1932

Abstract

The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-032922-082826
2023-02-10
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-032922-082826.html?itemId=/content/journals/10.1146/annurev-physiol-032922-082826&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. 2019. Building and regenerating the lung cell by cell. Physiol. Rev. 99:513–54
    [Google Scholar]
  2. 2.
    Franks TJ, Colby TV, Travis WD, Tuder RM, Reynolds HY et al. 2008. Resident cellular components of the human lung. Proc. Am. Thorac. Soc. 5:763–66
    [Google Scholar]
  3. 3.
    Clevers H, Rafelski S, Elowitz M, Klein A, Shendure J et al. 2017. What is your conceptual definition of “cell type” in the context of a mature organism?. Cell Syst. 4:255–59
    [Google Scholar]
  4. 4.
    Regev A, Teichmann SA, Lander ES, Amit I, Benoist C et al. 2017. The Human Cell Atlas. eLife 6:e27041
    [Google Scholar]
  5. 5.
    Tabula Muris Consortium 2018. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562:367–72
    [Google Scholar]
  6. 6.
    Mercator G, Mercator R. 1595. Atlas sive cosmographicæ meditationes de fabrica mvndi et fabricati figvra. Duisburg, Ger.: Dvisbvrgi Clivorvm:
    [Google Scholar]
  7. 7.
    Playfair W. 1786. The Commercial and Political Atlas: Representing, by Means of Stained Copper-Plate Charts, the Exports, Imports, and General Trade of England; the National Debt, and Other Public Accounts; with Observations and Remarks London: J. Debrett
    [Google Scholar]
  8. 8.
    Robinson JL, Kocabaş P, Wang H, Cholley P-E, Cook D et al. 2020. An atlas of human metabolism. Sci. Signal. 13:eaaz1482
    [Google Scholar]
  9. 9.
    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P et al. 2015. Proteomics. Tissue-based map of the human proteome. Science 347:1260419
    [Google Scholar]
  10. 10.
    Nowinski WL. 2017. Human brain atlasing: past, present and future. Neuroradiol. J. 30:504–19
    [Google Scholar]
  11. 11.
    Lanzenberger R, Beisteiner R, Prayer D. 2002. CD-ROM review: discussion of the brain atlas for functional imaging (BAFI). Eur. J. Radiol. 41:255–56
    [Google Scholar]
  12. 12.
    Mikula S, Trotts I, Stone JM, Jones EG. 2007. Internet-enabled high-resolution brain mapping and virtual microscopy. Neuroimage 35:9–15
    [Google Scholar]
  13. 13.
    Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A et al. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–76
    [Google Scholar]
  14. 14.
    Dries R, Chen J, Del Rossi N, Khan MM, Sistig A, Yuan GC. 2021. Advances in spatial transcriptomic data analysis. Genome Res. 31:1706–18
    [Google Scholar]
  15. 15.
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. 1995. Serial analysis of gene expression. Science 270:484–87
    [Google Scholar]
  16. 16.
    Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG. 2001. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 19:408–18
    [Google Scholar]
  17. 17.
    Ye SQ, Lavoie T, Usher DC, Zhang LQ. 2002. Microarray, SAGE and their applications to cardiovascular diseases. Cell Res. 12:105–15
    [Google Scholar]
  18. 18.
    van Ruissen F, Ruijter JM, Schaaf GJ, Asgharnegad L, Zwijnenburg DA et al. 2005. Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips. BMC Genom. 6:91
    [Google Scholar]
  19. 19.
    Schena M, Shalon D, Davis RW, Brown PO. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–70
    [Google Scholar]
  20. 20.
    Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP. 1994. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. PNAS 91:5022–26
    [Google Scholar]
  21. 21.
    Cossman J. 2001. Gene expression analysis of single neoplastic cells and the pathogenesis of Hodgkin's lymphoma. J. Histochem. Cytochem. 49:799–800
    [Google Scholar]
  22. 22.
    Hemby SE, Ginsberg SD, Brunk B, Arnold SE, Trojanowski JQ, Eberwine JH. 2002. Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex. Arch. Gen. Psychiatry 59:631–40
    [Google Scholar]
  23. 23.
    Ginsberg SD, Che S, Counts SE, Mufson EJ 2006. Single cell gene expression profiling in Alzheimer's disease. NeuroRX 3:302–18
    [Google Scholar]
  24. 24.
    Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD et al. 2006. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34:e42
    [Google Scholar]
  25. 25.
    Chiang MK, Melton DA. 2003. Single-cell transcript analysis of pancreas development. Dev. Cell 4:383–93
    [Google Scholar]
  26. 26.
    Ning W, Li CJ, Kaminski N, Feghali-Bostwick CA, Alber SM et al. 2004. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. PNAS 101:14895–900
    [Google Scholar]
  27. 27.
    Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z et al. 2002. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. PNAS 99:6292–97
    [Google Scholar]
  28. 28.
    Holt RA, Jones SJ. 2008. The new paradigm of flow cell sequencing. Genome Res. 18:839–46
    [Google Scholar]
  29. 29.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6:377–82
    [Google Scholar]
  30. 30.
    Smith AM, Heisler LE, St. Onge RP, Farias-Hesson E, Wallace IM et al. 2010. Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples. Nucleic Acids Res. 38:e142
    [Google Scholar]
  31. 31.
    Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, et al. 2011. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21:1160–67
    [Google Scholar]
  32. 32.
    Tan SJ, Phan H, Gerry BM, Kuhn A, Hong LZ et al. 2013. A microfluidic device for preparing next generation DNA sequencing libraries and for automating other laboratory protocols that require one or more column chromatography steps. PLOS ONE 8:e64084
    [Google Scholar]
  33. 33.
    Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL et al. 2014. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:371–75
    [Google Scholar]
  34. 34.
    Hashimshony T, Wagner F, Sher N, Yanai I 2012. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2:666–73
    [Google Scholar]
  35. 35.
    Islam S, Zeisel A, Joost S, La Manno G, Zajac P et al. 2014. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11:163–66
    [Google Scholar]
  36. 36.
    Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT et al. 2013. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–40
    [Google Scholar]
  37. 37.
    Fan HC, Fu GK, Fodor SP. 2015. Combinatorial labeling of single cells for gene expression cytometry. Science 347:1258367
    [Google Scholar]
  38. 38.
    Han X, Wang R, Zhou Y, Fei L, Sun H et al. 2018. Mapping the mouse cell atlas by microwell-Seq. Cell 172:1091–107.e17
    [Google Scholar]
  39. 39.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14
    [Google Scholar]
  40. 40.
    Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–201
    [Google Scholar]
  41. 41.
    Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P et al. 2018. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360:176–82
    [Google Scholar]
  42. 42.
    Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK et al. 2017. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14:865–68
    [Google Scholar]
  43. 43.
    Peterson VM, Zhang KX, Kumar N, Wong J, Li L et al. 2017. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35:936–39
    [Google Scholar]
  44. 44.
    Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA et al. 2018. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361:1380–85
    [Google Scholar]
  45. 45.
    Chen S, Lake BB, Zhang K. 2019. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37:1452–57
    [Google Scholar]
  46. 46.
    Lareau CA, Ludwig LS, Muus C, Gohil SH, Zhao T et al. 2021. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 39:451–61
    [Google Scholar]
  47. 47.
    Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL, Hao Y et al. 2021. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39:1246–58
    [Google Scholar]
  48. 48.
    Nature Methods 2014. Method of the Year 2013. Methods to sequence the DNA and RNA of single cells are poised to transform many areas of biology and medicine. Nat. Methods 11:1
    [Google Scholar]
  49. 49.
    Nature Methods 2020. Method of the Year 2019: single-cell multimodal omics. Nat. Methods 17:1
    [Google Scholar]
  50. 50.
    Nature Methods 2021. Method of the Year 2020: spatially resolved transcriptomics. Nat. Methods 18:1
    [Google Scholar]
  51. 51.
    Svensson V, da Veiga Beltrame E, Pachter L. 2020. A curated database reveals trends in single-cell transcriptomics. Database 2020:baaa073
    [Google Scholar]
  52. 52.
    Sperr E. 2016. PubMed by year https://esperr.github.io/pubmed-by-year/
    [Google Scholar]
  53. 53.
    Sikkema L, Strobl D, Zappia L, Madissoon E, Markov N et al. 2022. An integrated cell atlas of the human lung in health and disease. bioRxiv 483747. https://doi.org/10.1101/2022.03.10.483747
  54. 54.
    Ardini-Poleske ME, Clark RF, Ansong C, Carson JP, Corley RA et al. 2017. LungMAP: the molecular atlas of lung development program. Am. J. Physiol. Lung Cell. Mol. Physiol. 313:L733–40
    [Google Scholar]
  55. 55.
    Sun X, Perl AK, Li R, Bell SM, Sajti E et al. 2022. A census of the lung: CellCards from LungMAP. Dev. Cell 57:112–45.e2
    [Google Scholar]
  56. 56.
    Nissan E. 2015. A British cultural history of biological taxa. La Ric. Folk. 70:305–12
    [Google Scholar]
  57. 57.
    Green J, Endale M, Auer H, Perl A-KT. 2016. Diversity of interstitial lung fibroblasts is regulated by platelet-derived growth factor receptor α kinase activity. Am. J. Respir. Cell Mol. Biol. 54:532–45
    [Google Scholar]
  58. 58.
    Li R, Bernau K, Sandbo N, Gu J, Preissl S, Sun X. 2018. Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 7:e36865
    [Google Scholar]
  59. 59.
    Liu X, Rowan SC, Liang J, Yao C, Huang G et al. 2021. Categorization of lung mesenchymal cells in development and fibrosis. iScience 24:102551
    [Google Scholar]
  60. 60.
    Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA et al. 2020. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11:1920
    [Google Scholar]
  61. 61.
    Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N et al. 2020. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6:eaba1983
    [Google Scholar]
  62. 62.
    Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI et al. 2020. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6:eaba1972
    [Google Scholar]
  63. 63.
    Xue L, Simon CR, Jiurong L, Changfu Y, Guanling H et al. 2021. Categorization of lung mesenchymal cells in development and fibrosis. iScience 24:102551
    [Google Scholar]
  64. 64.
    Sun KH, Chang YG, Reed NI, Sheppard D. 2016. α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβactivation or collagen production across multiple models of organ fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 310:L824–36
    [Google Scholar]
  65. 65.
    Peyser R, MacDonnell S, Gao Y, Cheng L, Kim Y et al. 2019. Defining the activated fibroblast population in lung fibrosis using single-cell sequencing. Am. J. Respir. Cell Mol. Biol. 61:74–85
    [Google Scholar]
  66. 66.
    Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J et al. 2019. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 78:1379–87
    [Google Scholar]
  67. 67.
    Melms JC, Biermann J, Huang H, Wang Y, Nair A et al. 2021. A molecular single-cell lung atlas of lethal COVID-19. Nature 595:114–19
    [Google Scholar]
  68. 68.
    Buechler MB, Pradhan RN, Krishnamurty AT, Cox C, Calviello AK et al. 2021. Cross-tissue organization of the fibroblast lineage. Nature 593:575–79
    [Google Scholar]
  69. 69.
    Korsunsky I, Wei K, Pohin M, Kim EY, Barone F et al. 2022. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3:481–518.e14
    [Google Scholar]
  70. 70.
    Guo M, Yu JJ, Perl AK, Wikenheiser-Brokamp KA, Riccetti M et al. 2020. Single-cell transcriptomic analysis identifies a unique pulmonary lymphangioleiomyomatosis cell. Am. J. Respir. Crit. Care Med. 202:1373–87
    [Google Scholar]
  71. 71.
    Schupp JC, Adams TS, Cosme C Jr., Raredon MSB, Yuan Y et al. 2021. Integrated single-cell atlas of endothelial cells of the human lung. Circulation 144:286–302
    [Google Scholar]
  72. 72.
    Elmentaite R, Dominguez Conde C, Yang L, Teichmann SA 2022. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23:395–410
    [Google Scholar]
  73. 73.
    Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A et al. 2020. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587:619–25
    [Google Scholar]
  74. 74.
    Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY et al. 2020. Capillary cell-type specialization in the alveolus. Nature 586:785–89
    [Google Scholar]
  75. 75.
    Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T et al. 2022. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat. Commun. 13:494
    [Google Scholar]
  76. 76.
    Madissoon E, Oliver AJ, Kleshchevnikov V, Wilbrey-Clark A, Polanski K et al. 2021. A spatial multi-omics atlas of the human lung reveals a novel immune cell survival niche. bioRxiv 470108. https://doi.org/10.1101/2021.11.26.470108
    [Google Scholar]
  77. 77.
    Carraro G, Mulay A, Yao C, Mizuno T, Konda B et al. 2020. Single-cell reconstruction of human basal cell diversity in normal and idiopathic pulmonary fibrosis lungs. Am. J. Respir. Crit. Care Med. 202:1540–50
    [Google Scholar]
  78. 78.
    Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K et al. 2019. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25:1153–63
    [Google Scholar]
  79. 79.
    Deprez M, Zaragosi L-E, Truchi M, Becavin C, Ruiz García S et al. 2020. A single-cell atlas of the human healthy airways. Am. J. Respir. Crit. Care Med. 202:1636–45
    [Google Scholar]
  80. 80.
    Plasschaert LW, Zilionis R, Choo-Wing R, Savova V, Knehr J et al. 2018. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560:377–81
    [Google Scholar]
  81. 81.
    Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B et al. 2018. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319–24
    [Google Scholar]
  82. 82.
    Goldfarbmuren KC, Jackson ND, Sajuthi SP, Dyjack N, Li KS et al. 2020. Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nat. Commun. 11:2485
    [Google Scholar]
  83. 83.
    Carraro G, Langerman J, Sabri S, Lorenzana Z, Purkayastha A et al. 2021. Transcriptional analysis of cystic fibrosis airways at single-cell resolution reveals altered epithelial cell states and composition. Nat. Med. 27:806–14
    [Google Scholar]
  84. 84.
    Jackson ND, Everman JL, Chioccioli M, Feriani L, Goldfarbmuren KC et al. 2020. Single-cell and population transcriptomics reveal pan-epithelial remodeling in type 2-high asthma. Cell Rep. 32:107872
    [Google Scholar]
  85. 85.
    Weibel ER. 2015. On the tricks alveolar epithelial cells play to make a good lung. Am. J. Respir. Crit. Care Med. 191:504–13
    [Google Scholar]
  86. 86.
    Mason RJ. 2006. Biology of alveolar type II cells. Respirology 11:S1215
    [Google Scholar]
  87. 87.
    Guillot L, Nathan N, Tabary O, Thouvenin G, Le Rouzic P et al. 2013. Alveolar epithelial cells: master regulators of lung homeostasis. Int. J. Biochem. Cell Biol. 45:2568–73
    [Google Scholar]
  88. 88.
    Raredon MSB, Adams TS, Suhail Y, Schupp JC, Poli S et al. 2019. Single-cell connectomic analysis of adult mammalian lungs. Sci. Adv. 5:eaaw3851
    [Google Scholar]
  89. 89.
    Zepp JA, Morley MP, Loebel C, Kremp MM, Chaudhry FN et al. 2021. Genomic, epigenomic, and biophysical cues controlling the emergence of the lung alveolus. Science 371:eabc3172
    [Google Scholar]
  90. 90.
    Murthy PKL, Sontake V, Tata A, Kobayashi Y, Macadlo L et al. 2022. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604:111–19
    [Google Scholar]
  91. 91.
    Basil MC, Cardenas-Diaz FL, Kathiriya JJ, Morley MP, Carl J et al. 2022. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 604:120–26
    [Google Scholar]
  92. 92.
    Valenzi E, Tabib T, Papazoglou A, Sembrat J, Trejo Bittar HE et al. 2021. Disparate interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front. Immunol. 12:595811
    [Google Scholar]
  93. 93.
    DePianto DJ, Heiden JAV, Morshead KB, Sun KH, Modrusan Z et al. 2021. Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight 6:e143626
    [Google Scholar]
  94. 94.
    Wang J, Zhang L, Luo L, He P, Xiong A et al. 2022. Characterizing cellular heterogeneity in fibrotic hypersensitivity pneumonitis by single-cell transcriptional analysis. Cell Death Discov. 8:38
    [Google Scholar]
  95. 95.
    Rao W, Wang S, Duleba M, Niroula S, Goller K et al. 2020. Regenerative metaplastic clones in COPD lung drive inflammation and fibrosis. Cell 181:848–64.e18
    [Google Scholar]
  96. 96.
    Bharat A, Querrey M, Markov NS, Kim S, Kurihara C et al. 2021. Lung transplantation for patients with severe COVID-19. Sci. Transl. Med. 12:eabe4282
    [Google Scholar]
  97. 97.
    Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y et al. 2021. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595:107–13
    [Google Scholar]
  98. 98.
    Huang KY, Petretto E. 2021. Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 321:L491–506
    [Google Scholar]
  99. 99.
    Kobayashi Y, Tata A, Konkimalla A, Katsura H, Lee RF et al. 2020. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22:934–46
    [Google Scholar]
  100. 100.
    Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I et al. 2020. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. 11:3559
    [Google Scholar]
  101. 101.
    Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC et al. 2019. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199:1517–36
    [Google Scholar]
  102. 102.
    Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT et al. 2019. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54:1802441
    [Google Scholar]
  103. 103.
    Fastres A, Pirottin D, Fievez L, Tutunaru AC, Bolen G et al. 2020. Identification of pro-fibrotic macrophage populations by single-cell transcriptomic analysis in West Highland white terriers affected with canine idiopathic pulmonary fibrosis. Front. Immunol. 11:611749
    [Google Scholar]
  104. 104.
    Aran D, Looney AP, Liu L, Wu E, Fong V et al. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20:163–72
    [Google Scholar]
  105. 105.
    Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM et al. 2017. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214:2387–404
    [Google Scholar]
  106. 106.
    McQuattie-Pimentel AC, Ren Z, Joshi N, Watanabe S, Stoeger T et al. 2021. The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. J. Clin. Investig. 131:e140299
    [Google Scholar]
  107. 107.
    Liao M, Liu Y, Yuan J, Wen Y, Xu G et al. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26:842–44
    [Google Scholar]
  108. 108.
    Wendisch D, Dietrich O, Mari T, von Stillfried S, Ibarra IL et al. 2021. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184:6243–61.e27
    [Google Scholar]
  109. 109.
    Lee JS, Koh JY, Yi K, Kim YI, Park SJ et al. 2021. Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages during SARS-CoV-2 infection in ferrets. Nat. Commun. 12:4567
    [Google Scholar]
  110. 110.
    Wauters E, Van Mol P, Garg AD, Jansen S, Van Herck Y et al. 2021. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res. 31:272–90
    [Google Scholar]
  111. 111.
    Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D et al. 2020. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38:970–79
    [Google Scholar]
  112. 112.
    Zhang F, Mears JR, Shakib L, Beynor JI, Shanaj S et al. 2021. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 13:64
    [Google Scholar]
  113. 113.
    Justet A, Zhao AY, Kaminski N. 2022. From COVID to fibrosis: lessons from single-cell analyses of the human lung. Hum. Genom. 16:20
    [Google Scholar]
  114. 114.
    Neumark N, Cosme CC Jr., Rose K-A, Kaminski N. 2020. The idiopathic pulmonary fibrosis cell atlas. Am. J. Physiol. Lung Cell. Mol. Physiol. 319:L887–92
    [Google Scholar]
  115. 115.
    Schupp JC, Khanal S, Gomez JL, Sauler M, Adams TS et al. 2020. Single-cell transcriptional archetypes of airway inflammation in cystic fibrosis. Am. J. Respir. Crit. Care Med. 202:1419–29
    [Google Scholar]
  116. 116.
    Hey J. 2001. The mind of the species problem. Trends Ecol. Evol. 16:326–29
    [Google Scholar]
  117. 117.
    Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. 1982. Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 126:332–37
    [Google Scholar]
  118. 118.
    Luecken MD, Theis FJ. 2019. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15:e8746
    [Google Scholar]
  119. 119.
    Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC et al. 2020. Eleven grand challenges in single-cell data science. Genome Biol. 21:31
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-032922-082826
Loading
/content/journals/10.1146/annurev-physiol-032922-082826
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error