1932

Abstract

The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042022-015914
2024-02-12
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042022-015914.html?itemId=/content/journals/10.1146/annurev-physiol-042022-015914&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hedegaard H, Miniño AM, Spencer MR, Warner M. 2021. Drug overdose deaths in the United States, 1999–2020 NCHS Data Brief 428 Natl. Cent. Health Stat., Cent. Dis. Control Prev., US Dep. Health Hum. Serv. Washington, DC:
    [Google Scholar]
  2. 2.
    Sertuerner 1817. Ueber das Morphium, eine neue salzfähige Grundlage, und die Mekonsäure, als Hauptbestandtheile des Opiums. Ann. Phys. 55:56–89
    [Google Scholar]
  3. 3.
    Wright CRA. 1874. XLIX.—On the action of organic acids and their anhydrides on the natural alkaloïds. Part I. J. Chem. Soc. 27:1031–43
    [Google Scholar]
  4. 4.
    Sinatra RS, Jahr JS, Watkins-Pitchford JM. 2011. The Essence of Analgesia and Analgesics Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  5. 5.
    Bockmühl M, Ehrhart G. 1949. Über eine neue Klasse von spasmolytisch und analgetisch wirkenden Verbindungen, I. Justus Liebigs Ann. Chem. 561:52–86
    [Google Scholar]
  6. 6.
    Eap CB, Deglon J-J, Baumann P. 1999. Pharmacokinetics and pharmacogenetics of methadone: clinical relevance. Heroin Addict. Relat. Clin. Probl. 1:19–34
    [Google Scholar]
  7. 7.
    Stanley TH. 1992. The history and development of the fentanyl series. J. Pain Symptom Manag. 7:S3–7
    [Google Scholar]
  8. 8.
    Stokbroekx RA, Vandenberk J, Van Heertum AH, Van Laar GM, Van der Aa MJ et al. 1973. Synthetic antidiarrheal agents. 2,2-Diphenyl-4-(4′-aryl-4′-hydroxypiperidino)butyramides. J. Med. Chem. 16:782–86
    [Google Scholar]
  9. 9.
    Dufek MB, Knight BM, Bridges AS, Thakker DR. 2013. P-glycoprotein increases portal bioavailability of loperamide in mouse by reducing first-pass intestinal metabolism. Drug Metab. Dispos. 41:642–50
    [Google Scholar]
  10. 10.
    Campbell ND, Lovell AM. 2012. The history of the development of buprenorphine as an addiction therapeutic. Ann. N.Y. Acad. Sci. 1248:124–39
    [Google Scholar]
  11. 11.
    Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. 1979. Dynorphin-(1-13), an extraordinarily potent opioid peptide. PNAS 76:6666–70
    [Google Scholar]
  12. 12.
    Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. 1975. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–80
    [Google Scholar]
  13. 13.
    Simantov R, Snyder SH. 1976. Morphine-like peptides, leucine enkephalin and methionine enkephalin: interactions with the opiate receptor. Mol. Pharmacol. 12:987–98
    [Google Scholar]
  14. 14.
    Li CH, Chung D, Doneen BA. 1976. Isolation, characterization and opiate activity of β-endorphin from human pituitary glands. Biochem. Biophys. Res. Commun. 72:1542–47
    [Google Scholar]
  15. 15.
    Evans CJ, Keith DE Jr., Morrison H, Magendzo K, Edwards RH 1992. Cloning of a delta opioid receptor by functional expression. Science 258:1952–55
    [Google Scholar]
  16. 16.
    Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG. 1992. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. PNAS 89:12048–52
    [Google Scholar]
  17. 17.
    Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C et al. 1994. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 341:33–38
    [Google Scholar]
  18. 18.
    Chen Y, Mestek A, Liu J, Hurley JA, Yu L. 1993. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol. Pharmacol. 44:8–12
    [Google Scholar]
  19. 19.
    Chen Y, Mestek A, Liu J, Yu L. 1993. Molecular cloning of a rat κ opioid receptor reveals sequence similarities to the μ and δ opioid receptors. Biochem. J. 295:Part 3625–28
    [Google Scholar]
  20. 20.
    Yasuda K, Raynor K, Kong H, Breder CD, Takeda J et al. 1993. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. PNAS 90:6736–40
    [Google Scholar]
  21. 21.
    Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT et al. 1994. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a μ, δ or κ opioid receptor type. FEBS Lett. 347:284–88
    [Google Scholar]
  22. 22.
    Wang JB, Imai Y, Eppler CM, Gregor P, Spivak CE, Uhl GR. 1993. μ opiate receptor: cDNA cloning and expression. PNAS 90:10230–34
    [Google Scholar]
  23. 23.
    Eppler CM, Hulmes JD, Wang JB, Johnson B, Corbett M et al. 1993. Purification and partial amino acid sequence of a mu opioid receptor from rat brain. J. Biol. Chem. 268:26447–51
    [Google Scholar]
  24. 24.
    Thompson RC, Mansour A, Akil H, Watson SJ. 1993. Cloning and pharmacological characterization of a rat μ opioid receptor. Neuron 11:903–13
    [Google Scholar]
  25. 25.
    Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S et al. 1996. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383:819–23
    [Google Scholar]
  26. 26.
    Stein C. 2016. Opioid receptors. Annu. Rev. Med. 67:433–51
    [Google Scholar]
  27. 27.
    Gold SJ, Ni YG, Dohlman HG, Nestler EJ. 1997. Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J. Neurosci. 17:8024–37
    [Google Scholar]
  28. 28.
    Wilden U, Hall SW, Kuhn H. 1986. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. PNAS 83:1174–78
    [Google Scholar]
  29. 29.
    Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. 1990. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248:1547–50
    [Google Scholar]
  30. 30.
    Lefkowitz RJ. 2013. Arrestins come of age: a personal historical perspective. Prog. Mol. Biol. Transl. Sci. 118:3–18
    [Google Scholar]
  31. 31.
    Roth BL, Chuang DM. 1987. Multiple mechanisms of serotonergic signal transduction. Life Sci. 41:1051–64
    [Google Scholar]
  32. 32.
    Willins DL, Berry SA, Alsayegh L, Backstrom JR, Sanders-Bush E et al. 1999. Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neuroscience 91:599–606
    [Google Scholar]
  33. 33.
    Sternini C, Spann M, Anton B, Keith DE Jr., Bunnett NW et al. 1996. Agonist-selective endocytosis of mu opioid receptor by neurons in vivo. PNAS 93:9241–46
    [Google Scholar]
  34. 34.
    Keith DE, Murray SR, Zaki PA, Chu PC, Lissin DV et al. 1996. Morphine activates opioid receptors without causing their rapid internalization. J. Biol. Chem. 271:19021–24
    [Google Scholar]
  35. 35.
    Whistler JL, von Zastrow M. 1998. Morphine-activated opioid receptors elude desensitization by β-arrestin. PNAS 95:9914–19
    [Google Scholar]
  36. 36.
    Zhang J, Ferguson SS, Barak LS, Bodduluri SR, Laporte SA et al. 1998. Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. PNAS 95:7157–62
    [Google Scholar]
  37. 37.
    Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M 1999. Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737–46
    [Google Scholar]
  38. 38.
    Am. Psychiatr. Assoc., DSM-5 Task Force 2013. Diagnostic and Statistical Manual of Mental DisordersDSM-5™. Washington, DC: Am. Psychiatr. Assoc., 5th ed..
    [Google Scholar]
  39. 39.
    Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. 1999. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286:2495–98
    [Google Scholar]
  40. 40.
    Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ et al. 2003. Enhanced rewarding properties of morphine, but not cocaine, in βarrestin-2 knock-out mice. J. Neurosci. 23:10265–73
    [Google Scholar]
  41. 41.
    Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG. 2000. μ-Opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–23
    [Google Scholar]
  42. 42.
    Raehal KM, Walker JK, Bohn LM. 2005. Morphine side effects in β-arrestin 2 knockout mice. J. Pharmacol. Exp. Ther. 314:1195–201
    [Google Scholar]
  43. 43.
    DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL et al. 2013. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344:708–17
    [Google Scholar]
  44. 44.
    FDA (US Food Drug Admin.) 2020. FDA approves new opioid for intravenous use in hospitals, other controlled clinical settings News Release, US FDA Silver Spring, MD: https://www.fda.gov/news-events/press-announcements/fda-approves-new-opioid-intravenous-use-hospitals-other-controlled-clinical-settings
    [Google Scholar]
  45. 45.
    Kliewer A, Gillis A, Hill R, Schmidel F, Bailey C et al. 2020. Morphine-induced respiratory depression is independent of β-arrestin2 signalling. Br. J. Pharmacol. 177:2923–31
    [Google Scholar]
  46. 46.
    He L, Gooding SW, Lewis E, Felth LC, Gaur A, Whistler JL. 2021. Pharmacological and genetic manipulations at the micro-opioid receptor reveal arrestin-3 engagement limits analgesic tolerance and does not exacerbate respiratory depression in mice. Neuropsychopharmacology 46:2241–49
    [Google Scholar]
  47. 47.
    Bachmutsky I, Wei XP, Durand A, Yackle K. 2021. β-Arrestin 2 germline knockout does not attenuate opioid respiratory depression. eLife 10:e62552
    [Google Scholar]
  48. 48.
    Kliewer A, Schmiedel F, Sianati S, Bailey A, Bateman JT et al. 2019. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat. Commun. 10:367
    [Google Scholar]
  49. 49.
    Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE et al. 2018. A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci. Transl. Med. 10:eaar3483
    [Google Scholar]
  50. 50.
    Baertsch NA, Bush NE, Burgraff NJ, Ramirez JM. 2021. Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network. eLife 10:e67523
    [Google Scholar]
  51. 51.
    Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ. 1991. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548:100–10
    [Google Scholar]
  52. 52.
    Duman RS, Tallman JF, Nestler EJ. 1988. Acute and chronic opiate-regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J. Pharmacol. Exp. Ther. 246:1033–39
    [Google Scholar]
  53. 53.
    Sharma SK, Klee WA, Nirenberg M. 1975. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. PNAS 72:3092–96
    [Google Scholar]
  54. 54.
    McClung CA, Nestler EJ. 2008. Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology 33:3–17
    [Google Scholar]
  55. 55.
    Nestler EJ, Hope BT, Widnell KL. 1993. Drug addiction: a model for the molecular basis of neural plasticity. Neuron 11:995–1006
    [Google Scholar]
  56. 56.
    He L, Fong J, von Zastrow M, Whistler JL. 2002. Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108:271–82
    [Google Scholar]
  57. 57.
    Moller J, Isbilir A, Sungkaworn T, Osberg B, Karathanasis C et al. 2020. Single-molecule analysis reveals agonist-specific dimer formation of micro-opioid receptors. Nat. Chem. Biol. 16:946–54
    [Google Scholar]
  58. 58.
    He L, Whistler JL. 2005. An opiate cocktail that reduces morphine tolerance and dependence. Curr. Biol. 15:1028–33
    [Google Scholar]
  59. 59.
    Koch T, Widera A, Bartzsch K, Schulz S, Brandenburg LO et al. 2005. Receptor endocytosis counteracts the development of opioid tolerance. Mol. Pharmacol. 67:280–87
    [Google Scholar]
  60. 60.
    Zollner C, Mousa SA, Fischer O, Rittner HL, Shaqura M et al. 2008. Chronic morphine use does not induce peripheral tolerance in a rat model of inflammatory pain. J. Clin. Investig. 118:1065–73
    [Google Scholar]
  61. 61.
    Finn AK, Whistler JL. 2001. Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 32:829–39
    [Google Scholar]
  62. 62.
    Miess E, Gondin AB, Yousuf A, Steinborn R, Mosslein N et al. 2018. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci. Signal. 11:eaas9609
    [Google Scholar]
  63. 63.
    Kim JA, Bartlett S, He L, Nielsen CK, Chang AM et al. 2008. Morphine-induced receptor endocytosis in a novel knockin mouse reduces tolerance and dependence. Curr. Biol. 18:129–35
    [Google Scholar]
  64. 64.
    He L, Kim JA, Whistler JL. 2009. Biomarkers of morphine tolerance and dependence are prevented by morphine-induced endocytosis of a mutant μ-opioid receptor. FASEB J. 23:4327–34
    [Google Scholar]
  65. 65.
    Madhavan A, He L, Stuber GD, Bonci A, Whistler JL. 2010. μ-Opioid receptor endocytosis prevents adaptations in ventral tegmental area GABA transmission induced during naloxone-precipitated morphine withdrawal. J. Neurosci. 30:3276–86
    [Google Scholar]
  66. 66.
    Punch LJ, Self DW, Nestler EJ, Taylor JR. 1997. Opposite modulation of opiate withdrawal behaviors on microinfusion of a protein kinase A inhibitor versus activator into the locus coeruleus or periaqueductal gray. J. Neurosci. 17:8520–27
    [Google Scholar]
  67. 67.
    Maldonado R, Valverde O, Garbay C, Roques BP. 1995. Protein kinases in the locus coeruleus and periaqueductal gray matter are involved in the expression of opiate withdrawal. Naunyn-Schmiedebergs Arch. Pharmacol. 352:565–75
    [Google Scholar]
  68. 68.
    Zachariou V, Liu R, LaPlant Q, Xiao G, Renthal W et al. 2008. Distinct roles of adenylyl cyclases 1 and 8 in opiate dependence: behavioral, electrophysiological, and molecular studies. Biol. Psychiatry 63:1013–21
    [Google Scholar]
  69. 69.
    Bonci A, Williams JT. 1997. Increased probability of GABA release during withdrawal from morphine. J. Neurosci. 17:796–803
    [Google Scholar]
  70. 70.
    Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT. 2014. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 82:1346–56
    [Google Scholar]
  71. 71.
    Bobeck EN, Chen Q, Morgan MM, Ingram SL. 2014. Contribution of adenylyl cyclase modulation of pre- and postsynaptic GABA neurotransmission to morphine antinociception and tolerance. Neuropsychopharmacology 39:2142–52
    [Google Scholar]
  72. 72.
    Bull FA, Baptista-Hon DT, Lambert JJ, Walwyn W, Hales TG. 2017. Morphine activation of mu opioid receptors causes disinhibition of neurons in the ventral tegmental area mediated by β-arrestin2 and c-Src. Sci. Rep. 7:9969
    [Google Scholar]
  73. 73.
    Berger AC, Whistler JL. 2011. Morphine-induced mu opioid receptor trafficking enhances reward yet prevents compulsive drug use. EMBO Mol. Med. 3:385–97
    [Google Scholar]
  74. 74.
    Kang W, Liu S, Xu J, Abrimian A, Malik AF et al. 2022. Exploring pharmacological functions of alternatively spliced variants of the mu opioid receptor gene, Oprm1, via gene-targeted animal models. Int. J. Mol. Sci. 23:3010
    [Google Scholar]
  75. 75.
    Koch T, Schulz S, Pfeiffer M, Klutzny M, Schroder H et al. 2001. C-terminal splice variants of the mouse μ-opioid receptor differ in morphine-induced internalization and receptor resensitization. J. Biol. Chem. 276:31408–14
    [Google Scholar]
  76. 76.
    Zhu Y, King MA, Schuller AG, Nitsche JF, Reidl M et al. 1999. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in δ opioid receptor knockout mice. Neuron 24:243–52
    [Google Scholar]
  77. 77.
    Levitt ES, Abdala AP, Paton JF, Bissonnette JM, Williams JT. 2015. μ Opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and suppresses post-inspiratory drive. J. Physiol. 593:4453–69
    [Google Scholar]
  78. 78.
    Montandon G, Ren J, Victoria NC, Liu H, Wickman K et al. 2016. G-protein-gated inwardly rectifying potassium channels modulate respiratory depression by opioids. Anesthesiology 124:641–50
    [Google Scholar]
  79. 79.
    Mercadante S, Bruera E. 2018. Methadone as a first-line opioid in cancer pain management: a systematic review. J. Pain Symptom Manag. 55:998–1003
    [Google Scholar]
  80. 80.
    Schmid CL, Kennedy NM, Ross NC, Lovell KM, Yue Z et al. 2017. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 171:1165–75
    [Google Scholar]
  81. 81.
    Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D et al. 2016. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185–90
    [Google Scholar]
  82. 82.
    Gillis A, Gondin AB, Kliewer A, Sanchez J, Lim HD et al. 2020. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signal. 13:eaaz3140
    [Google Scholar]
  83. 83.
    Gillis A, Gondin AB, Kliewer A, Sanchez J, Lim HD et al. 2021. Erratum for the research article: “Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists” by Gillis A, Gondin AB, Kliewer A, Sanchez J, Lim HD, et al. Sci. Signal. 14:eabf9803
    [Google Scholar]
  84. 84.
    Gillis A, Sreenivasan V, Christie MJ. 2020. Intrinsic efficacy of opioid ligands and its importance for apparent bias, operational analysis, and therapeutic window. Mol. Pharmacol. 98:410–24
    [Google Scholar]
  85. 85.
    Kelly E, Conibear A, Henderson G. 2023. Biased agonism: lessons from studies of opioid receptor agonists. Annu. Rev. Pharmacol. Toxicol. 63:491–515
    [Google Scholar]
  86. 86.
    Stahl EL, Bohn LM. 2022. Low intrinsic efficacy alone cannot explain the improved side effect profiles of new opioid agonists. Biochemistry 61:1923–35
    [Google Scholar]
  87. 87.
    McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S et al. 2010. μ-Opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol. Pharmacol. 78:756–66
    [Google Scholar]
  88. 88.
    Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM et al. 2022. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br. J. Pharmacol. 179:3651–74
    [Google Scholar]
  89. 89.
    Kenakin T. 2017. Signaling bias in drug discovery. Expert Opin. Drug. Discov. 12:321–33
    [Google Scholar]
  90. 90.
    De Neve J, Barlow TMA, Tourwe D, Bihel F, Simonin F, Ballet S. 2021. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med. Chem. 12:828–70
    [Google Scholar]
  91. 91.
    Haberstock-Debic H, Wein M, Barrot M, Colago EE, Rahman Z et al. 2003. Morphine acutely regulates opioid receptor trafficking selectively in dendrites of nucleus accumbens neurons. J. Neurosci. 23:4324–32
    [Google Scholar]
  92. 92.
    Schamiloglu S, Lewis E, Keeshen CM, Hergarden AC, Bender KJ, Whistler JL. 2023. Arrestin-3 agonism at D3 dopamine receptors defines a subclass of second generation antipsychotics that promotes drug tolerance. Biol. Psychiatry 94:531–42
    [Google Scholar]
  93. 93.
    Kapoor A, Provasi D, Filizola M. 2020. Atomic-level characterization of the methadone-stabilized active conformation of micro-opioid receptor. Mol. Pharmacol. 98:475–86
    [Google Scholar]
  94. 94.
    Tidgewell K, Groer CE, Harding WW, Lozama A, Schmidt M et al. 2008. Herkinorin analogues with differential β-arrestin-2 interactions. J. Med. Chem. 51:2421–31
    [Google Scholar]
  95. 95.
    Samuels BA, Nautiyal KM, Kruegel AC, Levinstein MR, Magalong VM et al. 2017. The behavioral effects of the antidepressant tianeptine require the mu-opioid receptor. Neuropsychopharmacology 42:2052–63
    [Google Scholar]
  96. 96.
    Johnson TA, Milan-Lobo L, Che T, Ferwerda M, Lambu E et al. 2017. Identification of the first marine-derived opioid receptor “balanced” agonist with a signaling profile that resembles the endorphins. ACS Chem. Neurosci. 8:473–85
    [Google Scholar]
  97. 97.
    Koch T, Hollt V. 2008. Role of receptor internalization in opioid tolerance and dependence. Pharmacol Ther. 117:199–206
    [Google Scholar]
  98. 98.
    Lohse MJ, Andexinger S, Pitcher J, Trukawinski S, Codina J et al. 1992. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2-adrenergic receptor and rhodopsin systems. J. Biol. Chem. 267:8558–64
    [Google Scholar]
  99. 99.
    Whistler JL, Enquist J, Marley A, Fong J, Gladher F et al. 2002. Modulation of postendocytic sorting of G protein-coupled receptors. Science 297:615–20
    [Google Scholar]
  100. 100.
    Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT. 2011. Recovery from μ-opioid receptor desensitization after chronic treatment with morphine and methadone. J. Neurosci. 31:4434–43
    [Google Scholar]
  101. 101.
    Coutens B, Ingram SL. 2023. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: relevance for novel therapeutics. Neuropharmacology 226:109408
    [Google Scholar]
  102. 102.
    Fyfe LW, Cleary DR, Macey TA, Morgan MM, Ingram SL. 2010. Tolerance to the antinociceptive effect of morphine in the absence of short-term presynaptic desensitization in rat periaqueductal gray neurons. J. Pharmacol. Exp. Ther. 335:674–80
    [Google Scholar]
  103. 103.
    Jullie D, Stoeber M, Sibarita JB, Zieger HL, Bartol TM et al. 2020. A discrete presynaptic vesicle cycle for neuromodulator receptors. Neuron 105:663–77.e8
    [Google Scholar]
  104. 104.
    Selley DE, Nestler EJ, Breivogel CS, Childers SR. 1997. Opioid receptor-coupled G-proteins in rat locus coeruleus membranes: decrease in activity after chronic morphine treatment. Brain Res. 746:10–18
    [Google Scholar]
  105. 105.
    Bailey CP, Llorente J, Gabra BH, Smith FL, Dewey WL et al. 2009. Role of protein kinase C and μ-opioid receptor (MOPr) desensitization in tolerance to morphine in rat locus coeruleus neurons. Eur. J. Neurosci. 29:307–18
    [Google Scholar]
  106. 106.
    Christie MJ, Williams JT, North RA. 1987. Cellular mechanisms of opioid tolerance: studies in single brain neurons. Mol. Pharmacol. 32:633–38
    [Google Scholar]
  107. 107.
    Borgland SL, Connor M, Osborne PB, Furness JB, Christie MJ. 2003. Opioid agonists have different efficacy profiles for G protein activation, rapid desensitization, and endocytosis of mu-opioid receptors. J. Biol. Chem. 278:18776–84
    [Google Scholar]
  108. 108.
    Bagley EE, Chieng BC, Christie MJ, Connor M. 2005. Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine. Br. J. Pharmacol. 146:68–76
    [Google Scholar]
  109. 109.
    Blanchet C, Luscher C. 2002. Desensitization of μ-opioid receptor-evoked potassium currents: initiation at the receptor, expression at the effector. PNAS 99:4674–79
    [Google Scholar]
  110. 110.
    Alvarez VA, Arttamangkul S, Dang V, Salem A, Whistler JL et al. 2002. μ-Opioid receptors: ligand-dependent activation of potassium conductance, desensitization, and internalization. J. Neurosci. 22:5769–76
    [Google Scholar]
  111. 111.
    Arttamangkul S, Torrecilla M, Kobayashi K, Okano H, Williams JT. 2006. Separation of μ-opioid receptor desensitization and internalization: endogenous receptors in primary neuronal cultures. J. Neurosci. 26:4118–25
    [Google Scholar]
  112. 112.
    Raehal KM, Bohn LM. 2011. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology 60:58–65
    [Google Scholar]
  113. 113.
    Fritzwanker S, Schulz S, Kliewer A. 2021. SR-17018 stimulates atypical micro-opioid receptor phosphorylation and dephosphorylation. Molecules 26:4509
    [Google Scholar]
  114. 114.
    Bailey CP, Oldfield S, Llorente J, Caunt CJ, Teschemacher AG et al. 2009. Involvement of PKCα and G-protein-coupled receptor kinase 2 in agonist-selective desensitization of μ-opioid receptors in mature brain neurons. Br. J. Pharmacol. 158:157–64
    [Google Scholar]
  115. 115.
    Kunselman JM, Zajac AS, Weinberg ZY, Puthenveedu MA. 2019. Homologous regulation of mu opioid receptor recycling by Gβγ, protein kinase C, and receptor phosphorylation. Mol. Pharmacol. 96:702–10
    [Google Scholar]
  116. 116.
    Roman-Vendrell C, Yu YJ, Yudowski GA. 2012. Fast modulation of μ-opioid receptor (MOR) recycling is mediated by receptor agonists. J. Biol. Chem. 287:14782–91
    [Google Scholar]
  117. 117.
    Ma X, Chen R, Huang M, Wang W, Luo L et al. 2020. DAMGO-induced μ opioid receptor internalization and recycling restore morphine sensitivity in tolerant rat. Eur. J. Pharmacol. 878:173118
    [Google Scholar]
  118. 118.
    Mercadante S. 2012. Switching methadone: a 10-year experience of 345 patients in an acute palliative care unit. Pain Med. 13:399–404
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042022-015914
Loading
/content/journals/10.1146/annurev-physiol-042022-015914
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error