar]
  104. 104. 
    Voskoboinik A, Prabhu S, Ling LH, Kalman JM, Kistler PM 2016. Alcohol and atrial fibrillation: a sobering review. J. Am. Coll. Cardiol. 68:2567–76
    [Google Scholar]
  105. 105. 
    Kodama S, Saito K, Tanaka S, Horikawa C, Saito A et al. 2011. Alcohol consumption and risk of atrial fibrillation: a meta-analysis. J. Am. Coll. Cardiol. 57:427–36
    [Google Scholar]
  106. 106. 
    Dixit S, Alonso A, Vittinghoff E, Soliman EZ, Chen LY, Marcus GM 2017. Past alcohol consumption and incident atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) Study. PLOS ONE 12:e0185228
    [Google Scholar]
  107. 107. 
    Bebarova M, Matejovic P, Pasek M, Simurdova M, Simurda J 2014. Dual effect of ethanol on inward rectifier potassium current IK1 in rat ventricular myocytes. J. Physiol. Pharmacol. 65:497–509
    [Google Scholar]
  108. 108. 
    Mustroph J, Wagemann O, Lebek S, Tarnowski D, Ackermann J et al. 2018. SR Ca2+-leak and disordered excitation-contraction coupling as the basis for arrhythmogenic and negative inotropic effects of acute ethanol exposure. J. Mol. Cell. Cardiol. 116:81–90
    [Google Scholar]
  109. 109. 
    Yan J, Thomson JK, Zhao W, Gao X, Huang F et al. 2018. Role of stress kinase JNK in binge alcohol-evoked atrial arrhythmia. J. Am. Coll. Cardiol. 71:1459–70
    [Google Scholar]
  110. 110. 
    Linz D, McEvoy RD, Cowie MR, Somers VK, Nattel S et al. 2018. Associations of obstructive sleep apnea with atrial fibrillation and continuous positive airway pressure treatment: a review. JAMA Cardiol 3:532–40
    [Google Scholar]
  111. 111. 
    Iwasaki YK, Kato T, Xiong F, Shi YF, Naud P et al. 2014. Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. J. Am. Coll. Cardiol. 64:2013–23
    [Google Scholar]
  112. 112. 
    Lebek S, Pichler K, Reuthner K, Trum M, Tafelmeier M et al. 2020. Enhanced CaMKII-dependent late INa induces atrial proarrhythmic activity in patients with sleep-disordered breathing. Circ. Res. 126:603–15
    [Google Scholar]
  113. 113. 
    Linz D, Brooks AG, Elliott AD, Nalliah CJ, Hendriks JML et al. 2019. Variability of sleep apnea severity and risk of atrial fibrillation: The VARIOSA-AF study. JACC Clin. Electrophysiol. 5:692–701
    [Google Scholar]
  114. 114. 
    Linz D, Schotten U, Neuberger HR, Bohm M, Wirth K 2011. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm 8:1436–43
    [Google Scholar]
  115. 115. 
    Stevenson IH, Roberts-Thomson KC, Kistler PM, Edwards GA, Spence S et al. 2010. Atrial electrophysiology is altered by acute hypercapnia but not hypoxemia: implications for promotion of atrial fibrillation in pulmonary disease and sleep apnea. Heart Rhythm 7:1263–70
    [Google Scholar]
  116. 116. 
    Elliott AD, Linz D, Verdicchio CV, Sanders P 2018. Exercise and atrial fibrillation: Prevention or causation. Heart Lung. Circ. 27:1078–85
    [Google Scholar]
  117. 117. 
    Elliott AD, Linz D, Mishima R, Kadhim K, Gallagher C et al. 2020. Association between physical activity and risk of incident arrhythmias in 402 406 individuals: evidence from the UK Biobank cohort. Eur. Heart J. 41:1479–86
    [Google Scholar]
  118. 118. 
    Guasch E, Benito B, Qi X, Cifelli C, Naud P et al. 2013. Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model. J. Am. Coll. Cardiol. 62:68–77
    [Google Scholar]
  119. 119. 
    Okazaki K, Iwasaki K, Prasad A, Palmer MD, Martini ER et al. 2005. Dose-response relationship of endurance training for autonomic circulatory control in healthy seniors. J. Appl. Physiol. 1985 99:1041–49
    [Google Scholar]
  120. 120. 
    Calvo N, Ramos P, Montserrat S, Guasch E, Coll-Vinent B et al. 2016. Emerging risk factors and the dose-response relationship between physical activity and lone atrial fibrillation: a prospective case-control study. Europace 18:57–63
    [Google Scholar]
  121. 121. 
    Aschar-Sobbi R, Izaddoustdar F, Korogyi AS, Wang Q, Farman GP et al. 2015. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat. Commun. 6:6018
    [Google Scholar]
  122. 122. 
    Webb AJ, Rothwell PM. 2010. Blood pressure variability and risk of new-onset atrial fibrillation: a systematic review of randomized trials of antihypertensive drugs. Stroke 41:2091–93
    [Google Scholar]
  123. 123. 
    DiMarco JP. 2009. Atrial fibrillation and acute decompensated heart failure. Circ. Heart Fail. 2:72–73
    [Google Scholar]
  124. 124. 
    Jobs A, Schwind J, Katalinic A, Babaev V, Tilz RR et al. 2019. Prognostic significance of atrial fibrillation in acute decompensated heart failure with reduced versus preserved ejection fraction. Clin. Res. Cardiol. 108:74–82
    [Google Scholar]
  125. 125. 
    Krijthe BP, Heeringa J, Kors JA, Hofman A, Franco OH et al. 2013. Serum potassium levels and the risk of atrial fibrillation: the Rotterdam Study. Int. J. Cardiol. 168:5411–15
    [Google Scholar]
  126. 126. 
    Lu YY, Cheng CC, Chen YC, Lin YK, Chen SA, Chen YJ 2016. Electrolyte disturbances differentially regulate sinoatrial node and pulmonary vein electrical activity: a contribution to hypokalemia- or hyponatremia-induced atrial fibrillation. Heart Rhythm 13:781–88
    [Google Scholar]
  127. 127. 
    Tazmini K, Frisk M, Lewalle A, Laasmaa M, Morotti S et al. 2020. Hypokalemia promotes arrhythmia by distinct mechanisms in atrial and ventricular myocytes. Circ. Res. 126:889–906
    [Google Scholar]
  128. 128. 
    Sanders P, Elliott AD, Linz D 2017. Upstream targets to treat atrial fibrillation. J. Am. Coll. Cardiol. 70:2906–8
    [Google Scholar]
  129. 129. 
    Linz D, Brooks AG, Elliott AD, Kalman JM, McEvoy RD et al. 2018. Nightly variation in sleep apnea severity as atrial fibrillation risk. J. Am. Coll. Cardiol. 72:2406–7
    [Google Scholar]
  130. 130. 
    Kim YG, Han KD, Choi JI, Boo KY, Kim DY et al. 2020. Frequent drinking is a more important risk factor for new-onset atrial fibrillation than binge drinking: a nationwide population-based study. Europace 22:216–24
    [Google Scholar]
  131. 131. 
    Lee SR, Choi EK, Han KD, Lee SH, Oh S 2020. Effect of the variability of blood pressure, glucose level, total cholesterol level, and body mass index on the risk of atrial fibrillation in a healthy population. Heart Rhythm 17:12–19
    [Google Scholar]
  132. 132. 
    O'Hara T, Rudy Y. 2012. Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species. Am. J. Physiol. Heart Circ. Physiol. 302:H1023–30
    [Google Scholar]
  133. 133. 
    Luss I, Boknik P, Jones LR, Kirchhefer U, Knapp J et al. 1999. Expression of cardiac calcium regulatory proteins in atrium v ventricle in different species. J. Mol. Cell. Cardiol. 31:1299–314
    [Google Scholar]
  134. 134. 
    Aistrup GL, Arora R, Grubb S, Yoo S, Toren B et al. 2017. Triggered intracellular calcium waves in dog and human left atrial myocytes from normal and failing hearts. Cardiovasc. Res. 113:1688–99
    [Google Scholar]
  135. 135. 
    Hocini M, Nault I, Wright M, Veenhuyzen G, Narayan SM et al. 2010. Disparate evolution of right and left atrial rate during ablation of long-lasting persistent atrial fibrillation. J. Am. Coll. Cardiol. 55:1007–16
    [Google Scholar]
  136. 136. 
    Spitzer SG, Karolyi L, Rammler C, Scharfe F, Weinmann T et al. 2017. Treatment of recurrent nonparoxysmal atrial fibrillation using focal impulse and rotor mapping (FIRM)-guided rotor ablation: early recurrence and long-term outcomes. J. Cardiovasc. Electrophysiol. 28:31–38
    [Google Scholar]
  137. 137. 
    Rienstra M, Hobbelt AH, Alings M, Tijssen JGP, Smit MD et al. 2018. Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: results of the RACE 3 trial. Eur. Heart J. 39:2987–96
    [Google Scholar]
  138. 138. 
    Freedman B, Camm J, Calkins H, Healey JS, Rosenqvist M et al. 2017. Screening for atrial fibrillation: a report of the AF-SCREEN international collaboration. Circulation 135:1851–67
    [Google Scholar]
  139. 139. 
    Doytchinova A, Hassel JL, Yuan Y, Lin H, Yin D et al. 2017. Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram. Heart Rhythm 14:25–33
    [Google Scholar]
  140. 140. 
    Dickinson MG, Allen LA, Albert NA, DiSalvo T, Ewald GA et al. 2018. Remote monitoring of patients with heart failure: a white paper from the Heart Failure Society of America Scientific Statements Committee. J. Card. Fail. 24:682–94
    [Google Scholar]
  141. 141. 
    O'Neal WT, Venkatesh S, Broughton ST, Griffin WF, Soliman EZ 2016. Biomarkers and the prediction of atrial fibrillation: state of the art. Vasc. Health Risk Manag. 12:297–303
    [Google Scholar]
  142. 142. 
    Linz D, Baumert M, Desteghe L, Kadhim K, Vernooy K et al. 2019. Nightly sleep apnea severity in patients with atrial fibrillation: potential applications of long-term sleep apnea monitoring. Int. J. Cardiol. Heart Vasc. 24:100424
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031720-085307
Loading
/content/journals/10.1146/annurev-physiol-031720-085307
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error