1932

Abstract

Originally described as the renal aldosterone receptor that regulates sodium homeostasis, it is now clear that mineralocorticoid receptors (MRs) are widely expressed, including in vascular endothelial and smooth muscle cells. Ample data demonstrate that endothelial and smooth muscle cell MRs contribute to cardiovascular disease in response to risk factors (aging, obesity, hypertension, atherosclerosis) by inducing vasoconstriction, vascular remodeling, inflammation, and oxidative stress. Extrapolating from its role in disease, evidence supports beneficial roles of vascular MRs in the context of hypotension by promoting inflammation, wound healing, and vasoconstriction to enhance survival from bleeding or sepsis. Advances in understanding how vascular MRs become activated are also reviewed, describing transcriptional, ligand-dependent, and ligand-independent mechanisms. By synthesizing evidence describing how vascular MRs convert cardiovascular risk factors into disease (the vascular MR as a foe), we postulate that the teleological role of the MR is to coordinate responses to hypotension (the MR as a friend).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042022-015223
2024-02-12
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042022-015223.html?itemId=/content/journals/10.1146/annurev-physiol-042022-015223&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL et al. 1987. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237:268–75
    [Google Scholar]
  2. 2.
    Baker ME, Funder JW, Kattoula SR. 2013. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors. J. Steroid Biochem. Mol. Biol. 137:57–70
    [Google Scholar]
  3. 3.
    Baker ME, Nelson DR, Studer RA. 2015. Origin of the response to adrenal and sex steroids: roles of promiscuity and co-evolution of enzymes and steroid receptors. J. Steroid Biochem. Mol. Biol. 151:12–24
    [Google Scholar]
  4. 4.
    Rogerson FM, Fuller PJ. 2000. Mineralocorticoid action. Steroids 65:61–73
    [Google Scholar]
  5. 5.
    Rossier BC, Staub O, Hummler E. 2013. Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett. 587:1929–41
    [Google Scholar]
  6. 6.
    Rossier BC, Pradervand S, Schild L, Hummler E. 2002. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu. Rev. Physiol. 64:877–97
    [Google Scholar]
  7. 7.
    Ames MK, Atkins CE, Pitt B. 2019. The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med. 33:363–82
    [Google Scholar]
  8. 8.
    Epstein M. 2021. Renin-angiotensin-aldosterone system inhibition and mineralocorticoid receptor antagonists: the overriding importance of enablers and dampers. Kidney Int. Rep. 6:869–71
    [Google Scholar]
  9. 9.
    Re RN. 2004. Mechanisms of disease: local renin-angiotensin-aldosterone systems and the pathogenesis and treatment of cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med. 1:42–47
    [Google Scholar]
  10. 10.
    Gomez-Sanchez E, Gomez-Sanchez CE. 2014. The multifaceted mineralocorticoid receptor. Compr. Physiol. 4:965–94
    [Google Scholar]
  11. 11.
    Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM. 2017. Vascular cells in blood vessel wall development and disease. Adv. Pharmacol. 78:323–50
    [Google Scholar]
  12. 12.
    DuPont JJ, Jaffe IZ. 2017. 30 Years of the mineralocorticoid receptor: the role of the mineralocorticoid receptor in the vasculature. J. Endocrinol. 234:T67–82
    [Google Scholar]
  13. 13.
    Barrera-Chimal J, Jaisser F. 2019. Vascular mineralocorticoid receptor activation and disease. Exp. Eye Res. 188:107796
    [Google Scholar]
  14. 14.
    Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. 2005. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J. Am. Coll. Cardiol. 45:1243–48
    [Google Scholar]
  15. 15.
    Ivanes F, Susen S, Mouquet F, Pigny P, Cuilleret F et al. 2012. Aldosterone, mortality, and acute ischaemic events in coronary artery disease patients outside the setting of acute myocardial infarction or heart failure. Eur. Heart J. 33:191–202
    [Google Scholar]
  16. 16.
    Pitt B. 2012. Plasma aldosterone levels in patients with coronary artery disease without heart failure or myocardial infarction: implications for pathophsiology, prognosis, and therapy. Eur. Heart J. 33:162–64
    [Google Scholar]
  17. 17.
    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A et al. 1999. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 341:709–17
    [Google Scholar]
  18. 18.
    Pitt B, Remme W, Zannad F, Neaton J, Martinez F et al. 2003. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348:1309–21
    [Google Scholar]
  19. 19.
    Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA et al. 2003. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 108:1831–38
    [Google Scholar]
  20. 20.
    Epstein M, Calhoun DA. 2007. The role of aldosterone in resistant hypertension: implications for pathogenesis and therapy. Curr. Hypertens. Rep. 9:98–105
    [Google Scholar]
  21. 21.
    North BJ, Sinclair DA. 2012. The intersection between aging and cardiovascular disease. Circ. Res. 110:1097–108
    [Google Scholar]
  22. 22.
    Krug AW, Allenhöfer L, Monticone R, Spinetti G, Gekle M et al. 2010. Elevated mineralocorticoid receptor activity in aged rat vascular smooth muscle cells promotes a proinflammatory phenotype via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase and epidermal growth factor receptor-dependent pathways. Hypertension 55:1476–83
    [Google Scholar]
  23. 23.
    Kim SK, McCurley AT, DuPont JJ, Aronovitz M, Moss ME et al. 2018. Smooth muscle cell-mineralocorticoid receptor as a mediator of cardiovascular stiffness with aging. Hypertension 71:609–21
    [Google Scholar]
  24. 24.
    DuPont JJ, Kim SK, Kenney RM, Jaffe IZ. 2021. Sex differences in the time course and mechanisms of vascular and cardiac aging in mice: role of the smooth muscle cell mineralocorticoid receptor. Am. J. Physiol. Heart Circ. Physiol. 320:H169–80
    [Google Scholar]
  25. 25.
    Ibarrola J, Lu Q, Zennaro MC, Jaffe IZ. 2023. Mechanism by which inflammation and oxidative stress induce mineralocorticoid receptor gene expression in aging vascular smooth muscle cells. Hypertension 80:111–24
    [Google Scholar]
  26. 26.
    Ibarrola J, Kim SK, Lu Q, DuPont JJ, Creech A et al. 2023. Smooth muscle mineralocorticoid receptor as an epigenetic regulator of vascular ageing. Cardiovasc. Res. 118:3386–400
    [Google Scholar]
  27. 27.
    DuPont JJ, Kenney RM, Patel AR, Jaffe IZ. 2019. Sex differences in mechanisms of arterial stiffness. Br. J. Pharmacol. 176:4208–25
    [Google Scholar]
  28. 28.
    Kim SK, Biwer LA, Moss ME, Man JJ, Aronovitz MJ et al. 2021. Mineralocorticoid receptor in smooth muscle contributes to pressure overload-induced heart failure. Circ. Heart Fail. 14:e007279
    [Google Scholar]
  29. 29.
    Salvador AM, Moss ME, Aronovitz M, Mueller KB, Blanton RM et al. 2017. Endothelial mineralocorticoid receptor contributes to systolic dysfunction induced by pressure overload without modulating cardiac hypertrophy or inflammation. Physiol. Rep. 5:e13313
    [Google Scholar]
  30. 30.
    Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA, Jaffe IZ. 2014. Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler. Thromb. Vasc. Biol. 34:355–64
    [Google Scholar]
  31. 31.
    Ehsan A, McGraw AP, Aronovitz MJ, Galayda C, Conte MS et al. 2013. Mineralocorticoid receptor antagonism inhibits vein graft remodeling in mice. J. Thorac. Cardiovasc. Surg. 145:1642–49.e1
    [Google Scholar]
  32. 32.
    McGraw AP, Bagley J, Chen WS, Galayda C, Nickerson H et al. 2013. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. J. Am. Heart Assoc. 2:e000018
    [Google Scholar]
  33. 33.
    Menon DP, Qi G, Kim SK, Moss ME, Penumatsa KC et al. 2021. Vascular cell-specific roles of mineralocorticoid receptors in pulmonary hypertension. Pulm. Circ. 11:1–13
    [Google Scholar]
  34. 34.
    Koenig JB, Jaffe IZ. 2014. Direct role for smooth muscle cell mineralocorticoid receptors in vascular remodeling: novel mechanisms and clinical implications. Curr. Hypertens. Rep. 16:427
    [Google Scholar]
  35. 35.
    Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. 2016. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can. J. Cardiol. 32:659–68
    [Google Scholar]
  36. 36.
    Galmiche G, Pizard A, Gueret A, El Moghrabi S, Ouvrard-Pascaud A et al. 2014. Smooth muscle cell mineralocorticoid receptors are mandatory for aldosterone-salt to induce vascular stiffness. Hypertension 63:520–26
    [Google Scholar]
  37. 37.
    Zhang L, Yang Y, Aroor AR, Jia G, Sun Z et al. 2022. Endothelial sodium channel activation mediates DOCA-salt-induced endothelial cell and arterial stiffening. Metabolism 130:155165
    [Google Scholar]
  38. 38.
    Hill MA, Jaisser F, Sowers JR. 2022. Role of the vascular endothelial sodium channel activation in the genesis of pathologically increased cardiovascular stiffness. Cardiovasc. Res. 118:130–40
    [Google Scholar]
  39. 39.
    Bentley-Lewis R, Adler GK, Perlstein T, Seely EW, Hopkins PN et al. 2007. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J. Clin. Endocrinol. Metab. 92:4472–75
    [Google Scholar]
  40. 40.
    Xie D, Bollag WB. 2016. Obesity, hypertension and aldosterone: Is leptin the link?. J. Endocrinol. 230:F7–11
    [Google Scholar]
  41. 41.
    Kawarazaki W, Fujita T. 2016. The role of aldosterone in obesity-related hypertension. Am. J. Hypertens. 29:415–23
    [Google Scholar]
  42. 42.
    Jia G, Lockette W, Sowers JR. 2021. Mineralocorticoid receptors in the pathogenesis of insulin resistance and related disorders: from basic studies to clinical disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 320:R276–86
    [Google Scholar]
  43. 43.
    Lefranc C, Friederich-Persson M, Braud L, Palacios-Ramirez R, Karlsson S et al. 2019. MR (mineralocorticoid receptor) induces adipose tissue senescence and mitochondrial dysfunction leading to vascular dysfunction in obesity. Hypertension 73:458–68
    [Google Scholar]
  44. 44.
    Nguyen Dinh Cat A, Callera GE, Friederich-Persson M, Sanchez A, Dulak-Lis MG et al. 2018. Vascular dysfunction in obese diabetic db/db mice involves the interplay between aldosterone/mineralocorticoid receptor and Rho kinase signaling. Sci. Rep. 8:2952
    [Google Scholar]
  45. 45.
    Nagata D, Takahashi M, Sawai K, Tagami T, Usui T et al. 2006. Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension 48:165–71
    [Google Scholar]
  46. 46.
    Faulkner JL, Kennard S, Huby AC, Antonova G, Lu Q et al. 2019. Progesterone predisposes females to obesity-associated leptin-mediated endothelial dysfunction via upregulating endothelial MR (mineralocorticoid receptor) expression. Hypertension 74:678–86
    [Google Scholar]
  47. 47.
    Davel AP, Lu Q, Moss ME, Rao S, Anwar IJ et al. 2018. Sex-specific mechanisms of resistance vessel endothelial dysfunction induced by cardiometabolic risk factors. J. Am. Heart Assoc. 7:e007675
    [Google Scholar]
  48. 48.
    Biwer LA, Carvajal BV, Lu Q, Man JJ, Jaffe IZ. 2021. Mineralocorticoid and estrogen receptors in endothelial cells coordinately regulate microvascular function in obese female mice. Hypertension 77:2117–26
    [Google Scholar]
  49. 49.
    Jia G, Habibi J, Aroor AR, Martinez-Lemus LA, DeMarco VG et al. 2016. Endothelial mineralocorticoid receptor mediates diet-induced aortic stiffness in females. Circ. Res. 118:935–43
    [Google Scholar]
  50. 50.
    Koenen M, Hill MA, Cohen P, Sowers JR. 2021. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128:951–68
    [Google Scholar]
  51. 51.
    Pojoga LH, Baudrand R, Adler GK. 2013. Mineralocorticoid receptor throughout the vessel: a key to vascular dysfunction in obesity. Eur. Heart J. 34:3475–77
    [Google Scholar]
  52. 52.
    Jia G, Bender SB, Sowers JR. 2016. Uncovering a mineralocorticoid receptor-dependent adipose-vascular axis: Implications for vascular dysfunction in obesity?. Diabetes 65:2127–79
    [Google Scholar]
  53. 53.
    Wolter NL, Jaffe IZ. 2023. Emerging vascular cell-specific roles for mineralocorticoid receptor: implications for understanding sex differences in cardiovascular disease. Am. J. Physiol. Cell Physiol. 324:C193–204
    [Google Scholar]
  54. 54.
    Libby P, Theroux P. 2005. Pathophysiology of coronary artery disease. Circulation 111:3481–88
    [Google Scholar]
  55. 55.
    Moss ME, Jaffe IZ. 2015. Mineralocorticoid receptors in the pathophysiology of vascular inflammation and atherosclerosis. Front. Endocrinol. 6:153
    [Google Scholar]
  56. 56.
    Tikellis C, Pickering RJ, Tsorotes D, Huet O, Chin-Dusting J et al. 2012. Activation of the renin-angiotensin system mediates the effects of dietary salt intake on atherogenesis in the apolipoprotein E knockout mouse. Hypertension 60:98–105
    [Google Scholar]
  57. 57.
    Raz-Pasteur A, Gamliel-Lazarovich A, Gantman A, Coleman R, Keidar S. 2014. Mineralocorticoid receptor blockade inhibits accelerated atherosclerosis induced by a low sodium diet in apolipoprotein E-deficient mice. J. Renin Angiotensin Aldosterone Syst. 15:228–35
    [Google Scholar]
  58. 58.
    Keidar S, Hayek T, Kaplan M, Pavlotzky E, Hamoud S et al. 2003. Effect of eplerenone, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice. J. Cardiovasc. Pharmacol. 41:955–63
    [Google Scholar]
  59. 59.
    Moss ME, DuPont JJ, Iyer SL, McGraw AP, Jaffe IZ. 2018. No significant role for smooth muscle cell mineralocorticoid receptors in atherosclerosis in the apolipoprotein-E knockout mouse model. Front. Cardiovasc. Med. 5:81
    [Google Scholar]
  60. 60.
    Caprio M, Newfell BG, la Sala A, Baur W, Fabbri A et al. 2008. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ. Res. 102:1359–67
    [Google Scholar]
  61. 61.
    Moss ME, Lu Q, Iyer SL, Engelbertsen D, Marzolla V et al. 2019. Endothelial mineralocorticoid receptors contribute to vascular inflammation in atherosclerosis in a sex-specific manner. Arterioscler. Thromb. Vasc. Biol. 39:1588–601
    [Google Scholar]
  62. 62.
    Marzolla V, Armani A, Mammi C, Moss ME, Pagliarini V et al. 2017. Essential role of ICAM-1 in aldosterone-induced atherosclerosis. Int. J. Cardiol. 232:233–42
    [Google Scholar]
  63. 63.
    Mueller KB, Lu Q, Mohammad NN, Luu V, McCurley A et al. 2014. Estrogen receptor inhibits mineralocorticoid receptor transcriptional regulatory function. Endocrinology 155:4461–72
    [Google Scholar]
  64. 64.
    Bene NC, Alcaide P, Wortis HH, Jaffe IZ. 2014. Mineralocorticoid receptors in immune cells: emerging role in cardiovascular disease. Steroids 91:38–45
    [Google Scholar]
  65. 65.
    Shen ZX, Chen XQ, Sun XN, Sun JY, Zhang WC et al. 2017. Mineralocorticoid receptor deficiency in macrophages inhibits atherosclerosis by affecting foam cell formation and efferocytosis. J. Biol. Chem. 292:925–35
    [Google Scholar]
  66. 66.
    Man JJ, Lu Q, Moss ME, Carvajal B, Baur W et al. 2021. Myeloid mineralocorticoid receptor transcriptionally regulates P-selectin glycoprotein ligand-1 and promotes monocyte trafficking and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 41:2740–55
    [Google Scholar]
  67. 67.
    Man JJ, Beckman JA, Jaffe IZ. 2020. Sex as a biological variable in atherosclerosis. Circ. Res. 126:1297–319
    [Google Scholar]
  68. 68.
    McCurley A, McGraw A, Pruthi D, Jaffe IZ. 2013. Smooth muscle cell mineralocorticoid receptors: role in vascular function and contribution to cardiovascular disease. Pflügers Arch. 465:1661–70
    [Google Scholar]
  69. 69.
    Drenjančević-Perić I, Jelaković B, Lombard JH, Kunert MP, Kibel A, Gros M. 2011. High-salt diet and hypertension: focus on the renin-angiotensin system. Kidney Blood Press. Res. 34:1–11
    [Google Scholar]
  70. 70.
    Acelajado MC, Hughes ZH, Oparil S, Calhoun DA. 2019. Treatment of resistant and refractory hypertension. Circ. Res. 124:1061–70
    [Google Scholar]
  71. 71.
    Levy DG, Rocha R, Funder JW. 2004. Distinguishing the antihypertensive and electrolyte effects of eplerenone. J. Clin. Endocrinol. Metab. 89:2736–40
    [Google Scholar]
  72. 72.
    Rickard AJ, Morgan J, Chrissobolis S, Miller AA, Sobey CG, Young MJ. 2014. Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure. Hypertension 63:1033–40
    [Google Scholar]
  73. 73.
    Mueller KB, Bender SB, Hong K, Yang Y, Aronovitz M et al. 2015. Endothelial mineralocorticoid receptors differentially contribute to coronary and mesenteric vascular function without modulating blood pressure. Hypertension 66:988–97
    [Google Scholar]
  74. 74.
    Nguyen Dinh Cat A, Griol-Charhbili V, Loufrani L, Labat C, Benjamin L et al. 2010. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 24:2454–63
    [Google Scholar]
  75. 75.
    McCurley A, Pires PW, Bender SB, Aronovitz M, Zhao MJ et al. 2012. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18:1429–33
    [Google Scholar]
  76. 76.
    Tarjus A, Belozertseva E, Louis H, El Moghrabi S, Labat C et al. 2015. Role of smooth muscle cell mineralocorticoid receptor in vascular tone. Pflügers Arch. 467:1643–50
    [Google Scholar]
  77. 77.
    Amador CA, Bertocchio JP, Andre-Gregoire G, Placier S, Duong Van Huyen JP et al. 2016. Deletion of mineralocorticoid receptors in smooth muscle cells blunts renal vascular resistance following acute cyclosporine administration. Kidney Int. 89:354–62
    [Google Scholar]
  78. 78.
    Jaffe IZ, Mendelsohn ME. 2005. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ. Res. 96:643–50
    [Google Scholar]
  79. 79.
    Barrett KV, McCurley AT, Jaffe IZ. 2013. Direct contribution of vascular mineralocorticoid receptors to blood pressure regulation. Clin. Exp. Pharmacol. Physiol. 40:902–9
    [Google Scholar]
  80. 80.
    DuPont JJ, McCurley A, Davel AP, McCarthy J, Bender SB et al. 2016. Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging. JCI Insight 1:e88942
    [Google Scholar]
  81. 81.
    Baker ME. 2019. Steroid receptors and vertebrate evolution. Mol. Cell. Endocrinol. 496:110526
    [Google Scholar]
  82. 82.
    Nesterov V, Bertog M, Canonica J, Hummler E, Coleman R et al. 2021. Critical role of the mineralocorticoid receptor in aldosterone-dependent and aldosterone-independent regulation of ENaC in the distal nephron. Am. J. Physiol. Ren. Physiol. 321:F257–68
    [Google Scholar]
  83. 83.
    Lucera GM, Menani JV, Colombari E, Colombari DSA. 2021. ANG II and aldosterone acting centrally participate in the enhanced sodium intake in water-deprived renovascular hypertensive rats. Front. Pharmacol. 12:679985
    [Google Scholar]
  84. 84.
    Ronzaud C, Loffing J, Gretz N, Schutz G, Berger S. 2011. Inducible renal principal cell-specific mineralocorticoid receptor gene inactivation in mice. Am. J. Physiol. Ren. Physiol. 300:F756–60
    [Google Scholar]
  85. 85.
    Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ et al. 2016. Direct and indirect mineralocorticoid effects determine distal salt transport. J. Am. Soc. Nephrol. 27:2436–45
    [Google Scholar]
  86. 86.
    Berger S, Bleich M, Schmid W, Cole TJ, Peters J et al. 1998. Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism. PNAS 95:9424–29
    [Google Scholar]
  87. 87.
    Bleich M, Warth R, Schmidt-Hieber M, Schulz-Baldes A, Hasselblatt P et al. 1999. Rescue of the mineralocorticoid receptor knock-out mouse. Pflügers Arch. 438:245–54
    [Google Scholar]
  88. 88.
    Perez P. 2022. The mineralocorticoid receptor in skin disease. Br. J. Pharmacol. 179:3178–89
    [Google Scholar]
  89. 89.
    Farman N, Maubec E, Poeggeler B, Klatte JE, Jaisser F, Paus R. 2010. The mineralocorticoid receptor as a novel player in skin biology: Beyond the renal horizon?. Exp. Dermatol. 19:100–7
    [Google Scholar]
  90. 90.
    Boix J, Bigas J, Sevilla LM, Iacobone M, Citton M et al. 2017. Primary aldosteronism patients show skin alterations and abnormal activation of glucocorticoid receptor in keratinocytes. Sci. Rep. 7:15806
    [Google Scholar]
  91. 91.
    Mitts TF, Bunda S, Wang Y, Hinek A. 2010. Aldosterone and mineralocorticoid receptor antagonists modulate elastin and collagen deposition in human skin. J. Investig. Dermatol. 130:2396–406
    [Google Scholar]
  92. 92.
    Boix J, Sevilla LM, Saez Z, Carceller E, Perez P. 2016. Epidermal mineralocorticoid receptor plays beneficial and adverse effects in skin and mediates glucocorticoid responses. J. Investig. Dermatol. 136:2417–26
    [Google Scholar]
  93. 93.
    Bigas J, Sevilla LM, Carceller E, Boix J, Perez P. 2018. Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis. 9:588
    [Google Scholar]
  94. 94.
    Gromotowicz A, Szemraj J, Stankiewicz A, Zakrzeska A, Mantur M et al. 2011. Study of the mechanisms of aldosterone prothrombotic effect in rats. J. Renin Angiotensin Aldosterone Syst. 12:430–39
    [Google Scholar]
  95. 95.
    Lagrange J, Li Z, Fassot C, Bourhim M, Louis H et al. 2014. Endothelial mineralocorticoid receptor activation enhances endothelial protein C receptor and decreases vascular thrombosis in mice. FASEB J. 28:2062–72
    [Google Scholar]
  96. 96.
    Schafer A, Vogt C, Fraccarollo D, Widder J, Flierl U et al. 2010. Eplerenone improves vascular function and reduces platelet activation in diabetic rats. J. Physiol. Pharmacol. 61:45–52
    [Google Scholar]
  97. 97.
    Naray-Fejes-Tóth A, Fejes-Tóth G. 2000. The sgk, an aldosterone-induced gene in mineralocorticoid target cells, regulates the epithelial sodium channel. Kidney Int. 57:1290–94
    [Google Scholar]
  98. 98.
    Newfell BG, Iyer LK, Mohammad NN, McGraw AP, Ehsan A et al. 2011. Aldosterone regulates vascular gene transcription via oxidative stress-dependent and -independent pathways. Arterioscler. Thromb. Vasc. Biol. 31:1871–80
    [Google Scholar]
  99. 99.
    Borst O, Schmidt EM, Munzer P, Schonberger T, Towhid ST et al. 2012. The serum- and glucocorticoid-inducible kinase 1 (SGK1) influences platelet calcium signaling and function by regulation of Orai1 expression in megakaryocytes. Blood 119:251–61
    [Google Scholar]
  100. 100.
    Tang HY, Chen AQ, Zhang H, Gao XF, Kong XQ, Zhang JJ. 2022. Vascular smooth muscle cells phenotypic switching in cardiovascular diseases. Cells 11:4060
    [Google Scholar]
  101. 101.
    Lindner V, Reidy MA. 1991. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. PNAS 88:3739–43
    [Google Scholar]
  102. 102.
    Biwer LA, Wallingford MC, Jaffe IZ. 2019. Vascular mineralocorticoid receptor: evolutionary mediator of wound healing turned harmful by our modern lifestyle. Am. J. Hypertens. 32:123–34
    [Google Scholar]
  103. 103.
    Jaffe IZ, Newfell BG, Aronovitz M, Mohammad NN, McGraw AP et al. 2010. Placental growth factor mediates aldosterone-dependent vascular injury in mice. J. Clin. Investig. 120:3891–900
    [Google Scholar]
  104. 104.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D et al. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–10
    [Google Scholar]
  105. 105.
    Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. 2011. The pathogenesis of sepsis. Annu. Rev. Pathol. Mech. Dis. 6:19–48
    [Google Scholar]
  106. 106.
    Chan CK, Hu YH, Chen L, Chang CC, Lin YF et al. 2018. Risk of sepsis in patients with primary aldosteronism. Crit. Care 22:313
    [Google Scholar]
  107. 107.
    Heming N, Sivanandamoorthy S, Meng P, Bounab R, Annane D. 2018. Immune effects of corticosteroids in sepsis. Front. Immunol. 9:1736
    [Google Scholar]
  108. 108.
    Annane D, Renault A, Brun-Buisson C, Megarbane B, Quenot JP et al. 2018. Hydrocortisone plus fludrocortisone for adults with septic shock. N. Engl. J. Med. 378:809–18
    [Google Scholar]
  109. 109.
    Hicks CW, Sweeney DA, Danner RL, Eichacker PQ, Suffredini AF et al. 2012. Efficacy of selective mineralocorticoid and glucocorticoid agonists in canine septic shock. Crit. Care Med. 40:199–207
    [Google Scholar]
  110. 110.
    Fadel F, Andre-Gregoire G, Gravez B, Bauvois B, Bouchet S et al. 2017. Aldosterone and vascular mineralocorticoid receptors in murine endotoxic and human septic shock. Crit. Care Med. 45:e954–62
    [Google Scholar]
  111. 111.
    Druce LA, Thorpe CM, Wilton A. 2008. Mineralocorticoid effects due to cortisol inactivation overload explain the beneficial use of hydrocortisone in septic shock. Med. Hypotheses 70:56–60
    [Google Scholar]
  112. 112.
    Laviolle B, Nesseler N, Massart C, Bellissant E. 2014. Fludrocortisone and hydrocortisone, alone or in combination, on in vivo hemodynamics and in vitro vascular reactivity in normal and endotoxemic rats: a randomized factorial design study. J. Cardiovasc. Pharmacol. 63:488–96
    [Google Scholar]
  113. 113.
    Farman N, Rafestin-Oblin ME. 2001. Multiple aspects of mineralocorticoid selectivity. Am. J. Physiol. Ren. Physiol. 280:F181–92
    [Google Scholar]
  114. 114.
    McCurley A, Jaffe IZ. 2012. Mineralocorticoid receptors in vascular function and disease. Mol. Cell. Endocrinol. 350:256–65
    [Google Scholar]
  115. 115.
    Funder JW. 2004. Aldosterone, mineralocorticoid receptors and vascular inflammation. Mol. Cell. Endocrinol. 217:263–69
    [Google Scholar]
  116. 116.
    Kornel L. 1994. Colocalization of 11β-hydroxysteroid dehydrogenase and mineralocorticoid receptors in cultured vascular smooth muscle cells. Am. J. Hypertens. 7:100–3
    [Google Scholar]
  117. 117.
    Brem AS, Bina RB, King TC, Morris DJ. 1998. Localization of 2 11β-OH steroid dehydrogenase isoforms in aortic endothelial cells. Hypertension 31:459–62
    [Google Scholar]
  118. 118.
    Alzamora R, Michea L, Marusic ET. 2000. Role of 11β-hydroxysteroid dehydrogenase in nongenomic aldosterone effects in human arteries. Hypertension 35:1099–104
    [Google Scholar]
  119. 119.
    Christy C, Hadoke PW, Paterson JM, Mullins JJ, Seckl JR, Walker BR. 2003. 11β-hydroxysteroid dehydrogenase type 2 in mouse aorta: localization and influence on response to glucocorticoids. Hypertension 42:580–87
    [Google Scholar]
  120. 120.
    Masoumi A, Ortiz F, Radhakrishnan J, Schrier RW, Colombo PC. 2015. Mineralocorticoid receptor antagonists as diuretics: Can congestive heart failure learn from liver failure?. Heart Fail. Rev. 20:283–90
    [Google Scholar]
  121. 121.
    Faulkner JL, Belin de Chantemèle EJ. 2019. Leptin and aldosterone. Vitam. Horm. 109:265–84
    [Google Scholar]
  122. 122.
    Brown JM, Siddiqui M, Calhoun DA, Carey RM, Hopkins PN et al. 2020. The unrecognized prevalence of primary aldosteronism: a cross-sectional study. Ann. Intern. Med. 173:10–20
    [Google Scholar]
  123. 123.
    Nanba K, Vaidya A, Williams GH, Zheng I, Else T, Rainey WE. 2017. Age-related autonomous aldosteronism. Circulation 136:347–55
    [Google Scholar]
  124. 124.
    Bennesch MA, Picard D. 2015. Minireview: Tipping the balance: ligand-independent activation of steroid receptors. Mol. Endocrinol. 29:349–63
    [Google Scholar]
  125. 125.
    Kawai T, Forrester SJ, O'Brien S, Baggett A, Rizzo V, Eguchi S 2017. AT1 receptor signaling pathways in the cardiovascular system. Pharmacol. Res. 125:4–13
    [Google Scholar]
  126. 126.
    Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. 2007. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin. Sci. 112:417–28
    [Google Scholar]
  127. 127.
    Lemarie CA, Simeone SM, Nikonova A, Ebrahimian T, Deschenes ME et al. 2009. Aldosterone-induced activation of signaling pathways requires activity of angiotensin type 1a receptors. Circ. Res. 105:852–59
    [Google Scholar]
  128. 128.
    Rautureau Y, Paradis P, Schiffrin EL. 2011. Cross-talk between aldosterone and angiotensin signaling in vascular smooth muscle cells. Steroids 76:834–39
    [Google Scholar]
  129. 129.
    Lu Q, Davel AP, McGraw AP, Rao SP, Newfell BG, Jaffe IZ. 2019. PKCδ mediates mineralocorticoid receptor activation by angiotensin II to modulate smooth muscle cell function. Endocrinology 160:2101–14
    [Google Scholar]
  130. 130.
    Kawarazaki W, Fujita T. 2013. Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension. Clin. Exp. Pharmacol. Physiol. 40:929–36
    [Google Scholar]
  131. 131.
    Nagase M, Ayuzawa N, Kawarazaki W, Ishizawa K, Ueda K et al. 2012. Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1. Hypertension 59:500–6
    [Google Scholar]
  132. 132.
    Ayuzawa N, Nagase M, Ueda K, Nishimoto M, Kawarazaki W et al. 2016. Rac1-mediated activation of mineralocorticoid receptor in pressure overload-induced cardiac injury. Hypertension 67:99–106
    [Google Scholar]
  133. 133.
    Shibata S, Mu S, Kawarazaki H, Muraoka K, Ishizawa K et al. 2011. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J. Clin. Investig. 121:3233–43
    [Google Scholar]
  134. 134.
    Yoshida S, Ishizawa K, Ayuzawa N, Ueda K, Takeuchi M et al. 2014. Local mineralocorticoid receptor activation and the role of Rac1 in obesity-related diabetic kidney disease. Nephron Exp. Nephrol. 126:16–24
    [Google Scholar]
  135. 135.
    Barrera-Chimal J, Andre-Gregoire G, Nguyen Dinh Cat A, Lechner SM, Cau J et al. 2017. Benefit of mineralocorticoid receptor antagonism in AKI: role of vascular smooth muscle Rac1. J. Am. Soc. Nephrol. 28:1216–26
    [Google Scholar]
  136. 136.
    Le Menuet D, Viengchareun S, Muffat-Joly M, Zennaro MC, Lombes M 2004. Expression and function of the human mineralocorticoid receptor: lessons from transgenic mouse models. Mol. Cell. Endocrinol. 217:127–36
    [Google Scholar]
  137. 137.
    Zennaro MC, Keightley MC, Kotelevtsev Y, Conway GS, Soubrier F, Fuller PJ. 1995. Human mineralocorticoid receptor genomic structure and identification of expressed isoforms. J. Biol. Chem. 270:21016–20
    [Google Scholar]
  138. 138.
    Zennaro MC, Farman N, Bonvalet JP, Lombes M. 1997. Tissue-specific expression of α and β messenger ribonucleic acid isoforms of the human mineralocorticoid receptor in normal and pathological states. J. Clin. Endocrinol. Metab. 82:1345–52
    [Google Scholar]
  139. 139.
    Le Menuet D, Zennaro MC, Viengchareun S, Lombes M 2000. Transgenic mouse models to study human mineralocorticoid receptor function in vivo. Kidney Int. 57:1299–306
    [Google Scholar]
  140. 140.
    Gadasheva Y, Nolze A, Grossmann C. 2021. Posttranslational modifications of the mineralocorticoid receptor and cardiovascular aging. Front. Mol. Biosci. 8:667990
    [Google Scholar]
  141. 141.
    Faresse N. 2014. Post-translational modifications of the mineralocorticoid receptor: How to dress the receptor according to the circumstances?. J. Steroid Biochem. Mol. Biol. 143:334–42
    [Google Scholar]
  142. 142.
    Shibata S, Rinehart J, Zhang J, Moeckel G, Castaneda-Bueno M et al. 2013. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab. 18:660–71
    [Google Scholar]
  143. 143.
    Seo M, Song M, Seok YM, Kang SH, Lee HA et al. 2015. Lysine acetyltransferases cyclic adenosine monophosphate response element-binding binding protein and acetyltransferase p300 attenuate transcriptional activity of the mineralocorticoid receptor through its acetylation. Clin. Exp. Pharmacol. Physiol. 42:559–66
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042022-015223
Loading
/content/journals/10.1146/annurev-physiol-042022-015223
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error