1932

Abstract

Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P] serves as a cofactor required for activity. Such dependence on PI(4,5)P has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P. Structural studies uncovered the PI(4,5)P and PI(3,5)P binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P regulation of TRPV1–4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042022-013956
2024-02-12
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042022-013956.html?itemId=/content/journals/10.1146/annurev-physiol-042022-013956&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA et al. 2002. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 9:229–31
    [Google Scholar]
  2. 2.
    Wu LJ, Sweet TB, Clapham DE. 2010. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev. 62:381–404
    [Google Scholar]
  3. 3.
    Rohacs T. 2014. Phosphoinositide regulation of TRP channels. Handb. Exp. Pharm. 233:1143–76
    [Google Scholar]
  4. 4.
    Suh BC, Hille B. 2008. PIP2 is a necessary cofactor for ion channel function: How and why?. Annu. Rev. Biophys. 37:175–95
    [Google Scholar]
  5. 5.
    Hilgemann DW, Feng S, Nasuhoglu C. 2001. The complex and intriguing lives of PIP2 with ion channels and transporters. Science's STKE 2001:re19
    [Google Scholar]
  6. 6.
    Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY et al. 2015. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu. Rev. Physiol. 77:81–104
    [Google Scholar]
  7. 7.
    Estacion M, Sinkins WG, Schilling WP. 2001. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J. Physiol. 530:1–19
    [Google Scholar]
  8. 8.
    Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE et al. 2001. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–62
    [Google Scholar]
  9. 9.
    Lee J, Cha SK, Sun TJ, Huang CL. 2005. PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J. Gen. Physiol. 126:439–51
    [Google Scholar]
  10. 10.
    Liu B, Qin F. 2005. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 25:1674–81
    [Google Scholar]
  11. 11.
    Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G et al. 2006. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J. 25:467–78
    [Google Scholar]
  12. 12.
    Rohacs T, Lopes CM, Michailidis I, Logothetis DE. 2005. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 8:626–34
    [Google Scholar]
  13. 13.
    Runnels LW, Yue L, Clapham DE. 2002. The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat. Cell Biol. 4:329–36
    [Google Scholar]
  14. 14.
    Thyagarajan B, Lukacs V, Rohacs T. 2008. Hydrolysis of phosphatidylinositol 4,5-bisphosphate mediates calcium-induced inactivation of TRPV6 channels. J. Biol. Chem. 283:14980–87
    [Google Scholar]
  15. 15.
    Zhang Z, Okawa H, Wang Y, Liman ER. 2005. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem. 280:39185–92
    [Google Scholar]
  16. 16.
    Liu D, Liman ER. 2003. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. PNAS 100:15160–65
    [Google Scholar]
  17. 17.
    Logothetis DE, Jin T, Lupyan D, Rosenhouse-Dantsker A 2007. Phosphoinositide-mediated gating of inwardly rectifying K+ channels. Pflügers Arch. 455:83–95
    [Google Scholar]
  18. 18.
    Delmas P, Brown DA. 2005. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6:850–62
    [Google Scholar]
  19. 19.
    Balla T. 2013. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93:1019–137
    [Google Scholar]
  20. 20.
    Shewan A, Eastburn DJ, Mostov K. 2011. Phosphoinositides in cell architecture. Cold Spring Harb. Perspect. Biol. 3:a004796
    [Google Scholar]
  21. 21.
    Dickson EJ, Hille B. 2019. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem. J. 476:1–23
    [Google Scholar]
  22. 22.
    Hammond GR, Machner MP, Balla T. 2014. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 205:113–26
    [Google Scholar]
  23. 23.
    Pemberton JG, Kim YJ, Humpolickova J, Eisenreichova A, Sengupta N et al. 2020. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J. Cell Biol. 219:e201906130
    [Google Scholar]
  24. 24.
    Zewe JP, Miller AM, Sangappa S, Wills RC, Goulden BD, Hammond GRV. 2020. Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane. J. Cell Biol. 219:e201906127
    [Google Scholar]
  25. 25.
    Wills RC, Goulden BD, Hammond GRV. 2018. Genetically encoded lipid biosensors. Mol. Biol. Cell 29:1526–32
    [Google Scholar]
  26. 26.
    Dong XP, Shen D, Wang X, Dawson T, Li X et al. 2010. PI(3,5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat. Commun. 1:38
    [Google Scholar]
  27. 27.
    Kim SW, Kim MK, Hong S, Choi A, Choi JH et al. 2022. The intracellular Ca2+ channel TRPML3 is a PI3P effector that regulates autophagosome biogenesis. PNAS 119:e2200085119
    [Google Scholar]
  28. 28.
    Wang X, Zhang X, Dong XP, Samie M, Li X et al. 2012. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151:372–83
    [Google Scholar]
  29. 29.
    Leray X, Hilton JK, Nwangwu K, Becerril A, Mikusevic V et al. 2022. Tonic inhibition of the chloride/proton antiporter ClC-7 by PI(3,5)P2 is crucial for lysosomal pH maintenance. eLife 11:e74136
    [Google Scholar]
  30. 30.
    Ahmed T, Nisler CR, Fluck EC 3rd, Walujkar S, Sotomayor M, Moiseenkova-Bell VY. 2022. Structure of the ancient TRPY1 channel from Saccharomyces cerevisiae reveals mechanisms of modulation by lipids and calcium. Structure 30:139–55.e5
    [Google Scholar]
  31. 31.
    Hughes TET, Pumroy RA, Yazici AT, Kasimova MA, Fluck EC et al. 2018. Structural insights on TRPV5 gating by endogenous modulators. Nat. Commun. 9:4198
    [Google Scholar]
  32. 32.
    Yin Y, Zhang F, Feng S, Butay KJ, Borgnia MJ et al. 2022. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP2. Science 378:eadd1268
    [Google Scholar]
  33. 33.
    Yudin Y, Liu L, Nagwekar J, Rohacs T. 2021. Methods to study phosphoinositide regulation of ion channels. Methods Enzymol. 652:49–79
    [Google Scholar]
  34. 34.
    Hilgemann DW. 1997. Cytoplasmic ATP-dependent regulation of ion transporters and channels: mechanisms and messengers. Annu. Rev. Physiol. 59:193–220
    [Google Scholar]
  35. 35.
    Sui JL, Petit-Jacques J, Logothetis DE. 1998. Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. PNAS 95:1307–12
    [Google Scholar]
  36. 36.
    Zakharian E, Cao C, Rohacs T. 2011. Intracellular ATP supports TRPV6 activity via lipid kinases and the generation of PtdIns(4,5)P2. FASEB J. 25:3915–28
    [Google Scholar]
  37. 37.
    Suh BC, Inoue T, Meyer T, Hille B. 2006. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314:1454–57
    [Google Scholar]
  38. 38.
    Varnai P, Thyagarajan B, Rohacs T, Balla T. 2006. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175:377–82
    [Google Scholar]
  39. 39.
    Iwasaki H, Murata Y, Kim Y, Hossain MI, Worby CA et al. 2008. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. PNAS 105:7970–75
    [Google Scholar]
  40. 40.
    Idevall-Hagren O, Dickson EJ, Hille B, Toomre DK, De Camilli P. 2012. Optogenetic control of phosphoinositide metabolism. PNAS 109:E2316–23
    [Google Scholar]
  41. 41.
    Ningoo M, Plant LD, Greka A, Logothetis DE. 2021. PIP2 regulation of TRPC5 channel activation and desensitization. J. Biol. Chem. 296:100726
    [Google Scholar]
  42. 42.
    Yin Y, Le SC, Hsu AL, Borgnia MJ, Yang H, Lee SY. 2019. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science 363:eaav9334
    [Google Scholar]
  43. 43.
    Fluck EC, Yazici AT, Rohacs T, Moiseenkova-Bell VY. 2022. Structural basis of TRPV5 regulation by physiological and pathophysiological modulators. Cell Rep. 39:110737
    [Google Scholar]
  44. 44.
    Badheka D, Borbiro I, Rohacs T. 2015. Transient receptor potential melastatin 3 is a phosphoinositide dependent ion channel. J. Gen. Physiol. 146:65–77
    [Google Scholar]
  45. 45.
    Toth B, Csanady L. 2012. Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. PNAS 109:13440–45
    [Google Scholar]
  46. 46.
    Xie J, Sun B, Du J, Yang W, Chen HC et al. 2011. Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity. Sci. Rep. 1:146
    [Google Scholar]
  47. 47.
    Zhao C, MacKinnon R. 2023. Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. Neuron 111:81–97
    [Google Scholar]
  48. 48.
    McKemy DD, Neuhausser WM, Julius D. 2002. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58
    [Google Scholar]
  49. 49.
    Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA et al. 2002. A TRP channel that senses cold stimuli and menthol. Cell 108:705–15
    [Google Scholar]
  50. 50.
    Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI et al. 2007. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–8
    [Google Scholar]
  51. 51.
    Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A. 2007. TRPM8 is required for cold sensation in mice. Neuron 54:371–78
    [Google Scholar]
  52. 52.
    Yudin Y, Lukacs V, Cao C, Rohacs T. 2011. Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J. Physiol. 589:6007–27
    [Google Scholar]
  53. 53.
    Zakharian E, Cao C, Rohacs T. 2010. Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J. Neurosci. 30:12526–34
    [Google Scholar]
  54. 54.
    Zakharian E, Thyagarajan B, French RJ, Pavlov E, Rohacs T. 2009. Inorganic polyphosphate modulates TRPM8 channels. PLOS ONE 4:e5404
    [Google Scholar]
  55. 55.
    Daniels RL, Takashima Y, McKemy DD. 2009. Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J. Biol. Chem. 284:1570–82
    [Google Scholar]
  56. 56.
    Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. 2004. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–54
    [Google Scholar]
  57. 57.
    Janssens A, Gees M, Toth BI, Ghosh D, Mulier M et al. 2016. Definition of two agonist types at the mammalian cold-activated channel TRPM8. eLife 5:e17240
    [Google Scholar]
  58. 58.
    Yudin Y, Lutz B, Tao YX, Rohacs T. 2016. Phospholipase C-delta4 regulates cold sensitivity in mice. J. Physiol. 594:3609–28
    [Google Scholar]
  59. 59.
    Brenner DS, Golden JP, Vogt SK, Dhaka A, Story GM, Gereau RW 4th. 2014. A dynamic set point for thermal adaptation requires phospholipase C-mediated regulation of TRPM8 in vivo. Pain 155:2124–33
    [Google Scholar]
  60. 60.
    Thyagarajan B, Benn BS, Christakos S, Rohacs T. 2009. Phospholipase C-mediated regulation of transient receptor potential vanilloid 6 channels: implications in active intestinal Ca2+ transport. Mol. Pharmacol. 75:608–16
    [Google Scholar]
  61. 61.
    Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T. 2007. Dual regulation of TRPV1 by phosphoinositides. J. Neurosci. 27:7070–80
    [Google Scholar]
  62. 62.
    Lukacs V, Yudin Y, Hammond GR, Sharma E, Fukami K, Rohacs T. 2013. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons. J. Neurosci. 33:11451–63
    [Google Scholar]
  63. 63.
    Yao J, Qin F. 2009. Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor. PLOS Biol. 7:e46
    [Google Scholar]
  64. 64.
    Karashima Y, Prenen J, Meseguer V, Owsianik G, Voets T, Nilius B. 2008. Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflügers Arch. 457:77–89
    [Google Scholar]
  65. 65.
    Itsuki K, Imai Y, Hase H, Okamura Y, Inoue R, Mori MX. 2014. PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. J. Gen. Physiol. 143:183–201
    [Google Scholar]
  66. 66.
    Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F. 2005. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J. Neurosci. 25:11322–29
    [Google Scholar]
  67. 67.
    Zhang X, Mak S, Li L, Parra A, Denlinger B et al. 2012. Direct inhibition of the cold-activated TRPM8 ion channel by Gαq. Nat. Cell Biol. 14:851–58
    [Google Scholar]
  68. 68.
    Zhang X. 2019. Direct Gαq gating is the sole mechanism for TRPM8 inhibition caused by bradykinin receptor activation. Cell Rep. 27:3672–83.e4
    [Google Scholar]
  69. 69.
    Liu L, Yudin Y, Nagwekar J, Kang C, Shirokova N, Rohacs T. 2019. q sensitizes TRPM8 to inhibition by PI(4,5)P2 depletion upon receptor activation. J. Neurosci. 39:6067–80
    [Google Scholar]
  70. 70.
    Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. 2003. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 278:21493–501
    [Google Scholar]
  71. 71.
    Lee N, Chen J, Sun L, Wu S, Gray KR et al. 2003. Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J. Biol. Chem. 278:20890–97
    [Google Scholar]
  72. 72.
    Wagner TF, Loch S, Lambert S, Straub I, Mannebach S et al. 2008. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat. Cell Biol. 10:1421–30
    [Google Scholar]
  73. 73.
    Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J et al. 2011. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:482–94
    [Google Scholar]
  74. 74.
    Straub I, Krugel U, Mohr F, Teichert J, Rizun O et al. 2013. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol. Pharmacol. 84:736–50
    [Google Scholar]
  75. 75.
    Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S et al. 2018. A TRP channel trio mediates acute noxious heat sensing. Nature 555:662–66
    [Google Scholar]
  76. 76.
    Dyment DA, Terhal PA, Rustad CF, Tveten K, Griffith C et al. 2019. De novo substitutions of TRPM3 cause intellectual disability and epilepsy. Eur. J. Hum. Genet. 27:1611–18
    [Google Scholar]
  77. 77.
    Zhao S, Yudin Y, Rohacs T. 2020. Disease-associated mutations in the human TRPM3 render the channel overactive via two distinct mechanisms. eLife 9:e55634
    [Google Scholar]
  78. 78.
    Van Hoeymissen E, Held K, Nogueira Freitas AC, Janssens A, Voets T, Vriens J. 2020. Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy. eLife 9:e57190
    [Google Scholar]
  79. 79.
    Zhao S, Rohacs T. 2021. The newest TRP channelopathy: gain of function TRPM3 mutations cause epilepsy and intellectual disability. Channels 15:386–97
    [Google Scholar]
  80. 80.
    Toth BI, Konrad M, Ghosh D, Mohr F, Halaszovich CR et al. 2015. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. J. Gen. Physiol. 146:51–63
    [Google Scholar]
  81. 81.
    Uchida K, Demirkhanyan L, Asuthkar S, Cohen A, Tominaga M, Zakharian E. 2016. Stimulation-dependent gating of TRPM3 channel in planar lipid bilayers. FASEB J. 30:1306–16
    [Google Scholar]
  82. 82.
    Badheka D, Yudin Y, Borbiro I, Hartle CM, Yazici A et al. 2017. Inhibition of transient receptor potential melastatin 3 ion channels by G-protein βγ subunits. eLife 6:e26147
    [Google Scholar]
  83. 83.
    Dembla S, Behrendt M, Mohr F, Goecke C, Sondermann J et al. 2017. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. eLife 6:e26280
    [Google Scholar]
  84. 84.
    Quallo T, Alkhatib O, Gentry C, Andersson DA, Bevan S. 2017. G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons. eLife 6:e26138
    [Google Scholar]
  85. 85.
    Behrendt M, Gruss F, Enzeroth R, Dembla S, Zhao S et al. 2020. The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels. PNAS 117:29090–100
    [Google Scholar]
  86. 86.
    Zhao S, Carnevale V, Gabrielle M, Gianti E, Rohacs T. 2022. Computational and functional studies of the PI(4,5)P2 binding site of the TRPM3 ion channel reveal interactions with other regulators. J. Biol. Chem. 298:102547
    [Google Scholar]
  87. 87.
    Hoenderop JG, Nilius B, Bindels RJ. 2005. Calcium absorption across epithelia. Physiol. Rev. 85:373–422
    [Google Scholar]
  88. 88.
    Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH et al. 1999. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 274:8375–78
    [Google Scholar]
  89. 89.
    Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW et al. 2003. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J. Clin. Investig. 112:1906–14
    [Google Scholar]
  90. 90.
    Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H et al. 1999. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J. Biol. Chem. 274:22739–46
    [Google Scholar]
  91. 91.
    Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A et al. 2007. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J. Bone Miner. Res. 22:274–85
    [Google Scholar]
  92. 92.
    Weissgerber P, Kriebs U, Tsvilovskyy V, Olausson J, Kretz O et al. 2011. Male fertility depends on Ca2+ absorption by TRPV6 in epididymal epithelia. Sci. Signal. 4:ra27
    [Google Scholar]
  93. 93.
    Suzuki Y, Chitayat D, Sawada H, Deardorff MA, McLaughlin HM et al. 2018. TRPV6 variants interfere with maternal-fetal calcium transport through the placenta and cause transient neonatal hyperparathyroidism. Am. J. Hum. Genet. 102:1104–14
    [Google Scholar]
  94. 94.
    Masamune A, Kotani H, Sorgel FL, Chen JM, Hamada S et al. 2020. Variants that affect function of calcium channel TRPV6 are associated with early-onset chronic pancreatitis. Gastroenterology 158:1626–41.e8
    [Google Scholar]
  95. 95.
    Sahin-Toth M. 2020. Channelopathy of the pancreas causes chronic pancreatitis. Gastroenterology 158:1538–40
    [Google Scholar]
  96. 96.
    Hughes TE, Del Rosario JS, Kapoor A, Yazici AT, Yudin Y et al. 2019. Structure-based characterization of novel TRPV5 inhibitors. eLife 8:e49572
    [Google Scholar]
  97. 97.
    Velisetty P, Borbiro I, Kasimova MA, Liu L, Badheka D et al. 2016. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels. Sci. Rep. 6:27652
    [Google Scholar]
  98. 98.
    Dang S, van Goor MK, Asarnow D, Wang Y, Julius D et al. 2019. Structural insight into TRPV5 channel function and modulation. PNAS 116:8869–78
    [Google Scholar]
  99. 99.
    Singh AK, McGoldrick LL, Twomey EC, Sobolevsky AI. 2018. Mechanism of calmodulin inactivation of the calcium-selective TRP channel TRPV6. Sci. Adv. 4:eaau6088
    [Google Scholar]
  100. 100.
    Hughes TET, Lodowski DT, Huynh KW, Yazici A, Del Rosario J et al. 2018. Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat. Struct. Mol. Biol. 25:53–60
    [Google Scholar]
  101. 101.
    Fathizadeh A, Senning E, Elber R. 2021. Impact of the protonation state of phosphatidylinositol 4,5-bisphosphate (PIP2) on the binding kinetics and thermodynamics to transient receptor potential vanilloid (TRPV5): a milestoning study. J. Phys. Chem. B 125:9547–56
    [Google Scholar]
  102. 102.
    Ye W, Chang RB, Bushman JD, Tu YH, Mulhall EM et al. 2016. The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. PNAS 113:E229–38
    [Google Scholar]
  103. 103.
    Lee BH, De Jesus Perez JJ, Moiseenkova-Bell V, Rohacs T 2023. Structural basis of the activation of TRPV5 channels by long-chain acyl-Coenzyme-A. Nat. Commun. 14:5883
    [Google Scholar]
  104. 104.
    Cai R, Liu X, Zhang R, Hofmann L, Zheng W et al. 2020. Autoinhibition of TRPV6 channel and regulation by PIP2. iScience 23:101444
    [Google Scholar]
  105. 105.
    Wang L, Cai R, Chen XZ, Peng JB. 2023. Molecular insights into the structural and dynamical changes of calcium channel TRPV6 induced by its interaction with phosphatidylinositol 4,5-bisphosphate. J. Biomol. Struct. Dyn. 41:6559–68
    [Google Scholar]
  106. 106.
    McGoldrick LL, Singh AK, Saotome K, Yelshanskaya MV, Twomey EC et al. 2018. Opening of the human epithelial calcium channel TRPV6. Nature 553:233–37
    [Google Scholar]
  107. 107.
    Rohacs T, Fluck EC, De Jesus-Perez JJ, Moiseenkova-Bell VY. 2022. What structures did, and did not, reveal about the function of the epithelial Ca2+ channels TRPV5 and TRPV6. Cell Calcium 106:102620
    [Google Scholar]
  108. 108.
    Caterina MJ, Julius D. 2001. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24:487–517
    [Google Scholar]
  109. 109.
    Rohacs T. 2015. Phosphoinositide regulation of TRPV1 revisited. Pflügers Arch. 467:1851–69
    [Google Scholar]
  110. 110.
    Klein RM, Ufret-Vincenty CA, Hua L, Gordon SE. 2008. Determinants of molecular specificity in phosphoinositide regulation. Phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is the endogenous lipid regulating TRPV1. J. Biol. Chem. 283:26208–16
    [Google Scholar]
  111. 111.
    Lukacs V, Rives JM, Sun X, Zakharian E, Rohacs T. 2013. Promiscuous activation of transient receptor potential vanilloid 1 channels by negatively charged intracellular lipids, the key role of endogenous phosphoinositides in maintaining channel activity. J. Biol. Chem. 288:35003–13
    [Google Scholar]
  112. 112.
    Poblete H, Oyarzun I, Olivero P, Comer J, Zuniga M et al. 2015. Molecular determinants of phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) binding to transient receptor potential V1 (TRPV1) channels. J. Biol. Chem. 290:2086–98
    [Google Scholar]
  113. 113.
    Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. 2006. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J. Gen. Physiol. 128:509–22
    [Google Scholar]
  114. 114.
    Ufret-Vincenty CA, Klein RM, Collins MD, Rosasco MG, Martinez GQ, Gordon SE. 2015. Mechanism for phosphoinositide selectivity and activation of TRPV1 ion channels. J. Gen. Physiol. 145:431–42
    [Google Scholar]
  115. 115.
    Ufret-Vincenty CA, Klein RM, Hua L, Angueyra J, Gordon SE. 2011. Localization of the PIP2 sensor of TRPV1 ion channels. J. Biol. Chem. 286:9688–98
    [Google Scholar]
  116. 116.
    Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A et al. 2012. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337:727–30
    [Google Scholar]
  117. 117.
    Szallasi A, Blumberg PM. 1999. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51:159–212
    [Google Scholar]
  118. 118.
    Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R. 2007. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–18
    [Google Scholar]
  119. 119.
    Yu Y, Carter CR, Youssef N, Dyck JR, Light PE. 2014. Intracellular long-chain acyl CoAs activate TRPV1 channels. PLOS ONE 9:e96597
    [Google Scholar]
  120. 120.
    Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA. 1999. Specific involvement of PKC-ε in sensitization of the neuronal response to painful heat. Neuron 23:617–24
    [Google Scholar]
  121. 121.
    Numazaki M, Tominaga T, Toyooka H, Tominaga M. 2002. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cε and identification of two target serine residues. J. Biol. Chem. 277:13375–78
    [Google Scholar]
  122. 122.
    Prescott ED, Julius D. 2003. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–88
    [Google Scholar]
  123. 123.
    Patil MJ, Belugin S, Akopian AN. 2011. Chronic alteration in phosphatidylinositol 4,5-biphosphate levels regulates capsaicin and mustard oil responses. J. Neurosci. Res. 89:945–54
    [Google Scholar]
  124. 124.
    Neely GG, Rao S, Costigan M, Mair N, Racz I et al. 2012. Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception. PLOS Genet. 8:e1003071
    [Google Scholar]
  125. 125.
    Caires R, Bell B, Lee J, Romero LO, Vasquez V, Cordero-Morales JF. 2021. Deficiency of inositol monophosphatase activity decreases phosphoinositide lipids and enhances TRPV1 function in vivo. J. Neurosci. 41:408–23
    [Google Scholar]
  126. 126.
    Gao Y, Cao E, Julius D, Cheng Y. 2016. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–51
    [Google Scholar]
  127. 127.
    Kwon DH, Zhang F, Suo Y, Bouvette J, Borgnia MJ, Lee SY. 2021. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 28:554–63
    [Google Scholar]
  128. 128.
    Nadezhdin KD, Neuberger A, Nikolaev YA, Murphy LA, Gracheva EO et al. 2021. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nat. Commun. 12:2154
    [Google Scholar]
  129. 129.
    Zhang K, Julius D, Cheng Y. 2021. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell 184:5138–50.e12
    [Google Scholar]
  130. 130.
    Yazici AT, Gianti E, Kasimova MA, Lee BH, Carnevale V, Rohacs T. 2021. Dual regulation of TRPV1 channels by phosphatidylinositol via functionally distinct binding sites. J. Biol. Chem. 296:100573
    [Google Scholar]
  131. 131.
    Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D. 2013. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77:667–79
    [Google Scholar]
  132. 132.
    Kojima I, Nagasawa M. 2014. Trpv2. Handb. Exp. Pharmacol. 222:247–72
    [Google Scholar]
  133. 133.
    Mercado J, Gordon-Shaag A, Zagotta WN, Gordon SE. 2010. Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 30:13338–47
    [Google Scholar]
  134. 134.
    Dosey TL, Wang Z, Fan G, Zhang Z, Serysheva II et al. 2019. Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. Nat. Struct. Mol. Biol. 26:40–49
    [Google Scholar]
  135. 135.
    Yang P, Zhu MX. 2014. Trpv3. Handb. Exp. Pharmacol. 222:273–91
    [Google Scholar]
  136. 136.
    Doerner JF, Hatt H, Ramsey IS. 2011. Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J. Gen. Physiol. 137:271–88
    [Google Scholar]
  137. 137.
    Singh AK, McGoldrick LL, Demirkhanyan L, Leslie M, Zakharian E, Sobolevsky AI. 2019. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26:994–98
    [Google Scholar]
  138. 138.
    Garcia-Elias A, Mrkonjic S, Jung C, Pardo-Pastor C, Vicente R, Valverde MA. 2014. The TRPV4 channel. Handb. Exp. Pharmacol. 222:293–319
    [Google Scholar]
  139. 139.
    Nilius B, Voets T. 2013. The puzzle of TRPV4 channelopathies. EMBO Rep. 14:152–63
    [Google Scholar]
  140. 140.
    Tian W, Fu Y, Garcia-Elias A, Fernandez-Fernandez JM, Vicente R et al. 2009. A loss-of-function nonsynonymous polymorphism in the osmoregulatory TRPV4 gene is associated with human hyponatremia. PNAS 106:14034–39
    [Google Scholar]
  141. 141.
    Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, Inada H, Hellmich UA et al. 2013. Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. PNAS 110:9553–58
    [Google Scholar]
  142. 142.
    Goretzki B, Glogowski NA, Diehl E, Duchardt-Ferner E, Hacker C et al. 2018. Structural basis of TRPV4 N terminus interaction with syndapin/PACSIN1–3 and PIP2. Structure 26:1583–93.e5
    [Google Scholar]
  143. 143.
    Takahashi N, Hamada-Nakahara S, Itoh Y, Takemura K, Shimada A et al. 2014. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P2. Nat. Commun. 5:4994
    [Google Scholar]
  144. 144.
    Harraz OF, Longden TA, Hill-Eubanks D, Nelson MT. 2018. PIP2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. eLife 7:e38689
    [Google Scholar]
  145. 145.
    Wang H, Cheng X, Tian J, Xiao Y, Tian T et al. 2020. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 209:107497
    [Google Scholar]
  146. 146.
    Liman ER, Innan H. 2003. Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. PNAS 100:3328–32
    [Google Scholar]
  147. 147.
    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. 1999. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–63
    [Google Scholar]
  148. 148.
    Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T et al. 1999. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J. Biol. Chem. 274:27359–70
    [Google Scholar]
  149. 149.
    Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F. 2003. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–61
    [Google Scholar]
  150. 150.
    Storch U, Forst AL, Pardatscher F, Erdogmus S, Philipp M et al. 2017. Dynamic NHERF interaction with TRPC4/5 proteins is required for channel gating by diacylglycerol. PNAS 114:E37–46
    [Google Scholar]
  151. 151.
    Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M et al. 2008. Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 283:10026–36
    [Google Scholar]
  152. 152.
    Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney JW Jr. 2009. Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflügers Arch. 457:757–69
    [Google Scholar]
  153. 153.
    Thakur DP, Tian JB, Jeon J, Xiong J, Huang Y et al. 2016. Critical roles of Gi/o proteins and phospholipase C-δ1 in the activation of receptor-operated TRPC4 channels. PNAS 113:1092–97
    [Google Scholar]
  154. 154.
    Song K, Wei M, Guo W, Quan L, Kang Y et al. 2021. Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. eLife 10:e63429
    [Google Scholar]
  155. 155.
    Lichtenegger M, Tiapko O, Svobodova B, Stockner T, Glasnov TN et al. 2018. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat. Chem. Biol. 14:396–404
    [Google Scholar]
  156. 156.
    Bai Y, Yu X, Chen H, Horne D, White R et al. 2020. Structural basis for pharmacological modulation of the TRPC6 channel. eLife 9:e53311
    [Google Scholar]
  157. 157.
    Lemonnier L, Trebak M, Putney JW Jr. 2008. Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43:506–14
    [Google Scholar]
  158. 158.
    Imai Y, Itsuki K, Okamura Y, Inoue R, Mori MX. 2012. A self-limiting regulation of vasoconstrictor-activated TRPC3/C6/C7 channels coupled to PI(4,5)P2-diacylglycerol signalling. J. Physiol. 590:1101–19
    [Google Scholar]
  159. 159.
    Itsuki K, Imai Y, Okamura Y, Abe K, Inoue R, Mori MX. 2012. Voltage-sensing phosphatase reveals temporal regulation of TRPC3/C6/C7 channels by membrane phosphoinositides. Channels 6:206–9
    [Google Scholar]
  160. 160.
    Mori MX, Okada R, Sakaguchi R, Hase H, Imai Y et al. 2022. Critical contributions of pre-S1 shoulder and distal TRP box in DAG-activated TRPC6 channel by PIP2 regulation. Sci. Rep. 12:10766
    [Google Scholar]
  161. 161.
    Fine M, Li X. 2023. A structural overview of TRPML1 and the TRPML family. Handb. Exp. Pharmacol. 278:181–98
    [Google Scholar]
  162. 162.
    Feng X, Huang Y, Lu Y, Xiong J, Wong CO et al. 2014. Drosophila TRPML forms PI(3,5)P2-activated cation channels in both endolysosomes and plasma membrane. J. Biol. Chem. 289:4262–72
    [Google Scholar]
  163. 163.
    Zhang X, Li X, Xu H. 2012. Phosphoinositide isoforms determine compartment-specific ion channel activity. PNAS 109:11384–89
    [Google Scholar]
  164. 164.
    Fine M, Schmiege P, Li X. 2018. Structural basis for PtdInsP2-mediated human TRPML1 regulation. Nat. Commun. 9:4192
    [Google Scholar]
  165. 165.
    Gan N, Han Y, Zeng W, Wang Y, Xue J, Jiang Y. 2022. Structural mechanism of allosteric activation of TRPML1 by PI(3,5)P2 and rapamycin. PNAS 119:e2120404119
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042022-013956
Loading
/content/journals/10.1146/annurev-physiol-042022-013956
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error