1932

Abstract

Psychedelics are quite unique among drugs that impact the central nervous system, as a single administration of a psychedelic can both rapidly alter subjective experience in profound ways and produce sustained effects on circuits relevant to mood, fear, reward, and cognitive flexibility. These remarkable properties are a direct result of psychedelics interacting with several key neuroreceptors distributed across the brain. Stimulation of these receptors activates a variety of signaling cascades that ultimately culminate in changes in neuronal structure and function. Here, we describe the effects of psychedelics on neuronal physiology, highlighting their acute effects on serotonergic and glutamatergic neurotransmission as well as their long-lasting effects on structural and functional neuroplasticity in the cortex. We propose that the neurobiological changes leading to the acute and sustained effects of psychedelics might be distinct, which could provide opportunities for engineering compounds with optimized safety and efficacy profiles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042022-020923
2024-02-12
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042022-020923.html?itemId=/content/journals/10.1146/annurev-physiol-042022-020923&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nichols DE, Nichols CD, Hendricks PS. 2022. Proposed consensus statement on defining psychedelic drugs. Psychedelic Med. 1:112–13
    [Google Scholar]
  2. 2.
    Nichols DE. 2016. Psychedelics. Pharmacol. Rev. 68:2264–355
    [Google Scholar]
  3. 3.
    Kwan AC, Olson DE, Preller KH, Roth BL. 2022. The neural basis of psychedelic action. Nat. Neurosci. 25:111407–19
    [Google Scholar]
  4. 4.
    Doss MK, Považan M, Rosenberg MD, Sepeda ND, Davis AK et al. 2021. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl. Psychiatry 11:574
    [Google Scholar]
  5. 5.
    Johnson MW, Garcia-Romeu A, Griffiths RR. 2017. Long-term follow-up of psilocybin-facilitated smoking cessation. Am. J. Drug Alcohol Abuse 43:155–60
    [Google Scholar]
  6. 6.
    Bogenschutz MP, Forcehimes AA, Pommy JA, Wilcox CE, Barbosa P, Strassman RJ. 2015. Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J. Psychopharmacol. 29:3289–99
    [Google Scholar]
  7. 7.
    Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA et al. 2016. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J. Psychopharmacol. 30:121181–97
    [Google Scholar]
  8. 8.
    Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND et al. 2021. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry 78:5481–89
    [Google Scholar]
  9. 9.
    Gukasyan N, Davis AK, Barrett FS, Cosimano MP, Sepeda ND et al. 2022. Efficacy and safety of psilocybin-assisted treatment for major depressive disorder: prospective 12-month follow-up. J. Psychopharmacol. 36:2151–58
    [Google Scholar]
  10. 10.
    Olson DE. 2021. The subjective effects of psychedelics may not be necessary for their enduring therapeutic effects. ACS Pharmacol. Transl. Sci. 4:2563–67
    [Google Scholar]
  11. 11.
    Yaden DB, Griffiths RR. 2021. The subjective effects of psychedelics are necessary for their enduring therapeutic effects. ACS Pharmacol. Transl. Sci. 4:2568–72
    [Google Scholar]
  12. 12.
    Glennon RA, Titeler M, McKenney JD. 1984. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 35:252505–11
    [Google Scholar]
  13. 13.
    Becker AM, Klaiber A, Holze F, Istampoulouoglou I, Duthaler U et al. 2022. Ketanserin reverses the acute response to LSD in a randomized, double-blind, placebo-controlled, crossover study in healthy participants. Int. J. Neuropsychopharmacol. 26:297–106
    [Google Scholar]
  14. 14.
    Holze F, Vizeli P, Ley L, Müller F, Dolder P et al. 2021. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology 46:3537–44
    [Google Scholar]
  15. 15.
    Preller KH, Herdener M, Pokorny T, Planzer A, Kraehenmann R et al. 2017. The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr. Biol. 27:3451–57
    [Google Scholar]
  16. 16.
    Valle M, Maqueda AE, Rabella M, Rodríguez-Pujadas A, Antonijoan RM et al. 2016. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur. Neuropsychopharmacol. 26:71161–75
    [Google Scholar]
  17. 17.
    Kometer M, Schmidt A, Bachmann R, Studerus E, Seifritz E, Vollenweider FX. 2012. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol. Psychiatry 72:11898–906
    [Google Scholar]
  18. 18.
    Quednow BB, Kometer M, Geyer MA, Vollenweider FX. 2012. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology 37:3630–40
    [Google Scholar]
  19. 19.
    Vollenweider FX, Vollenweider-Scherpenhuyzen MFI, Bäbler A, Vogel H, Hell D. 1998. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport 9:173897–902
    [Google Scholar]
  20. 20.
    Fiorella D, Rabin RA, Winter JC. 1995. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs I: antagonist correlation analysis. Psychopharmacology 121:3347–56
    [Google Scholar]
  21. 21.
    Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS et al. 2019. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44:71328–34
    [Google Scholar]
  22. 22.
    González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L et al. 2007. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53:3439–52
    [Google Scholar]
  23. 23.
    Canal CE, Olaghere da Silva UB, Gresch PJ, Watt EE, Sanders-Bush E, Airey DC 2010. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen. Psychopharmacology 209:2163–74
    [Google Scholar]
  24. 24.
    Cornea-Hébert V, Riad M, Wu C, Singh SK, Descarries L. 1999. Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J. Comp. Neurol. 409:2187–209
    [Google Scholar]
  25. 25.
    Weber ET, Andrade R. 2010. Htr2a gene and 5-HT2A receptor expression in the cerebral cortex studied using genetically modified mice. Front. Neurosci. 4:36
    [Google Scholar]
  26. 26.
    Pazos A, Probst A, Palacios JM. 1987. Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:1123–39
    [Google Scholar]
  27. 27.
    Beliveau V, Ganz M, Feng L, Ozenne B, Højgaard L et al. 2017. A high-resolution in vivo atlas of the human brain's serotonin system. J. Neurosci. 37:1120–28
    [Google Scholar]
  28. 28.
    Porter RHP, Benwell KR, Lamb H, Malcolm CS, Allen NH et al. 1999. Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells. Br. J. Pharmacol. 128:113–20
    [Google Scholar]
  29. 29.
    Egan CT, Herrick-Davis K, Miller K, Glennon RA, Teitler M. 1998. Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors. Psychopharmacology 136:4409–14
    [Google Scholar]
  30. 30.
    Cussac D, Boutet-Robinet E, Ailhaud M-C, Newman-Tancredi A, Martel J-C et al. 2008. Agonist-directed trafficking of signalling at serotonin 5-HT2A, 5-HT2B and 5-HT2C-VSV receptors mediated Gq/11 activation and calcium mobilisation in CHO cells. Eur. J. Pharmacol. 594:132–38
    [Google Scholar]
  31. 31.
    Masson J, Emerit MB, Hamon M, Darmon M. 2012. Serotonergic signaling: multiple effectors and pleiotropic effects. Wiley Interdiscip. Rev. Membr. Transp. Signal. 1:6685–713
    [Google Scholar]
  32. 32.
    Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ et al. 2023. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science 379:6633700–6
    [Google Scholar]
  33. 33.
    Schmitz G, Chiu Y-T, König G, Kostenis E, Roth B, Herman M. 2022. Psychedelic compounds directly excite 5-HT2A layer 5 pyramidal neurons in the prefrontal cortex through a 5-HT2A Gq-mediated activation mechanism. bioRxiv 2022.11.15.516655 https://doi.org/10.1101/2022.11.15.516655
  34. 34.
    Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ et al. 2021. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 589:7842474–79
    [Google Scholar]
  35. 35.
    Cao D, Yu J, Wang H, Luo Z, Liu X et al. 2022. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science 375:6579403–11
    [Google Scholar]
  36. 36.
    Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H et al. 2023. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Rep. 42:3112203
    [Google Scholar]
  37. 37.
    Faillace LA, Vourlekis A, Szara S. 1967. Clinical evaluation of some hallucinogenic tryptamine derivatives. J. Nervous Ment. Dis. 145:4306–13
    [Google Scholar]
  38. 38.
    Dunlap LE, Azinfar A, Ly C, Cameron LP, Viswanathan J et al. 2020. Identification of psychoplastogenic N,N-dimethylaminoisotryptamine (isoDMT) analogues through structure-activity relationship studies. J. Med. Chem. 63:31142–55
    [Google Scholar]
  39. 39.
    Cunningham MJ, Bock HA, Serrano IC, Bechand B, Vidyadhara DJ et al. 2023. Pharmacological mechanism of the non-hallucinogenic 5-HT2A agonist ariadne and analogs. ACS Chem. Neurosci. 14:1119–35
    [Google Scholar]
  40. 40.
    Kaplan AL, Confair DN, Kim K, Barros-Álvarez X, Rodriguiz RM et al. 2022. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 610:7932582–91
    [Google Scholar]
  41. 41.
    Rabin RA, Regina M, Doat M, Winter JC. 2002. 5-HT2A receptor-stimulated phosphoinositide hydrolysis in the stimulus effects of hallucinogens. Pharmacol. Biochem. Behav. 72:129–37
    [Google Scholar]
  42. 42.
    Dong C, Ly C, Dunlap LE, Vargas MV, Sun J et al. 2021. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184:102779–92.e18
    [Google Scholar]
  43. 43.
    Rodriguiz RM, Nadkarni V, Means CR, Pogorelov VM, Chiu Y-T et al. 2021. LSD-stimulated behaviors in mice require β-arrestin 2 but not β-arrestin 1. Sci. Rep. 11:117690
    [Google Scholar]
  44. 44.
    Schmid CL, Raehal KM, Bohn LM. 2008. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. PNAS 105:31079–84
    [Google Scholar]
  45. 45.
    Garcia EE, Smith RL, Sanders-Bush E. 2007. Role of Gq protein in behavioral effects of the hallucinogenic drug 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. Neuropharmacology 52:81671–77
    [Google Scholar]
  46. 46.
    González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV et al. 2008. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:718393–97
    [Google Scholar]
  47. 47.
    Łukasiewicz S, Polit A, Kędracka-Krok S, Wędzony K, Maćkowiak M, Dziedzicka-Wasylewska M. 2010. Hetero-dimerization of serotonin 5-HT2A and dopamine D2 receptors. Biochim. Biophys. Acta Mol. Cell Res. 1803:121347–58
    [Google Scholar]
  48. 48.
    Viñals X, Moreno E, Lanfumey L, Cordomí A, Pastor A et al. 2015. Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLOS Biol. 13:7e1002194
    [Google Scholar]
  49. 49.
    Moutkine I, Quentin E, Guiard BP, Maroteaux L, Doly S 2017. Heterodimers of serotonin receptor subtypes 2 are driven by 5-HT2C protomers. J. Biol. Chem. 292:156352–68
    [Google Scholar]
  50. 50.
    Borroto-Escuela DO, Romero-Fernandez W, Narvaez M, Oflijan J, Agnati LF, Fuxe K 2014. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2–5-HT2A heteroreceptor complexes. Biochem. Biophys. Res. Commun. 443:1278–84
    [Google Scholar]
  51. 51.
    Schindler EAD, Dave KD, Smolock EM, Aloyo VJ, Harvey JA. 2012. Serotonergic and dopaminergic distinctions in the behavioral pharmacology of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Pharmacol. Biochem. Behav. 101:169–76
    [Google Scholar]
  52. 52.
    Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J. 2011. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci. Lett. 493:376–79
    [Google Scholar]
  53. 53.
    Barnes NM, Sharp T. 1999. A review of central 5-HT receptors and their function. Neuropharmacology 38:81083–152
    [Google Scholar]
  54. 54.
    Doly S, Valjent E, Setola V, Callebert J, Hervé D et al. 2008. Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J. Neurosci. 28:112933–40
    [Google Scholar]
  55. 55.
    Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H et al. 1997. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:6630303–8
    [Google Scholar]
  56. 56.
    Gumpper RH, Fay JF, Roth BL. 2022. Molecular insights into the regulation of constitutive activity by RNA editing of 5HT2C serotonin receptors. Cell Rep. 40:7111211
    [Google Scholar]
  57. 57.
    De Gregorio D, Posa L, Ochoa-Sanchez R, McLaughlin R, Maione S et al. 2016. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors. Pharmacol. Res. 113:81–91
    [Google Scholar]
  58. 58.
    Tepper SJ, Rapoport AM, Sheftell FD. 2002. Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch. Neurol. 59:71084–88
    [Google Scholar]
  59. 59.
    Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G et al. 2001. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60:61181–88
    [Google Scholar]
  60. 60.
    Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE. 2009. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323:5916934–37
    [Google Scholar]
  61. 61.
    Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C et al. 2023. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat. Neurosci. 26:61032–41
    [Google Scholar]
  62. 62.
    Nichols CD, Sanders-Bush E. 2002. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology 26:5634–42
    [Google Scholar]
  63. 63.
    González-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A et al. 2003. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J. Neurosci. 23:268836–43
    [Google Scholar]
  64. 64.
    Leslie RA, Moorman JM, Coulson A, Grahame-Smith DG. 1993. Serotonin2/1 C receptor activation causes a localized expression of the immediate-early gene c-fos in rat brain: evidence for involvement of dorsal raphe nucleus projection fibres. Neuroscience 53:2457–63
    [Google Scholar]
  65. 65.
    Gresch PJ, Strickland LV, Sanders-Bush E. 2002. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors. Neuroscience 114:3707–13
    [Google Scholar]
  66. 66.
    Nichols CD, Sanders-Bush E. 2004. Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-β and ILAD-1, a novel gene with homology to arrestins. J. Neurochem. 90:3576–84
    [Google Scholar]
  67. 67.
    Pei Q, Tordera R, Sprakes M, Sharp T. 2004. Glutamate receptor activation is involved in 5-HT2 agonist-induced Arc gene expression in the rat cortex. Neuropharmacology 46:3331–39
    [Google Scholar]
  68. 68.
    Pei Q, Lewis L, Sprakes ME, Jones EJ, Grahame-Smith DG, Zetterström TSC. 2000. Serotonergic regulation of mRNA expression of Arc, an immediate early gene selectively localized at neuronal dendrites. Neuropharmacology 39:3463–70
    [Google Scholar]
  69. 69.
    Davoudian PA, Shao L-X, Kwan AC. 2022. Shared and distinct brain regions targeted for immediate early gene expression by ketamine and psilocybin. ACS Chem. Neurosci. 14:3468–80
    [Google Scholar]
  70. 70.
    Vaidya VA, Marek GJ, Aghajanian GK, Duman RS. 1997. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J. Neurosci. 17:82785–95
    [Google Scholar]
  71. 71.
    Benekareddy M, Nair AR, Dias BG, Suri D, Autry AE et al. 2013. Induction of the plasticity-associated immediate early gene Arc by stress and hallucinogens: role of brain-derived neurotrophic factor. Int. J. Neuropsychopharmacol. 16:2405–15
    [Google Scholar]
  72. 72.
    Gewirtz JC, Chen AC, Terwilliger R, Duman RC, Marek GJ. 2002. Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol. Biochem. Behav. 73:2317–26
    [Google Scholar]
  73. 73.
    Zhai Y, George CA, Zhai J, Nisenbaum ES, Johnson MP, Nisenbaum LK. 2003. Group II metabotropic glutamate receptor modulation of DOI-induced c-fos mRNA and excitatory responses in the cerebral cortex. Neuropsychopharmacology 28:145–52
    [Google Scholar]
  74. 74.
    Scruggs JL, Patel S, Bubser M, Deutch AY. 2000. DOI-induced activation of the cortex: dependence on 5-HT2A heteroceptors on thalamocortical glutamatergic neurons. J. Neurosci. 20:238846–52
    [Google Scholar]
  75. 75.
    Desouza LA, Benekareddy M, Fanibunda SE, Mohammad F, Janakiraman B et al. 2021. The hallucinogenic serotonin2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine, promotes cAMP response element binding protein-dependent gene expression of specific plasticity-associated genes in the rodent neocortex. Front. Mol. Neurosci. 14:790213
    [Google Scholar]
  76. 76.
    Raval NR, Johansen A, Donovan LL, Ros NF, Ozenne B et al. 2021. A single dose of psilocybin increases synaptic density and decreases 5-HT2A receptor density in the pig brain. Int. J. Mol. Sci. 22:2835
    [Google Scholar]
  77. 77.
    Jefsen OH, Elfving B, Wegener G, Müller HK. 2021. Transcriptional regulation in the rat prefrontal cortex and hippocampus after a single administration of psilocybin. J. Psychopharmacol. 35:4483–93
    [Google Scholar]
  78. 78.
    Wojtas A, Bysiek A, Wawrzczak-Bargiela A, Szych Z, Majcher-Maślanka I et al. 2022. Effect of psilocybin and ketamine on brain neurotransmitters, glutamate receptors, DNA and rat behavior. Int. J. Mol. Sci. 23:126713
    [Google Scholar]
  79. 79.
    Dakic V, Minardi Nascimento J, Costa Sartore R, de Moraes Maciel R, de Araujo DB et al. 2017. Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Sci. Rep. 7:112863
    [Google Scholar]
  80. 80.
    Ornelas IM, Cini FA, Wießner I, Marcos E, Araújo DB et al. 2022. Nootropic effects of LSD: behavioral, molecular and computational evidence. Exp. Neurol. 356:114148
    [Google Scholar]
  81. 81.
    de la Fuente Revenga M, Zhu B, Guevara CA, Naler LB, Saunders JM et al. 2021. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 37:3109836
    [Google Scholar]
  82. 82.
    Inserra A, Campanale A, Cheishvili D, Dymov S, Wong A et al. 2022. Modulation of DNA methylation and protein expression in the prefrontal cortex by repeated administration of D-lysergic acid diethylamide (LSD): impact on neurotropic, neurotrophic, and neuroplasticity signaling. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 119:110594
    [Google Scholar]
  83. 83.
    Olson DE. 2018. Psychoplastogens: a promising class of plasticity-promoting neurotherapeutics. J. Exp. Neurosci. 12: https://doi.org/10.1177/1179069518800508
    [Google Scholar]
  84. 84.
    Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV et al. 2018. Psychedelics promote structural and functional neural plasticity. Cell Rep. 23:113170–82
    [Google Scholar]
  85. 85.
    Jones KA, Srivastava DP, Allen JA, Strachan RT, Roth BL, Penzes P. 2009. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. PNAS 106:4619575–80
    [Google Scholar]
  86. 86.
    Mi Z, Si T, Kapadia K, Li Q, Muma NA. 2017. Receptor-stimulated transamidation induces activation of Rac1 and Cdc42 and the regulation of dendritic spines. Neuropharmacology 117:93–105
    [Google Scholar]
  87. 87.
    Yoshida H, Kanamaru C, Ohtani A, Li F, Senzaki K, Shiga T. 2011. Subtype specific roles of serotonin receptors in the spine formation of cortical neurons in vitro. Neurosci. Res. 71:3311–14
    [Google Scholar]
  88. 88.
    Ohtani A, Kozono N, Senzaki K, Shiga T. 2014. Serotonin 2A receptor regulates microtubule assembly and induces dynamics of dendritic growth cones in rat cortical neurons in vitro. Neurosci. Res. 81–82:11–20
    [Google Scholar]
  89. 89.
    Cameron LP, Patel SD, Vargas MV, Barragan EV, Saeger HN et al. 2023. 5-HT2ARs mediate therapeutic behavioral effects of psychedelic tryptamines. ACS Chem. Neurosci. 14:3351–58
    [Google Scholar]
  90. 90.
    Ly C, Greb AC, Vargas MV, Duim WC, Grodzki ACG et al. 2021. Transient stimulation with psychoplastogens is sufficient to initiate neuronal growth. ACS Pharmacol. Transl. Sci. 4:2452–60
    [Google Scholar]
  91. 91.
    De Gregorio D, Inserra A, Enns JP, Markopoulos A, Pileggi M et al. 2022. Repeated lysergic acid diethylamide (LSD) reverses stress-induced anxiety-like behavior, cortical synaptogenesis deficits and serotonergic neurotransmission decline. Neuropsychopharmacology 47:61188–98
    [Google Scholar]
  92. 92.
    Cameron LP, Benson CJ, DeFelice BC, Fiehn O, Olson DE. 2019. Chronic, intermittent microdoses of the psychedelic N,N-dimethyltryptamine (DMT) produce positive effects on mood and anxiety in rodents. ACS Chem. Neurosci. 10:73261–70
    [Google Scholar]
  93. 93.
    Shao L-X, Liao C, Gregg I, Davoudian PA, Savalia NK et al. 2021. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109:162535–44.e4
    [Google Scholar]
  94. 94.
    Jefferson SJ, Gregg I, Dibbs M, Liao C, Wu H et al. 2023. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology 48:1257–66
    [Google Scholar]
  95. 95.
    Olson DE. 2022. Biochemical mechanisms underlying psychedelic-induced neuroplasticity. Biochemistry 61:3127–36
    [Google Scholar]
  96. 96.
    De Gregorio D, Popic J, Enns JP, Inserra A, Skalecka A et al. 2021. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. PNAS 118:5e2020705118
    [Google Scholar]
  97. 97.
    Qu Y, Chang L, Ma L, Wan X, Hashimoto K. 2023. Rapid antidepressant-like effect of non-hallucinogenic psychedelic analog lisuride, but not hallucinogenic psychedelic DOI, in lipopolysaccharide-treated mice. Pharmacol. Biochem. Behav. 222:173500
    [Google Scholar]
  98. 98.
    Lu J, Tjia M, Mullen B, Cao B, Lukasiewicz K et al. 2021. An analog of psychedelics restores functional neural circuits disrupted by unpredictable stress. Mol. Psychiatry 26:116237–52
    [Google Scholar]
  99. 99.
    Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE. 2021. Psychedelics and other psychoplastogens for treating mental illness. Front. Psychiatry 12:727117
    [Google Scholar]
  100. 100.
    Nichols CD, Garcia EE, Sanders-Bush E. 2003. Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration. Mol. Brain Res. 111:1182–88
    [Google Scholar]
  101. 101.
    Fanibunda SE, Deb S, Maniyadath B, Tiwari P, Ghai U et al. 2019. Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT2A receptor and SIRT1-PGC-1α axis. PNAS 116:2211028–37
    [Google Scholar]
  102. 102.
    Fujimoto M, Hayashi T, Urfer R, Mita S, Su T-P. 2012. Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor. Synapse 66:7630–39
    [Google Scholar]
  103. 103.
    Kimura Y, Fujita Y, Shibata K, Mori M, Yamashita T. 2013. Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling. PLOS ONE 8:10e75760
    [Google Scholar]
  104. 104.
    Ka M, Kook Y-H, Liao K, Buch S, Kim W-Y. 2016. Transactivation of TrkB by sigma-1 receptor mediates cocaine-induced changes in dendritic spine density and morphology in hippocampal and cortical neurons. Cell Death Dis. 7:10e2414
    [Google Scholar]
  105. 105.
    Barnabé-Heider F, Miller FD. 2003. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 23:125149–60
    [Google Scholar]
  106. 106.
    Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. 2018. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 38:3579–93
    [Google Scholar]
  107. 107.
    Szabo A, Kovacs A, Riba J, Djurovic S, Rajnavolgyi E, Frecska E. 2016. The endogenous hallucinogen and trace amine N,N-dimethyltryptamine (DMT) displays potent protective effects against hypoxia via sigma-1 receptor activation in human primary iPSC-derived cortical neurons and microglia-like immune cells. Front. Neurosci. 10:423
    [Google Scholar]
  108. 108.
    Nardai S, László M, Szabó A, Alpár A, Hanics J et al. 2020. N,N-dimethyltryptamine reduces infarct size and improves functional recovery following transient focal brain ischemia in rats. Exp. Neurol. 327:113245
    [Google Scholar]
  109. 109.
    Lima da Cruz RV, Moulin TC, Petiz LL, Leão RN. 2018. A single dose of 5-MeO-DMT stimulates cell proliferation, neuronal survivability, morphological and functional changes in adult mice ventral dentate gyrus. Front. Mol. Neurosci. 11:312
    [Google Scholar]
  110. 110.
    Jha S, Rajendran R, Fernandes KA, Vaidya VA. 2008. 5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus. Neurosci. Lett. 441:2210–14
    [Google Scholar]
  111. 111.
    Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. 2013. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp. Brain Res. 228:4481–91
    [Google Scholar]
  112. 112.
    Morales-Garcia JA, Calleja-Conde J, Lopez-Moreno JA, Alonso-Gil S, Sanz-SanCristobal M et al. 2020. N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl. Psychiatry 10:331
    [Google Scholar]
  113. 113.
    Aghajanian GK, Marek GJ. 1999. Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res. 825:1161–71
    [Google Scholar]
  114. 114.
    Lambe EK, Aghajanian GK. 2006. Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: role of glutamate spillover and NR2B-NMDA receptors. Neuropsychopharmacology 31:81682–89
    [Google Scholar]
  115. 115.
    Aghajanian GK, Marek GJ. 1997. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36:4–5589–99
    [Google Scholar]
  116. 116.
    Kłodzinska A, Bijak M, Tokarski K, Pilc A. 2002. Group II mGlu receptor agonists inhibit behavioural and electrophysiological effects of DOI in mice. Pharmacol. Biochem. Behav. 73:2327–32
    [Google Scholar]
  117. 117.
    Arvanov VL, Liang X, Magro P, Roberts R, Wang RY. 1999. A pre- and postsynaptic modulatory action of 5-HT and the 5-HT2A, 2C receptor agonist DOB on NMDA-evoked responses in the rat medial prefrontal cortex. Eur. J. Neurosci. 11:82917–34
    [Google Scholar]
  118. 118.
    Riga MS, Soria G, Tudela R, Artigas F, Celada P. 2014. The natural hallucinogen 5-MeO-DMT, component of Ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs. Int. J. Neuropsychopharmacol. 17:81269–82
    [Google Scholar]
  119. 119.
    Willins DL, Deutch AY, Roth BL. 1997. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27:179–82
    [Google Scholar]
  120. 120.
    De Almeida J, Mengod G. 2007. Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT2A receptors in human and monkey prefrontal cortex. J. Neurochem. 103:2475–86
    [Google Scholar]
  121. 121.
    Marek GJ, Aghajanian GK. 1996. LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J. Pharmacol. Exp. Ther. 278:31373–82
    [Google Scholar]
  122. 122.
    Rasmussen K, Aghajanian GK. 1986. Effect of hallucinogens on spontaneous and sensory-evoked locus coeruleus unit activity in the rat: reversal by selective 5-HT2 antagonists. Brain Res. 385:2395–400
    [Google Scholar]
  123. 123.
    Aghajanian GK, Foote WE, Sheard MH. 1968. Lysergic acid diethylamide: sensitive neuronal units in the midbrain raphe. Science 161:3842706–8
    [Google Scholar]
  124. 124.
    Trulson ME, Heym J, Jacobs BL. 1981. Dissociations between the effects of hallucinogenic drugs on behavior and raphe unit activity in freely moving cats. Brain Res. 215:1275–93
    [Google Scholar]
  125. 125.
    Aghajanian GK, Foote WE, Sheard MH. 1970. Action of psychotogenic drugs on single midbrain raphe neurons. J. Pharmacol. Exp. Ther. 171:2178–87
    [Google Scholar]
  126. 126.
    Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. 2021. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. PNAS 118:17e2022489118
    [Google Scholar]
  127. 127.
    Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA. 2004. Lysergic acid diethylamide and [−]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res. 1023:1134–40
    [Google Scholar]
  128. 128.
    Scruggs JL, Schmidt D, Deutch AY. 2003. The hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) increases cortical extracellular glutamate levels in rats. Neurosci. Lett. 346:3137–40
    [Google Scholar]
  129. 129.
    Herian M, Wojtas A, Kamińska K, Świt P, Wach A, Gołembiowska K. 2019. Hallucinogen-like action of the novel designer drug 25I-NBOMe and its effect on cortical neurotransmitters in rats. Neurotox Res. 36:191–100
    [Google Scholar]
  130. 130.
    Gouzoulis-Mayfrank E, Schreckenberger M, Sabri O, Arning C, Thelen B et al. 1999. Neurometabolic effects of psilocybin, 3,4-methylenedioxyethylamphetamine (MDE) and d-methamphetamine in healthy volunteers a double-blind, placebo-controlled PET study with [18F]FDG. Neuropsychopharmacology 20:6565–81
    [Google Scholar]
  131. 131.
    Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O, Angst J. 1997. Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16:5357–72
    [Google Scholar]
  132. 132.
    Abi-Saab WM, Bubser M, Roth RH, Deutch AY. 1999. 5-HT2 receptor regulation of extracellular GABA levels in the prefrontal cortex. Neuropsychopharmacology 20:192–96
    [Google Scholar]
  133. 133.
    de Castro-Neto EF, da Cunha RH, da Silveira DX, Yonamine M, Gouveia TLF et al. 2013. Changes in aminoacidergic and monoaminergic neurotransmission in the hippocampus and amygdala of rats after ayahuasca ingestion. World J. Biol. Chem. 4:4141–47
    [Google Scholar]
  134. 134.
    Bortolozzi A, Díaz-Mataix L, Scorza MC, Celada P, Artigas F. 2005. The activation of 5-HT2A receptors in prefrontal cortex enhances dopaminergic activity. J. Neurochem. 95:61597–607
    [Google Scholar]
  135. 135.
    Bowers BJ, Henry MB, Thielen RJ, McBride WJ. 2000. Serotonin 5-HT2 receptor stimulation of dopamine release in the posterior but not anterior nucleus accumbens of the rat. J. Neurochem. 75:41625–33
    [Google Scholar]
  136. 136.
    Sakashita Y, Abe K, Katagiri N, Kambe T, Saitoh T et al. 2015. Effect of psilocin on extracellular dopamine and serotonin levels in the mesoaccumbens and mesocortical pathway in awake rats. Biol. Pharm. Bull. 38:1134–38
    [Google Scholar]
  137. 137.
    Erdtmann-Vourliotis M, Mayer P, Riechert U, Höllt V. 1999. Acute injection of drugs with low addictive potential (Δ9-tetrahydrocannabinol, 3,4-methylenedioxymethamphetamine, lysergic acid diamide) causes a much higher c-fos expression in limbic brain areas than highly addicting drugs (cocaine and morphine). Mol. Brain Res. 71:2313–24
    [Google Scholar]
  138. 138.
    Crick FC, Koch C. 2005. What is the function of the claustrum?. Philos. Trans. R. Soc. B 360:14581271–79
    [Google Scholar]
  139. 139.
    Atlan G, Terem A, Peretz-Rivlin N, Groysman M, Citri A. 2017. Mapping synaptic cortico-claustral connectivity in the mouse. J. Comp. Neurol. 525:61381–402
    [Google Scholar]
  140. 140.
    White MG, Cody PA, Bubser M, Wang H-D, Deutch AY, Mathur BN. 2017. Cortical hierarchy governs rat claustrocortical circuit organization. J. Comp. Neurol. 525:61347–62
    [Google Scholar]
  141. 141.
    Torgerson CM, Irimia A, Goh SYM, Van Horn JD. 2015. The DTI connectivity of the human claustrum. Hum. Brain Mapp. 36:3827–38
    [Google Scholar]
  142. 142.
    Celada P, Puig MV, Díaz-Mataix L, Artigas F. 2008. The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol. Psychiatry 64:5392–400
    [Google Scholar]
  143. 143.
    Riga MS, Lladó-Pelfort L, Artigas F, Celada P. 2018. The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: regionally-selective involvement of 5-HT1A and 5-HT2A receptors. Neuropharmacology 142:219–30
    [Google Scholar]
  144. 144.
    Wood J, Kim Y, Moghaddam B. 2012. Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J. Neurosci. 32:93022–31
    [Google Scholar]
  145. 145.
    Golden CT, Chadderton P. 2022. Psilocybin reduces low frequency oscillatory power and neuronal phase-locking in the anterior cingulate cortex of awake rodents. Sci. Rep. 12:112702
    [Google Scholar]
  146. 146.
    Michaiel AM, Parker PRL, Niell CM. 2019. A hallucinogenic serotonin-2A receptor agonist reduces visual response gain and alters temporal dynamics in mouse V1. Cell Rep. 26:133475–3483.e4
    [Google Scholar]
  147. 147.
    Yu Z-P, Li Q, Wu Z-X, Tang Z-H, Zhang X-Q et al. 2023. The high frequency oscillation in orbitofrontal cortex is susceptible to phenethylamine psychedelic 25C-NBOMe in male rats. Neuropharmacology 227:109452
    [Google Scholar]
  148. 148.
    Vejmola Č, Tylš F, Piorecká V, Koudelka V, Kadeřábek L et al. 2021. Psilocin, LSD, mescaline, and DOB all induce broadband desynchronization of EEG and disconnection in rats with robust translational validity. Transl. Psychiatry 11:1506
    [Google Scholar]
  149. 149.
    Watakabe A, Komatsu Y, Sadakane O, Shimegi S, Takahata T et al. 2009. Enriched expression of serotonin 1B and 2A receptor genes in macaque visual cortex and their bidirectional modulatory effects on neuronal responses. Cereb. Cortex 19:81915–28
    [Google Scholar]
  150. 150.
    Rose D, Horn G. 1977. Effects of LSD on the responses of single units in cat visual cortex. Exp. Brain Res. 27:171–80
    [Google Scholar]
  151. 151.
    Cichon J, Wasilczuk AZ, Looger LL, Contreras D, Kelz MB, Proekt A. 2023. Ketamine triggers a switch in excitatory neuronal activity across neocortex. Nat. Neurosci. 26:139–52
    [Google Scholar]
  152. 152.
    Jaster AM, Younkin J, Cuddy T, de la Fuente Revenga M, Poklis JL et al. 2022. Differences across sexes on head-twitch behavior and 5-HT2A receptor signaling in C57BL/6J mice. Neurosci. Lett. 788:136836
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042022-020923
Loading
/content/journals/10.1146/annurev-physiol-042022-020923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error