1932

Abstract

Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell–enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042022-030310
2024-02-12
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042022-030310.html?itemId=/content/journals/10.1146/annurev-physiol-042022-030310&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M et al. 2014. Molecular Biology of the Cell New York: Garland Sci.
    [Google Scholar]
  2. 2.
    Peterson LW, Artis D. 2014. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14:141–53
    [Google Scholar]
  3. 3.
    Jarvi O, Keyrilainen O. 1956. On the cellular structures of the epithelial invasions in the glandular stomach of mice caused by intramural application of 20-methylcholantren. Acta Pathol. Microbiol. Scand. Suppl. 39:72–73
    [Google Scholar]
  4. 4.
    Rhodin J, Dalhamn T. 1956. Electron microscopy of the tracheal ciliated mucosa in rat. Z. Zellforsch. Mikrosk. Anat. 44:345–412
    [Google Scholar]
  5. 5.
    Järvi O. 1962. A review of the part played by gastrointestinal heterotopias in neoplasmogenesis. Proc. Finn. Acad. Sci. 1962:151–87
    [Google Scholar]
  6. 6.
    Nevalainen TJ. 1977. Ultrastructural characteristics of tuft cells in mouse gallbladder epithelium. Acta Anat. 98:210–20
    [Google Scholar]
  7. 7.
    Hoover B, Baena V, Kaelberer MM, Getaneh F, Chinchilla S, Bohorquez DV. 2017. The intestinal tuft cell nanostructure in 3D. Sci. Rep. 7:1652
    [Google Scholar]
  8. 8.
    Gordon RE, Kattan M. 1984. Absence of cilia and basal bodies with predominance of brush cells in the respiratory mucosa from a patient with immotile cilia syndrome. Ultrastruct. Pathol. 6:45–49
    [Google Scholar]
  9. 9.
    Chang LY, Mercer RR, Crapo JD. 1986. Differential distribution of brush cells in the rat lung. Anat. Rec. 216:49–54
    [Google Scholar]
  10. 10.
    Sato A, Hisanaga Y, Inoue Y, Nagato T, Toh H. 2002. Three-dimensional structure of apical vesicles of tuft cells in the main excretory duct of the rat submandibular gland. Eur. J. Morphol. 40:235–39
    [Google Scholar]
  11. 11.
    Saqui-Salces M, Keeley TM, Grosse AS, Qiao XT, El-Zaatari M et al. 2011. Gastric tuft cells express DCLK1 and are expanded in hyperplasia. Histochem. Cell Biol. 136:191–204
    [Google Scholar]
  12. 12.
    Delgiorno KE, Hall JC, Takeuchi KK, Pan FC, Halbrook CJ et al. 2014. Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology 146:233–44.e5
    [Google Scholar]
  13. 13.
    Deckmann K, Krasteva-Christ G, Rafiq A, Herden C, Wichmann J et al. 2015. Cholinergic urethral brush cells are widespread throughout placental mammals. Int. Immunopharmacol. 29:51–56
    [Google Scholar]
  14. 14.
    Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR et al. 2018. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 559:627–31
    [Google Scholar]
  15. 15.
    Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G et al. 2011. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192:767–80
    [Google Scholar]
  16. 16.
    McKinley ET, Sui Y, Al-Kofahi Y, Millis BA, Tyska MJ et al. 2017. Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight 2:e93487
    [Google Scholar]
  17. 17.
    Lei W, Ren W, Ohmoto M, Urban JF Jr., Matsumoto I et al. 2018. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. PNAS 115:5552–57
    [Google Scholar]
  18. 18.
    Banerjee A, Herring CA, Chen B, Kim H, Simmons AJ et al. 2020. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology 159:2101–15.e5
    [Google Scholar]
  19. 19.
    Kotas ME, O'Leary CE, Locksley RM 2023. Tuft cells: context- and tissue-specific programming for a conserved cell lineage. Annu. Rev. Pathol. 18:311–35
    [Google Scholar]
  20. 20.
    Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I et al. 2016. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–30
    [Google Scholar]
  21. 21.
    Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV et al. 2016. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–33
    [Google Scholar]
  22. 22.
    von Moltke J, Ji M, Liang HE, Locksley RM 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–25
    [Google Scholar]
  23. 23.
    Banerjee A, McKinley ET, von Moltke J, Coffey RJ, Lau KS. 2018. Interpreting heterogeneity in intestinal tuft cell structure and function. J. Clin. Investig. 128:1711–19
    [Google Scholar]
  24. 24.
    O'Leary CE, Schneider C, Locksley RM. 2019. Tuft cells-systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu. Rev. Immunol. 37:47–72
    [Google Scholar]
  25. 25.
    Schneider C, O'Leary CE, Locksley RM 2019. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19:584–93
    [Google Scholar]
  26. 26.
    Ting HA, von Moltke J. 2019. The immune function of tuft cells at gut mucosal surfaces and beyond. J. Immunol. 202:1321–29
    [Google Scholar]
  27. 27.
    Billipp TE, Nadjsombati MS, von Moltke J. 2021. Tuning tuft cells: new ligands and effector functions reveal tissue-specific function. Curr. Opin. Immunol. 68:98–106
    [Google Scholar]
  28. 28.
    Rajeev S, Sosnowski O, Li S, Allain T, Buret AG, McKay DM. 2021. Enteric tuft cells in host-parasite interactions. Pathogens 10:1163
    [Google Scholar]
  29. 29.
    Schneider C. 2021. Tuft cell integration of luminal states and interaction modules in tissues. Pflügers. Arch. 473:1713–22
    [Google Scholar]
  30. 30.
    Hendel SK, Kellermann L, Hausmann A, Bindslev N, Jensen KB, Nielsen OH. 2022. Tuft cells and their role in intestinal diseases. Front. Immunol. 13:822867
    [Google Scholar]
  31. 31.
    Strine MS, Wilen CB. 2022. Tuft cells are key mediators of interkingdom interactions at mucosal barrier surfaces. PLOS Pathog. 18:e1010318
    [Google Scholar]
  32. 32.
    Hofer D, Drenckhahn D. 1992. Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry 98:237–42
    [Google Scholar]
  33. 33.
    Trier JS, Allan CH, Marcial MA, Madara JL. 1987. Structural features of the apical and tubulovesicular membranes of rodent small intestinal tuft cells. Anat. Rec. 219:69–77
    [Google Scholar]
  34. 34.
    Sugimoto K, Ichikawa Y, Nakamura I. 1983. Endogenous peroxidase activity in brush cell-like cells in the large intestine of the bullfrog tadpole, Rana catesbeiana. Cell Tissue Res. 230:451–61
    [Google Scholar]
  35. 35.
    Podkowa D, Goniakowska-Witalinska L. 2002. Adaptations to the air breathing in the posterior intestine of the catfish (Corydoras aeneus, Callichthyidae). A histological and ultrastructural study. Folia Biol. 50:69–82
    [Google Scholar]
  36. 36.
    Morroni M, Cangiotti AM, Cinti S. 2007. Brush cells in the human duodenojejunal junction: an ultrastructural study. J. Anat. 211:125–31
    [Google Scholar]
  37. 37.
    Hofer D, Drenckhahn D. 1996. Cytoskeletal markers allowing discrimination between brush cells and other epithelial cells of the gut including enteroendocrine cells. Histochem. Cell Biol. 105:405–12
    [Google Scholar]
  38. 38.
    Mukherjee TM, Williams AW. 1967. A comparative study of the ultrastructure of microvilli in the epithelium of small and large intestine of mice. J. Cell Biol. 34:447–61
    [Google Scholar]
  39. 39.
    Tilney LG, Saunders JC. 1983. Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J. Cell Biol. 96:807–21
    [Google Scholar]
  40. 40.
    Hirokawa N, Heuser JE. 1981. Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J. Cell Biol. 91:399–409
    [Google Scholar]
  41. 41.
    Hirokawa N, Tilney LG, Fujiwara K, Heuser JE. 1982. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J. Cell Biol. 94:425–43
    [Google Scholar]
  42. 42.
    Palay SL, Karlin LJ. 1959. An electron microscopic study of the intestinal villus. II. The pathway of fat absorption. J. Biophys. Biochem. Cytol. 5:373–84
    [Google Scholar]
  43. 43.
    Palay SL, Karlin LJ. 1959. An electron microscopic study of the intestinal villus. I. The fasting animal. J. Biophys. Biochem. Cytol. 5:363–72
    [Google Scholar]
  44. 44.
    Ohta K, Higashi R, Sawaguchi A, Nakamura K. 2012. Helical arrangement of filaments in microvillar actin bundles. J. Struct. Biol. 177:513–19
    [Google Scholar]
  45. 45.
    Helander HF, Fändriks L. 2014. Surface area of the digestive tract—revisited. Scand. J. Gastroenterol. 49:681–89
    [Google Scholar]
  46. 46.
    Tilney LG, Derosier DJ, Mulroy MJ. 1980. The organization of actin filaments in the stereocilia of cochlear hair cells. J. Cell Biol. 86:244–59
    [Google Scholar]
  47. 47.
    Bretscher A, Weber K. 1979. Villin: the major microfilament-associated protein of the intestinal microvillus. PNAS 76:2321–25
    [Google Scholar]
  48. 48.
    Bretscher A. 1981. Fimbrin is a cytoskeletal protein that crosslinks F-actin in vitro. PNAS 78:6849–53
    [Google Scholar]
  49. 49.
    Loomis PA, Zheng L, Sekerkova G, Changyaleket B, Mugnaini E, Bartles JR. 2003. Espin cross-links cause the elongation of microvillus-type parallel actin bundles in vivo. J. Cell Biol. 163:1045–55
    [Google Scholar]
  50. 50.
    Morales EA, Arnaiz C, Krystofiak ES, Zanic M, Tyska MJ. 2022. Mitotic Spindle Positioning (MISP) is an actin bundler that selectively stabilizes the rootlets of epithelial microvilli. Cell Rep. 39:110692
    [Google Scholar]
  51. 51.
    Krey JF, Krystofiak ES, Dumont RA, Vijayakumar S, Choi D et al. 2016. Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid. J. Cell Biol. 215:467–82
    [Google Scholar]
  52. 52.
    Fattoum A, Hartwig JH, Stossel TP. 1983. Isolation and some structural and functional properties of macrophage tropomyosin. Biochemistry 22:1187–93
    [Google Scholar]
  53. 53.
    Sjoblom B, Salmazo A, Djinovic-Carugo K. 2008. α-Actinin structure and regulation. Cell. Mol. Life Sci. 65:2688–701
    [Google Scholar]
  54. 54.
    de Arruda MV, Watson S, Lin CS, Leavitt J, Matsudaira P. 1990. Fimbrin is a homologue of the cytoplasmic phosphoprotein plastin and has domains homologous with calmodulin and actin gelation proteins. J. Cell Biol. 111:1069–79
    [Google Scholar]
  55. 55.
    Glenney JR Jr., Kaulfus P, Matsudaira P, Weber K. 1981. F-actin binding and bundling properties of fimbrin, a major cytoskeletal protein of microvillus core filaments. J. Biol. Chem. 256:9283–88
    [Google Scholar]
  56. 56.
    Marks PW, Arai M, Bandura JL, Kwiatkowski DJ. 1998. Advillin (p92): a new member of the gelsolin/villin family of actin regulatory proteins. J. Cell Sci. 111:Part 152129–36
    [Google Scholar]
  57. 57.
    Matsudaira PT, Burgess DR. 1982. Partial reconstruction of the microvillus core bundle: characterization of villin as a Ca++-dependent, actin-bundling/depolymerizing protein. J. Cell Biol. 92:648–56
    [Google Scholar]
  58. 58.
    Bezencon C, Furholz A, Raymond F, Mansourian R, Metairon S et al. 2008. Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J. Comp. Neurol. 509:514–25
    [Google Scholar]
  59. 59.
    Esmaeilniakooshkghazi A, George SP, Biswas R, Khurana S. 2020. Mouse intestinal tuft cells express advillin but not villin. Sci. Rep. 10:8877
    [Google Scholar]
  60. 60.
    Ruppert AL, Keshavarz M, Winterberg S, Oberwinkler J, Kummer W, Schutz B. 2020. Advillin is a tuft cell marker in the mouse alimentary tract. J. Mol. Histol. 51:421–35
    [Google Scholar]
  61. 61.
    Hasegawa H, Abbott S, Han BX, Qi Y, Wang F. 2007. Analyzing somatosensory axon projections with the sensory neuron-specific Advillin gene. J. Neurosci. 27:14404–14
    [Google Scholar]
  62. 62.
    Chuang YC, Lee CH, Sun WH, Chen CC. 2018. Involvement of advillin in somatosensory neuron subtype-specific axon regeneration and neuropathic pain. PNAS 115:E8557–66
    [Google Scholar]
  63. 63.
    Enomoto A, Murakami H, Asai N, Morone N, Watanabe T et al. 2005. Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev. Cell 9:389–402
    [Google Scholar]
  64. 64.
    Le-Niculescu H, Niesman I, Fischer T, DeVries L, Farquhar MG. 2005. Identification and characterization of GIV, a novel Gαi/s-interacting protein found on COPI, endoplasmic reticulum-Golgi transport vesicles. J. Biol. Chem. 280:22012–20
    [Google Scholar]
  65. 65.
    Miyake H, Maeda K, Asai N, Shibata R, Ichimiya H et al. 2011. The actin-binding protein Girdin and its Akt-mediated phosphorylation regulate neointima formation after vascular injury. Circ. Res. 108:1170–79
    [Google Scholar]
  66. 66.
    Kuga D, Ushida K, Mii S, Enomoto A, Asai N et al. 2017. Tyrosine phosphorylation of an actin-binding protein girdin specifically marks tuft cells in human and mouse gut. J. Histochem. Cytochem. 65:347–66
    [Google Scholar]
  67. 67.
    Drenckhahn D, Bennett V. 1987. Polarized distribution of Mr 210,000 and 190,000 analogs of erythrocyte ankyrin along the plasma membrane of transporting epithelia, neurons and photoreceptors. Eur. J. Cell Biol. 43:479–86
    [Google Scholar]
  68. 68.
    Srinivasan Y, Elmer L, Davis J, Bennett V, Angelides K. 1988. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333:177–80
    [Google Scholar]
  69. 69.
    Michaely P, Tomchick DR, Machius M, Anderson RG. 2002. Crystal structure of a 12 ANK repeat stack from human ankyrinR. EMBO J. 21:6387–96
    [Google Scholar]
  70. 70.
    Chen K, Yang R, Li Y, Zhou JC, Zhang M. 2020. Giant ankyrin-B suppresses stochastic collateral axon branching through direct interaction with microtubules. J. Cell Biol. 219:e201910053
    [Google Scholar]
  71. 71.
    Luciano L, Reale E. 1979. A new morphological aspect of the brush cells of the mouse gallbladder epithelium. Cell Tissue Res. 201:37–44
    [Google Scholar]
  72. 72.
    Eshun-Wilson L, Zhang R, Portran D, Nachury MV, Toso DB et al. 2019. Effects of α-tubulin acetylation on microtubule structure and stability. PNAS 116:10366–71
    [Google Scholar]
  73. 73.
    Moores CA, Perderiset M, Francis F, Chelly J, Houdusse A, Milligan RA. 2004. Mechanism of microtubule stabilization by doublecortin. Mol. Cell 14:833–39
    [Google Scholar]
  74. 74.
    Sato A, Miyoshi S. 1997. Fine structure of tuft cells of the main excretory duct epithelium in the rat submandibular gland. Anat. Rec. 248:325–31
    [Google Scholar]
  75. 75.
    Luciano L, Groos S, Reale E. 2003. Brush cells of rodent gallbladder and stomach epithelia express neurofilaments. J. Histochem. Cytochem. 51:187–98
    [Google Scholar]
  76. 76.
    Hirokawa N. 1994. The neuronal cytoskeleton: roles in neuronal morphogenesis and organelle transport. Prog. Clin. Biol. Res. 390:117–43
    [Google Scholar]
  77. 77.
    Fuchs E, Cleveland DW. 1998. A structural scaffolding of intermediate filaments in health and disease. Science 279:514–19
    [Google Scholar]
  78. 78.
    Liu KC, Jacobs DT, Dunn BD, Fanning AS, Cheney RE. 2012. Myosin-X functions in polarized epithelial cells. Mol. Biol. Cell 23:1675–87
    [Google Scholar]
  79. 79.
    Gebhard A, Gebert A. 1999. Brush cells of the mouse intestine possess a specialized glycocalyx as revealed by quantitative lectin histochemistry. Further evidence for a sensory function. J. Histochem. Cytochem. 47:799–808
    [Google Scholar]
  80. 80.
    Zeng Q, Lawton A, Oakley B. 1995. Glycoconjugates and keratin 18 define subsets of taste cells. Histochem. J. 27:997–1006
    [Google Scholar]
  81. 81.
    Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K et al. 2017. A single-cell survey of the small intestinal epithelium. Nature 551:333–39
    [Google Scholar]
  82. 82.
    Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B et al. 2018. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319–24
    [Google Scholar]
  83. 83.
    Long T, Abbasi N, Hernandez JE, Li Y, Sayed IM et al. 2022. RNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine. Gut 71:1790–802
    [Google Scholar]
  84. 84.
    Park SE, Lee D, Jeong JW, Lee SH, Park SJ et al. 2022. Gut epithelial inositol polyphosphate multi-kinase alleviates experimental colitis via governing tuft cell homeostasis. Cell. Mol. Gastroenterol. Hepatol. 14:1235–56
    [Google Scholar]
  85. 85.
    Xiong Z, Zhu X, Geng J, Xu Y, Wu R et al. 2022. Intestinal Tuft-2 cells exert antimicrobial immunity via sensing bacterial metabolite N-undecanoylglycine. Immunity 55:686–700.e7
    [Google Scholar]
  86. 86.
    Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R et al. 2017. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31:21–34
    [Google Scholar]
  87. 87.
    O'Leary CE, Sbierski-Kind J, Kotas ME, Wagner JC, Liang HE et al. 2022. Bile acid-sensitive tuft cells regulate biliary neutrophil influx. Sci. Immunol. 7:eabj1080
    [Google Scholar]
  88. 88.
    Manco R, Averbukh I, Porat Z, Bahar Halpern K, Amit I, Itzkovitz S 2021. Clump sequencing exposes the spatial expression programs of intestinal secretory cells. Nat. Commun. 12:3074
    [Google Scholar]
  89. 89.
    Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y et al. 2013. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat. Genet. 45:98–103
    [Google Scholar]
  90. 90.
    Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ et al. 2014. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J. Clin. Investig. 124:1283–95
    [Google Scholar]
  91. 91.
    Bjerknes M, Khandanpour C, Moroy T, Fujiyama T, Hoshino M et al. 2012. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev. Biol. 362:194–218
    [Google Scholar]
  92. 92.
    Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J et al. 2018. Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst. 6:37–51.e9
    [Google Scholar]
  93. 93.
    Gracz AD, Samsa LA, Fordham MJ, Trotier DC, Zwarycz B et al. 2018. Sox4 promotes atoh1-independent intestinal secretory differentiation toward tuft and enteroendocrine fates. Gastroenterology 155:1508–23.e10
    [Google Scholar]
  94. 94.
    Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K. 2011. Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat. Neurosci. 14:685–87
    [Google Scholar]
  95. 95.
    Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H. 2017. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 20:177–90.e4
    [Google Scholar]
  96. 96.
    Huang H, Fang Y, Jiang M, Zhang Y, Biermann J et al. 2022. Contribution of Trp63CreERT2-labeled cells to alveolar regeneration is independent of tuft cells. eLife 11:e78217
    [Google Scholar]
  97. 97.
    Zhang X, Bandyopadhyay S, Araujo LP, Tong K, Flores J et al. 2020. Elevating EGFR-MAPK program by a nonconventional Cdc42 enhances intestinal epithelial survival and regeneration. JCI Insight 5:e135923
    [Google Scholar]
  98. 98.
    Urban JF Jr., Noben-Trauth N, Donaldson DD, Madden KB, Morris SC et al. 1998. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8:255–64
    [Google Scholar]
  99. 99.
    Zhao M, Ren K, Xiong X, Xin Y, Zou Y et al. 2022. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C. Immunity 55:623–38.e5
    [Google Scholar]
  100. 100.
    Xiong X, Yang C, He WQ, Yu J, Xin Y et al. 2022. Sirtuin 6 maintains epithelial STAT6 activity to support intestinal tuft cell development and type 2 immunity. Nat. Commun. 13:5192
    [Google Scholar]
  101. 101.
    Zhang Q, Zhang J, Lei T, Liang Z, Dong X et al. 2022. Sirt6-mediated epigenetic modification of DNA accessibility is essential for Pou2f3-induced thymic tuft cell development. Commun. Biol. 5:544
    [Google Scholar]
  102. 102.
    Lindholm HT, Parmar N, Drurey C, Campillo Poveda M, Vornewald PM et al. 2022. BMP signaling in the intestinal epithelium drives a critical feedback loop to restrain IL-13-driven tuft cell hyperplasia. Sci. Immunol. 7:eabl6543
    [Google Scholar]
  103. 103.
    Middelhoff M, Nienhuser H, Valenti G, Maurer HC, Hayakawa Y et al. 2020. Prox1-positive cells monitor and sustain the murine intestinal epithelial cholinergic niche. Nat. Commun. 11:111
    [Google Scholar]
  104. 104.
    Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS et al. 2017. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell 21:78–90.e6
    [Google Scholar]
  105. 105.
    Schumacher MA, Hsieh JJ, Liu CY, Appel KL, Waddell A et al. 2021. Sprouty2 limits intestinal tuft and goblet cell numbers through GSK3β-mediated restriction of epithelial IL-33. Nat. Commun. 12:836
    [Google Scholar]
  106. 106.
    Wu XS, He XY, Ipsaro JJ, Huang YH, Preall JB et al. 2022. OCA-T1 and OCA-T2 are coactivators of POU2F3 in the tuft cell lineage. Nature 607:169–75
    [Google Scholar]
  107. 107.
    Szczepanski AP, Tsuboyama N, Watanabe J, Hashizume R, Zhao Z, Wang L. 2022. POU2AF2/C11orf53 functions as a coactivator of POU2F3 by maintaining chromatin accessibility and enhancer activity. Sci. Adv. 8:eabq2403
    [Google Scholar]
  108. 108.
    Nadjsombati MS, Niepoth N, Webeck LM, Kennedy EA, Jones DL et al. 2023. Genetic mapping reveals Pou2af2/OCA-T1-dependent tuning of tuft cell differentiation and intestinal type 2 immunity. Sci. Immunol. 83:eade5019
    [Google Scholar]
  109. 109.
    Aladegbami B, Barron L, Bao J, Colasanti J, Erwin CR et al. 2017. Epithelial cell specific Raptor is required for initiation of type 2 mucosal immunity in small intestine. Sci. Rep. 7:5580
    [Google Scholar]
  110. 110.
    Howitt MR, Cao YG, Gologorsky MB, Li JA, Haber AL et al. 2020. The taste receptor TAS1R3 regulates small intestinal tuft cell homeostasis. Immunohorizons 4:23–32
    [Google Scholar]
  111. 111.
    Bezencon C, le Coutre J, Damak S. 2007. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Sens. 32:41–49
    [Google Scholar]
  112. 112.
    Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L et al. 2018. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49:33–41.e7
    [Google Scholar]
  113. 113.
    Grunddal KV, Tonack S, Egerod KL, Thompson JJ, Petersen N et al. 2021. Adhesion receptor ADGRG2/GPR64 is in the GI-tract selectively expressed in mature intestinal tuft cells. Mol. Metab. 51:101231
    [Google Scholar]
  114. 114.
    Schneider C, O'Leary CE, von Moltke J, Liang HE, Ang QY et al. 2018. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174:271–84.e14
    [Google Scholar]
  115. 115.
    Luo XC, Chen ZH, Xue JB, Zhao DX, Lu C et al. 2019. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. PNAS 116:5564–69
    [Google Scholar]
  116. 116.
    McGinty JW, Ting HA, Billipp TE, Nadjsombati MS, Khan DM et al. 2020. Tuft-cell-derived leukotrienes drive rapid anti-helminth immunity in the small intestine but are dispensable for anti-protist immunity. Immunity 52:528–41.e7
    [Google Scholar]
  117. 117.
    Perniss A, Liu S, Boonen B, Keshavarz M, Ruppert AL et al. 2020. Chemosensory cell-derived acetylcholine drives tracheal mucociliary clearance in response to virulence-associated formyl peptides. Immunity 52:683–99.e11
    [Google Scholar]
  118. 118.
    Ualiyeva S, Hallen N, Kanaoka Y, Ledderose C, Matsumoto I et al. 2020. Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Sci. Immunol. 5:eaax7224
    [Google Scholar]
  119. 119.
    Inaba A, Arinaga A, Tanaka K, Endo T, Hayatsu N et al. 2021. Interleukin-4 promotes tuft cell differentiation and acetylcholine production in intestinal organoids of non-human primate. Int. J. Mol. Sci. 22:7921
    [Google Scholar]
  120. 120.
    Deckmann K, Filipski K, Krasteva-Christ G, Fronius M, Althaus M et al. 2014. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. PNAS 111:8287–92
    [Google Scholar]
  121. 121.
    Lee RJ, Cohen NA. 2014. Bitter and sweet taste receptors in the respiratory epithelium in health and disease. J. Mol. Med. 92:1235–44
    [Google Scholar]
  122. 122.
    Lee RJ, Hariri BM, McMahon DB, Chen B, Doghramji L et al. 2017. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci. Signal. 10:eaam7703
    [Google Scholar]
  123. 123.
    Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP et al. 2010. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. PNAS 107:3210–15
    [Google Scholar]
  124. 124.
    Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T et al. 2011. Cholinergic chemosensory cells in the trachea regulate breathing. PNAS 108:9478–83
    [Google Scholar]
  125. 125.
    Hollenhorst MI, Jurastow I, Nandigama R, Appenzeller S, Li L et al. 2020. Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling. FASEB J. 34:316–32
    [Google Scholar]
  126. 126.
    Keshavarz M, Faraj Tabrizi S, Ruppert AL, Pfeil U, Schreiber Y et al. 2022. Cysteinyl leukotrienes and acetylcholine are biliary tuft cell cotransmitters. Sci. Immunol. 7:eabf6734
    [Google Scholar]
  127. 127.
    DelGiorno KE, Chung CY, Vavinskaya V, Maurer HC, Novak SW et al. 2020. Tuft cells inhibit pancreatic tumorigenesis in mice by producing prostaglandin D(2). Gastroenterology 159:1866–81.e8
    [Google Scholar]
  128. 128.
    Oyesola OO, Shanahan MT, Kanke M, Mooney BM, Webb LM et al. 2021. PGD2 and CRTH2 counteract Type 2 cytokine-elicited intestinal epithelial responses during helminth infection. J. Exp. Med. 218:
    [Google Scholar]
  129. 129.
    Peters-Golden M, Henderson WR Jr. 2007. Leukotrienes. N. Engl. J. Med. 357:1841–54
    [Google Scholar]
  130. 130.
    Schutz B, Jurastow I, Bader S, Ringer C, von Engelhardt J et al. 2015. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 6:87
    [Google Scholar]
  131. 131.
    Labed SA, Wani KA, Jagadeesan S, Hakkim A, Najibi M, Irazoqui JE. 2018. Intestinal epithelial Wnt signaling mediates acetylcholine-triggered host defense against infection. Immunity 48:963–78.e3
    [Google Scholar]
  132. 132.
    Billipp TE, Fung C, Webeck LM, Sargent DB, Gologorsky MB et al. 2023. Tuft cell-derived acetylcholine regulates epithelial fluid secretion. bioRxiv 533208. https://doi.org/10.1101/2023.03.17.533208
    [Crossref]
  133. 133.
    Zhao A, McDermott J, Urban JF Jr., Gause W, Madden KB et al. 2003. Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves. J. Immunol. 171:948–54
    [Google Scholar]
  134. 134.
    Saunders CJ, Christensen M, Finger TE, Tizzano M. 2014. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. PNAS 111:6075–80
    [Google Scholar]
  135. 135.
    Miller HR, Nawa Y. 1979. Nippostrongylus brasiliensis: intestinal goblet-cell response in adoptively immunized rats. Exp. Parasitol. 47:81–90
    [Google Scholar]
  136. 136.
    Koninkx JF, Mirck MH, Hendriks HG, Mouwen JM, van Dijk JE. 1988. Nippostrongylus brasiliensis: histochemical changes in the composition of mucins in goblet cells during infection in rats. Exp. Parasitol. 65:84–90
    [Google Scholar]
  137. 137.
    Fung C, Fraser LM, Barrón GM, Gologorsky MB, Atkinson SN et al. 2023. Tuft cells mediate commensal remodeling of the small intestinal antimicrobial landscape. PNAS 120:e2216908120
    [Google Scholar]
  138. 138.
    Yu S, Balasubramanian I, Laubitz D, Tong K, Bandyopadhyay S et al. 2020. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the intestine. Immunity 53:398–416.e8
    [Google Scholar]
  139. 139.
    Huh WJ, Roland JT, Asai M, Kaji I. 2020. Distribution of duodenal tuft cells is altered in pediatric patients with acute and chronic enteropathy. Biomed. Res. 41:113–18
    [Google Scholar]
  140. 140.
    Kjaergaard S, Jensen TSR, Feddersen UR, Bindslev N, Grunddal KV et al. 2021. Decreased number of colonic tuft cells in quiescent ulcerative colitis patients. Eur. J. Gastroenterol. Hepatol. 33:817–24
    [Google Scholar]
  141. 141.
    May R, Qu D, Weygant N, Chandrakesan P, Ali N et al. 2014. Brief report: Dclk1 deletion in tuft cells results in impaired epithelial repair after radiation injury. Stem. Cells 32:822–27
    [Google Scholar]
  142. 142.
    Qu D, Weygant N, May R, Chandrakesan P, Madhoun M et al. 2015. Ablation of doublecortin-like kinase 1 in the colonic epithelium exacerbates dextran sulfate sodium-induced colitis. PLOS ONE 10:e0134212
    [Google Scholar]
  143. 143.
    Ma Z, Lytle NK, Chen B, Jyotsana N, Novak SW et al. 2022. Single-cell transcriptomics reveals a conserved metaplasia program in pancreatic injury. Gastroenterology 162:604–20.e20
    [Google Scholar]
  144. 144.
    Gagliardi G, Goswami M, Passera R, Bellows CF. 2012. DCLK1 immunoreactivity in colorectal neoplasia. Clin. Exp. Gastroenterol. 5:35–42
    [Google Scholar]
  145. 145.
    Chandrakesan P, Weygant N, May R, Qu D, Chinthalapally HR et al. 2014. DCLK1 facilitates intestinal tumor growth via enhancing pluripotency and epithelial mesenchymal transition. Oncotarget 5:9269–80
    [Google Scholar]
  146. 146.
    Chandrakesan P, Panneerselvam J, Qu D, Weygant N, May R et al. 2016. Regulatory roles of dclk1 in epithelial mesenchymal transition and cancer stem cells. J. Carcinog. Mutagen. 7:257
    [Google Scholar]
  147. 147.
    Sakaguchi M, Hisamori S, Oshima N, Sato F, Shimono Y, Sakai Y. 2016. miR-137 regulates the tumorigenicity of colon cancer stem cells through the inhibition of DCLK1. Mol. Cancer Res. 14:354–62
    [Google Scholar]
  148. 148.
    Chandrakesan P, Yao J, Qu D, May R, Weygant N et al. 2017. Dclk1, a tumor stem cell marker, regulates pro-survival signaling and self-renewal of intestinal tumor cells. Mol. Cancer 16:30
    [Google Scholar]
  149. 149.
    Nishio K, Kimura K, Amano R, Nakata B, Yamazoe S et al. 2017. Doublecortin and CaM kinase-like-1 as an independent prognostic factor in patients with resected pancreatic carcinoma. World J. Gastroenterol. 23:5764–72
    [Google Scholar]
  150. 150.
    Westphalen CB, Quante M, Wang TC. 2017. Functional implication of Dclk1 and Dclk1-expressing cells in cancer. Small GTPases 8:164–71
    [Google Scholar]
  151. 151.
    Goto N, Fukuda A, Yamaga Y, Yoshikawa T, Maruno T et al. 2019. Lineage tracing and targeting of IL17RB+ tuft cell-like human colorectal cancer stem cells. PNAS 116:12996–3005
    [Google Scholar]
  152. 152.
    Liu H, Wen T, Zhou Y, Fan X, Du T et al. 2019. DCLK1 plays a metastatic-promoting role in human breast cancer cells. Biomed. Res. Int. 2019:1061979
    [Google Scholar]
  153. 153.
    Broner EC, Trujillo JA, Korzinkin M, Subbannayya T, Agrawal N et al. 2021. Doublecortin-like kinase 1 (DCLK1) is a novel NOTCH pathway signaling regulator in head and neck squamous cell carcinoma. Front. Oncol. 11:677051
    [Google Scholar]
  154. 154.
    Abbasi N, Long T, Li Y, Yee BA, Cho BS et al. 2020. DDX5 promotes oncogene C3 and FABP1 expressions and drives intestinal inflammation and tumorigenesis. Life Sci. Alliance 3:e202000772
    [Google Scholar]
  155. 155.
    Huang YH, Klingbeil O, He XY, Wu XS, Arun G et al. 2018. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 32:915–28
    [Google Scholar]
  156. 156.
    Jou E, Rodriguez-Rodriguez N, Ferreira AF, Jolin HE, Clark PA et al. 2022. An innate IL-25-ILC2-MDSC axis creates a cancer-permissive microenvironment for Apc mutation-driven intestinal tumorigenesis. Sci. Immunol. 7:eabn0175
    [Google Scholar]
  157. 157.
    Liu J, Qian B, Zhou L, Shen G, Tan Y et al. 2022. IL25 enhanced colitis-associated tumorigenesis in mice by upregulating transcription factor GLI1. Front. Immunol. 13:837262
    [Google Scholar]
  158. 158.
    Wilen CB, Lee S, Hsieh LL, Orchard RC, Desai C et al. 2018. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360:204–8
    [Google Scholar]
  159. 159.
    Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A et al. 2015. Commensal microbes and interferon-lambda determine persistence of enteric murine norovirus infection. Science 347:266–69
    [Google Scholar]
  160. 160.
    Tomov VT, Palko O, Lau CW, Pattekar A, Sun Y et al. 2017. Differentiation and protective capacity of virus-specific CD8+ T cells suggest murine norovirus persistence in an immune-privileged enteric niche. Immunity 47:723–38.e5
    [Google Scholar]
  161. 161.
    Lee S, Liu H, Wilen CB, Sychev ZE, Desai C et al. 2019. A secreted viral nonstructural protein determines intestinal norovirus pathogenesis. Cell Host Microbe 25:845–57.e5
    [Google Scholar]
  162. 162.
    Graziano VR, Walker FC, Kennedy EA, Wei J, Ettayebi K et al. 2020. CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLOS Pathog. 16:e1008242
    [Google Scholar]
  163. 163.
    Bomidi C, Robertson M, Coarfa C, Estes MK, Blutt SE. 2021. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. PNAS 118:e2112814118
    [Google Scholar]
  164. 164.
    Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC et al. 2014. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345:578–82
    [Google Scholar]
  165. 165.
    Desai P, Janova H, White JP, Reynoso GV, Hickman HD et al. 2021. Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell 184:1214–31.e16
    [Google Scholar]
  166. 166.
    Melms JC, Biermann J, Huang H, Wang Y, Nair A et al. 2021. A molecular single-cell lung atlas of lethal COVID-19. Nature 595:114–19
    [Google Scholar]
  167. 167.
    Zhou BB, Peyton M, He B, Liu C, Girard L et al. 2006. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10:39–50
    [Google Scholar]
  168. 168.
    Lockwood WW, Chari R, Coe BP, Girard L, Macaulay C et al. 2008. DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene 27:4615–24
    [Google Scholar]
  169. 169.
    Kim ES, Herbst RS, Wistuba II, Lee JJ, Blumenschein GR Jr. et al. 2011. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1:44–53
    [Google Scholar]
  170. 170.
    Tang H, Xiao G, Behrens C, Schiller J, Allen J et al. 2013. A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin. Cancer Res. 19:1577–86
    [Google Scholar]
  171. 171.
    Cancer Genome Atlas Research Network 2014. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–50
    [Google Scholar]
  172. 172.
    Cancer Genome Atlas Network 2015. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576–82
    [Google Scholar]
  173. 173.
    Papadimitrakopoulou V, Lee JJ, Wistuba II, Tsao AS, Fossella FV et al. 2016. The BATTLE-2 study: a biomarker-integrated targeted therapy study in previously treated patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 34:3638–47
    [Google Scholar]
  174. 174.
    Kalu NN, Mazumdar T, Peng S, Tong P, Shen L et al. 2018. Comprehensive pharmacogenomic profiling of human papillomavirus-positive and -negative squamous cell carcinoma identifies sensitivity to aurora kinase inhibition in KMT2D mutants. Cancer Lett. 431:64–72
    [Google Scholar]
  175. 175.
    Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA et al. 2019. Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 565:E5–6
    [Google Scholar]
  176. 176.
    Gay CM, Stewart CA, Park EM, Diao L, Groves SM et al. 2021. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39:346–60.e7
    [Google Scholar]
  177. 177.
    Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ et al. 2021. Lung cancer models reveal severe acute respiratory syndrome coronavirus 2-induced epithelial-to-mesenchymal transition contributes to coronavirus disease 2019 pathophysiology. J. Thorac. Oncol. 16:1821–39
    [Google Scholar]
  178. 178.
    Rane CK, Jackson SR, Pastore CF, Zhao G, Weiner AI et al. 2019. Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 316:L1141–49
    [Google Scholar]
  179. 179.
    Barr J, Gentile ME, Lee S, Kotas ME, de Mello Costa MF et al. 2022. Injury-induced pulmonary tuft cells are heterogenous, arise independent of key Type 2 cytokines, and are dispensable for dysplastic repair. eLife 11:e78074
    [Google Scholar]
  180. 180.
    Roach SN, Fiege JK, Shepherd FK, Wiggen TD, Hunter RC, Langlois RA. 2022. Respiratory influenza virus infection causes dynamic tuft cell and innate lymphoid cell changes in the small intestine. J. Virol. 96:e0035222
    [Google Scholar]
  181. 181.
    Kaji I, Roland JT, Rathan-Kumar S, Engevik AC, Burman A et al. 2021. Cell differentiation is disrupted by MYO5B loss through Wnt/Notch imbalance. JCI Insight 6:e150416
    [Google Scholar]
  182. 182.
    Arora P, Andersen D, Moll JM, Danneskiold-Samsoe NB, Xu L et al. 2021. Small intestinal tuft cell activity associates with energy metabolism in diet-induced obesity. Front. Immunol. 12:629391
    [Google Scholar]
  183. 183.
    Pearson JA, Tai N, Ekanayake-Alper DK, Peng J, Hu Y et al. 2019. Norovirus changes susceptibility to type 1 diabetes by altering intestinal microbiota and immune cell functions. Front. Immunol. 10:2654
    [Google Scholar]
  184. 184.
    Leyva-Castillo JM, Galand C, Kam C, Burton O, Gurish M et al. 2019. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity 50:1262–75.e4
    [Google Scholar]
  185. 185.
    Wang S, Liu B, Huang J, He H, Zhou L et al. 2022. Succinate and mitochondrial DNA trigger atopic march from atopic dermatitis to intestinal inflammation. J. Allergy Clin. Immunol. 151:1050–66
    [Google Scholar]
  186. 186.
    Kantara C, O'Connell M, Sarkar S, Moya S, Ullrich R, Singh P 2014. Curcumin promotes autophagic survival of a subset of colon cancer stem cells, which are ablated by DCLK1-siRNA. Cancer Res. 74:2487–98
    [Google Scholar]
  187. 187.
    Weygant N, Qu D, Berry WL, May R, Chandrakesan P et al. 2014. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1. Mol. Cancer 13:103
    [Google Scholar]
  188. 188.
    Ji D, Zhan T, Li M, Yao Y, Jia J et al. 2018. Enhancement of sensitivity to chemo/radiation therapy by using miR-15b against DCLK1 in colorectal cancer. Stem. Cell Rep. 11:1506–22
    [Google Scholar]
  189. 189.
    Sureban SM, Berahovich R, Zhou H, Xu S, Wu L et al. 2019. DCLK1 monoclonal antibody-based CAR-T cells as a novel treatment strategy against human colorectal cancers. Cancers 12:54
    [Google Scholar]
  190. 190.
    Ferguson FM, Nabet B, Raghavan S, Liu Y, Leggett AL et al. 2020. Discovery of a selective inhibitor of doublecortin like kinase 1. Nat. Chem. Biol. 16:635–43
    [Google Scholar]
  191. 191.
    Wang J, Yokoyama Y, Hirose H, Shimomura Y, Bonkobara S et al. 2022. Functional assessment of miR-1291 in colon cancer cells. Int. J. Oncol. 60:13
    [Google Scholar]
  192. 192.
    Wang L, Zhao L, Lin Z, Yu D, Jin M et al. 2022. Targeting DCLK1 overcomes 5-fluorouracil resistance in colorectal cancer through inhibiting CCAR1/β-catenin pathway-mediated cancer stemness. Clin. Transl. Med. 12:e743
    [Google Scholar]
  193. 193.
    Raka F, Farr S, Kelly J, Stoianov A, Adeli K. 2019. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis. Am. J. Physiol. Endocrinol. Metab. 317:E559–72
    [Google Scholar]
  194. 194.
    Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L et al. 2010. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−/− mice. PNAS 107:5208–13
    [Google Scholar]
  195. 195.
    Schutz B, Ruppert AL, Strobel O, Lazarus M, Urade Y et al. 2019. Distribution pattern and molecular signature of cholinergic tuft cells in human gastro-intestinal and pancreatic-biliary tract. Sci. Rep. 9:17466
    [Google Scholar]
  196. 196.
    Kozono T, Tamura-Nakano M, Kawamura YI, Tonozuka T, Nishikawa A. 2022. Novel protocol to observe the intestinal tuft cell using transmission electron microscopy. Biol. Open 11:bio059007
    [Google Scholar]
  197. 197.
    van Niel G, D'Angelo G, Raposo G 2018. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19:213–28
    [Google Scholar]
  198. 198.
    McConnell RE, Higginbotham JN, Shifrin DA Jr., Tabb DL, Coffey RJ, Tyska MJ. 2009. The enterocyte microvillus is a vesicle-generating organelle. J. Cell Biol. 185:1285–98
    [Google Scholar]
  199. 199.
    Sato A. 2007. Tuft cells. Anat. Sci. Int. 82:187–99
    [Google Scholar]
  200. 200.
    Pollard TD. 2016. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol. 8:a018226
    [Google Scholar]
  201. 201.
    Mooseker MS, Tilney LG. 1975. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J. Cell Biol. 67:725–43
    [Google Scholar]
  202. 202.
    Müsch A. 2004. Microtubule organization and function in epithelial cells. Traffic 5:1–9
    [Google Scholar]
  203. 203.
    Tokuo H, Ikebe M. 2004. Myosin X transports Mena/VASP to the tip of filopodia. Biochem. Biophys. Res. Commun. 319:214–20
    [Google Scholar]
  204. 204.
    Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR et al. 2005. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat. Cell Biol. 7:148–56
    [Google Scholar]
  205. 205.
    Ebrahim S, Avenarius MR, Grati M, Krey JF, Windsor AM et al. 2016. Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like. Nat. Commun. 7:10833
    [Google Scholar]
  206. 206.
    Astanina K, Jacob R. 2010. KIF5C, a kinesin motor involved in apical trafficking of MDCK cells. Cell. Mol. Life Sci. 67:1331–42
    [Google Scholar]
  207. 207.
    Zheng W, Holt JR. 2021. The mechanosensory transduction machinery in inner ear hair cells. Annu. Rev. Biophys. 50:31–51
    [Google Scholar]
  208. 208.
    Revenu C, Ubelmann F, Hurbain I, El-Marjou F, Dingli F et al. 2012. A new role for the architecture of microvillar actin bundles in apical retention of membrane proteins. Mol. Biol. Cell 23:324–36
    [Google Scholar]
  209. 209.
    Gautron L, Rutowski JM, Burton MD, Wei W, Wan Y, Elmquist JK. 2013. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J. Comp. Neurol. 521:3741–67
    [Google Scholar]
  210. 210.
    Rotolo T, Smallwood PM, Williams J, Nathans J. 2008. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology. PLOS ONE 3:e4099
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042022-030310
Loading
/content/journals/10.1146/annurev-physiol-042022-030310
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error