1932

Abstract

Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042022-031657
2024-02-12
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042022-031657.html?itemId=/content/journals/10.1146/annurev-physiol-042022-031657&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Magkos F, Reeds DN, Mittendorfer B. 2023. Evolution of the diagnostic value of “the sugar of the blood”: hitting the sweet spot to identify alterations in glucose dynamics. Physiol. Rev. 103:7–30
    [Google Scholar]
  2. 2.
    Norton L, Shannon C, Gastaldelli A, DeFronzo RA. 2022. Insulin: the master regulator of glucose metabolism. Metabolism 129:155142
    [Google Scholar]
  3. 3.
    Richter EA, Sylow L, Hargreaves M. 2021. Interactions between insulin and exercise. Biochem. J. 478:3827–46
    [Google Scholar]
  4. 4.
    Bugger H, Byrne NJ, Abel ED. 2022. Animal models of dysregulated cardiac metabolism. Circ. Res. 130:1965–93
    [Google Scholar]
  5. 5.
    Dienel GA. 2019. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99:949–1045
    [Google Scholar]
  6. 6.
    Sylow L, Tokarz VL, Richter EA, Klip A. 2021. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metab. 33:758–80
    [Google Scholar]
  7. 7.
    Veeraiah P, Jansen JFA. 2023. Multinuclear magnetic resonance spectroscopy at ultra-high-field: assessing human cerebral metabolism in healthy and diseased states. Metabolites 13:577
    [Google Scholar]
  8. 8.
    Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ et al. 2002. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am. J. Physiol. Endocrinol. Metab. 282:E974–76
    [Google Scholar]
  9. 9.
    Mueckler M, Thorens B. 2013. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34:121–38
    [Google Scholar]
  10. 10.
    Wright EM, Loo DD, Hirayama BA. 2011. Biology of human sodium glucose transporters. Physiol. Rev. 91:733–94
    [Google Scholar]
  11. 11.
    Turk E, Zabel B, Mundlos S, Dyer J, Wright EM. 1991. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350:354–56
    [Google Scholar]
  12. 12.
    Crane RK. 1977. Digestion and absorption: water-soluble organics. Int. Rev. Physiol. 12:325–65
    [Google Scholar]
  13. 13.
    Thorens B. 2015. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58:221–32
    [Google Scholar]
  14. 14.
    Koepsell H. 2020. Glucose transporters in the small intestine in health and disease. Pflügers Arch. 472:1207–48
    [Google Scholar]
  15. 15.
    Stumpel F, Burcelin R, Jungermann K, Thorens B. 2001. Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum. PNAS 98:11330–35
    [Google Scholar]
  16. 16.
    Sala-Rabanal M, Ghezzi C, Hirayama BA, Kepe V, Liu J et al. 2018. Intestinal absorption of glucose in mice as determined by positron emission tomography. J. Physiol. 596:2473–89
    [Google Scholar]
  17. 17.
    Sharari S, Abou-Alloul M, Hussain K, Ahmad Khan F. 2020. Fanconi-Bickel syndrome: a review of the mechanisms that lead to dysglycaemia. Int. J. Mol. Sci. 21:6286
    [Google Scholar]
  18. 18.
    Wright EM, Van Os CH, Mircheff AK. 1980. Sugar uptake by intestinal basolateral membrane vesicles. Biochim. Biophys. Acta 597:112–24
    [Google Scholar]
  19. 19.
    Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. 2008. Sugar absorption in the intestine: the role of GLUT2. Annu. Rev. Nutr. 28:35–54
    [Google Scholar]
  20. 20.
    Santer R, Hillebrand G, Steinmann B, Schaub J. 2003. Intestinal glucose transport: evidence for a membrane traffic-based pathway in humans. Gastroenterology 124:34–39
    [Google Scholar]
  21. 21.
    Wright EM, Martin MG, Turk E. 2003. Intestinal absorption in health and disease–sugars. Best Pract. Res. Clin. Gastroenterol. 17:943–56
    [Google Scholar]
  22. 22.
    Ait-Omar A, Monteiro-Sepulveda M, Poitou C, Le Gall M, Cotillard A et al. 2011. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes 60:2598–607
    [Google Scholar]
  23. 23.
    Depoortere I. 2014. Taste receptors of the gut: emerging roles in health and disease. Gut 63:179–90
    [Google Scholar]
  24. 24.
    Sun EW, de Fontgalland D, Rabbitt P, Hollington P, Sposato L et al. 2017. Mechanisms controlling glucose-induced GLP-1 secretion in human small intestine. Diabetes 66:2144–49
    [Google Scholar]
  25. 25.
    Mace OJ, Affleck J, Patel N, Kellett GL. 2007. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J. Physiol. 582:379–92
    [Google Scholar]
  26. 26.
    Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E et al. 2007. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. PNAS 104:15075–80
    [Google Scholar]
  27. 27.
    Pritchard PJ, Porteous JW. 1977. Steady-state metabolism and transport of d-glucose by rat small intestine in vitro. Biochem. J. 164:1–14
    [Google Scholar]
  28. 28.
    Zhou W, Ramachandran D, Mansouri A, Dailey MJ. 2018. Glucose stimulates intestinal epithelial crypt proliferation by modulating cellular energy metabolism. J. Cell. Physiol. 233:3465–75
    [Google Scholar]
  29. 29.
    Croset M, Rajas F, Zitoun C, Hurot JM, Montano S, Mithieux G. 2001. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 50:740–46
    [Google Scholar]
  30. 30.
    Mithieux G, Bady I, Gautier A, Croset M, Rajas F, Zitoun C. 2004. Induction of control genes in intestinal gluconeogenesis is sequential during fasting and maximal in diabetes. Am. J. Physiol. Endocrinol. Metab. 286:E370–75
    [Google Scholar]
  31. 31.
    Marriott BP, Cole N, Lee E. 2009. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 139:1228S–35S
    [Google Scholar]
  32. 32.
    Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ et al. 2018. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27:351–61.e3
    [Google Scholar]
  33. 33.
    Brundin T, Wahren J. 1993. Whole body and splanchnic oxygen consumption and blood flow after oral ingestion of fructose or glucose. Am. J. Physiol. Endocrinol. Metab. 264:E504–13
    [Google Scholar]
  34. 34.
    Tappy L. 2021. Metabolism of sugars: a window to the regulation of glucose and lipid homeostasis by splanchnic organs. Clin. Nutr. 40:1691–98
    [Google Scholar]
  35. 35.
    Karasov WH. 2017. Integrative physiology of transcellular and paracellular intestinal absorption. J. Exp. Biol. 220:2495–501
    [Google Scholar]
  36. 36.
    Thorens B, Cheng ZQ, Brown D, Lodish HF. 1990. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am. J. Physiol. Cell Physiol. 259:C279–85
    [Google Scholar]
  37. 37.
    Brady MJ, Saltiel AR. 2001. The role of protein phosphatase-1 in insulin action. Recent Prog. Horm. Res. 56:157–73
    [Google Scholar]
  38. 38.
    Adeva-Andany MM, Perez-Felpete N, Fernandez-Fernandez C, Donapetry-Garcia C, Pazos-Garcia C. 2016. Liver glucose metabolism in humans. Biosci. Rep. 36:e00416
    [Google Scholar]
  39. 39.
    Ferrannini E, Bjorkman O, Reichard GA Jr., Pilo A, Olsson M et al. 1985. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes 34:580–88
    [Google Scholar]
  40. 40.
    Rothman DL, Magnusson I, Katz LD, Shulman RG, Shulman GI. 1991. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254:573–76
    [Google Scholar]
  41. 41.
    Nilsson OS, Arion WJ, Depierre JW, Dallner G, Ernster L. 1978. Evidence for the involvement of a glucose-6-phosphate carrier in microsomal glucose-6-phosphatase activity. Eur. J. Biochem. 82:627–34
    [Google Scholar]
  42. 42.
    Manco R, Itzkovitz S. 2021. Liver zonation. J. Hepatol. 74:466–68
    [Google Scholar]
  43. 43.
    Cunningham RP, Porat-Shliom N. 2021. Liver zonation—revisiting old questions with new technologies. Front. Physiol. 12:732929
    [Google Scholar]
  44. 44.
    Gebhardt R. 1992. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 53:275–354
    [Google Scholar]
  45. 45.
    Jungermann K, Katz N. 1989. Functional specialization of different hepatocyte populations. Physiol. Rev. 69:708–64
    [Google Scholar]
  46. 46.
    Karim S, Adams DH, Lalor PF. 2012. Hepatic expression and cellular distribution of the glucose transporter family. World J. Gastroenterol. 18:6771–81
    [Google Scholar]
  47. 47.
    Ogawa A, Kurita K, Ikezawa Y, Igarashi M, Kuzumaki T et al. 1996. Functional localization of glucose transporter 2 in rat liver. J. Histochem. Cytochem. 44:1231–36
    [Google Scholar]
  48. 48.
    Stumpel F, Ott T, Willecke K, Jungermann K. 1998. Connexin 32 gap junctions enhance stimulation of glucose output by glucagon and noradrenaline in mouse liver. Hepatology 28:1616–20
    [Google Scholar]
  49. 49.
    Hosokawa M, Thorens B. 2002. Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway. Am. J. Physiol. Endocrinol. Metab. 282:E794–801
    [Google Scholar]
  50. 50.
    Gautier-Stein A, Chilloux J, Soty M, Thorens B, Place C et al. 2023. A caveolin-1 dependent glucose-6-phosphatase trafficking contributes to hepatic glucose production. Mol. Metab. 70:101700
    [Google Scholar]
  51. 51.
    Lizak B, Szarka A, Kim Y, Choi KS, Nemeth CE et al. 2019. Glucose transport and transporters in the endomembranes. Int. J. Mol. Sci. 20:5898
    [Google Scholar]
  52. 52.
    Gamberucci A, Marcolongo P, Nemeth CE, Zoppi N, Szarka A et al. 2017. GLUT10—lacking in arterial tortuosity syndrome—is localized to the endoplasmic reticulum of human fibroblasts. Int. J. Mol. Sci. 18:1820
    [Google Scholar]
  53. 53.
    Fehr M, Takanaga H, Ehrhardt DW, Frommer WB. 2005. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Mol. Cell. Biol. 25:11102–12
    [Google Scholar]
  54. 54.
    Mandl J, Banhegyi G. 2018. The ER–glycogen particle–phagophore triangle: A hub connecting glycogenolysis and glycophagy?. Pathol. Oncol. Res. 24:821–26
    [Google Scholar]
  55. 55.
    Prats C, Graham TE, Shearer J. 2018. The dynamic life of the glycogen granule. J. Biol. Chem. 293:7089–98
    [Google Scholar]
  56. 56.
    Schneider JL, Suh Y, Cuervo AM. 2014. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 20:417–32
    [Google Scholar]
  57. 57.
    Lisinski I, Schurmann A, Joost HG, Cushman SW, Al-Hasani H. 2001. Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells. Biochem. J. 358:517–22
    [Google Scholar]
  58. 58.
    Doege H, Bocianski A, Joost HG, Schurmann A. 2000. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem. J. 350:Part 3771–76
    [Google Scholar]
  59. 59.
    Cong X, Kong W. 2020. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal. 66:109485
    [Google Scholar]
  60. 60.
    Mastorakos P, McGavern D. 2019. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 4:eaav0492
    [Google Scholar]
  61. 61.
    Butt AM, Jones HC, Abbott NJ. 1990. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J. Physiol. 429:47–62
    [Google Scholar]
  62. 62.
    Crone C, Olesen SP. 1982. Electrical resistance of brain microvascular endothelium. Brain Res. 241:49–55
    [Google Scholar]
  63. 63.
    Lund-Andersen H. 1979. Transport of glucose from blood to brain. Physiol. Rev. 59:305–52
    [Google Scholar]
  64. 64.
    Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F et al. 2009. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol. 24:909–69
    [Google Scholar]
  65. 65.
    Murray IR, Baily JE, Chen WCW, Dar A, Gonzalez ZN et al. 2017. Skeletal and cardiac muscle pericytes: functions and therapeutic potential. Pharmacol. Ther. 171:65–74
    [Google Scholar]
  66. 66.
    Walchli T, Wacker A, Frei K, Regli L, Schwab ME et al. 2015. Wiring the vascular network with neural cues: a CNS perspective. Neuron 87:271–96
    [Google Scholar]
  67. 67.
    Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. 2010. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–103
    [Google Scholar]
  68. 68.
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4:147ra11
    [Google Scholar]
  69. 69.
    Magistretti PJ, Allaman I. 2018. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19:235–49
    [Google Scholar]
  70. 70.
    Bady I, Marty N, Dallaporta M, Emery M, Gyger J et al. 2006. Evidence from Glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes 55:988–95
    [Google Scholar]
  71. 71.
    Barros LF, Bittner CX, Loaiza A, Porras OH. 2007. A quantitative overview of glucose dynamics in the gliovascular unit. Glia 55:1222–37
    [Google Scholar]
  72. 72.
    Crone C, Thompson AM. 1973. Comparative studies of capillary permeability in brain and muscle. Acta Physiol. Scand. 87:252–60
    [Google Scholar]
  73. 73.
    Zajadacz B. 1979. Werdnig-Hoffmann disease in 2 siblings. Pol. Tyg. Lek. 34:837–38
    [Google Scholar]
  74. 74.
    Kaplan L, Chow BW, Gu C. 2020. Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 21:416–32
    [Google Scholar]
  75. 75.
    Leybaert L. 2005. Neurobarrier coupling in the brain: a partner of neurovascular and neurometabolic coupling?. J. Cereb. Blood Flow Metab. 25:2–16
    [Google Scholar]
  76. 76.
    Hariharan A, Robertson CD, Garcia DCG, Longden TA. 2022. Brain capillary pericytes are metabolic sentinels that control blood flow through a KATP channel-dependent energy switch. Cell Rep. 41:111872
    [Google Scholar]
  77. 77.
    Banks WA, Reed MJ, Logsdon AF, Rhea EM, Erickson MA. 2021. Healthy aging and the blood-brain barrier. Nat. Aging 1:243–54
    [Google Scholar]
  78. 78.
    Barros LF, Ruminot I, Sotelo-Hitschfeld T, Lerchundi R, Fernandez-Moncada I. 2023. Metabolic recruitment in brain tissue. Annu. Rev. Physiol. 85:115–35
    [Google Scholar]
  79. 79.
    Kalucka J, de Rooij L, Goveia J, Rohlenova K, Dumas SJ et al. 2020. Single-cell transcriptome atlas of murine endothelial cells. Cell 180:764–79.e20
    [Google Scholar]
  80. 80.
    Dick AP, Harik SI, Klip A, Walker DM. 1984. Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. PNAS 81:7233–37
    [Google Scholar]
  81. 81.
    Yazdani S, Jaldin-Fincati JR, Pereira RVS, Klip A. 2019. Endothelial cell barriers: transport of molecules between blood and tissues. Traffic 20:390–403
    [Google Scholar]
  82. 82.
    Tumova S, Kerimi A, Porter KE, Williamson G. 2016. Transendothelial glucose transport is not restricted by extracellular hyperglycaemia. Vascul. Pharmacol. 87:219–29
    [Google Scholar]
  83. 83.
    Yazdani S, Bilan PJ, Jaldin-Fincati JR, Pang J, Ceban F et al. 2022. Dynamic glucose uptake, storage, and release by human microvascular endothelial cells. Mol. Biol. Cell 33:ar106
    [Google Scholar]
  84. 84.
    Wu WZ, Bai YP. 2023. Endothelial GLUTs and vascular biology. Biomed. Pharmacother. 158:114151
    [Google Scholar]
  85. 85.
    Flier JS, Mueckler M, McCall AL, Lodish HF. 1987. Distribution of glucose transporter messenger RNA transcripts in tissues of rat and man. J. Clin. Investig. 79:657–61
    [Google Scholar]
  86. 86.
    Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR et al. 2018. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 7:e36187
    [Google Scholar]
  87. 87.
    Veys K, Fan Z, Ghobrial M, Bouche A, Garcia-Caballero M et al. 2020. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ. Res. 127:466–82
    [Google Scholar]
  88. 88.
    Chugani HT, Phelps ME. 1986. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science 231:840–43
    [Google Scholar]
  89. 89.
    Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H et al. 2021. Molecular atlas of the human brain vasculature at the single-cell level. BioRxiv 464715. https://doi.org/10.1101/2021.10.18.464715
  90. 90.
    Duelli R, Kuschinsky W. 2001. Brain glucose transporters: relationship to local energy demand. News Physiol. Sci. 16:71–76
    [Google Scholar]
  91. 91.
    Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. 2008. The facilitative glucose transporter GLUT3: 20 years of distinction. Am. J. Physiol. Endocrinol. Metab. 295:E242–53
    [Google Scholar]
  92. 92.
    Dobrogowska DH, Vorbrodt AW. 1999. Quantitative immunocytochemical study of blood-brain barrier glucose transporter (GLUT-1) in four regions of mouse brain. J. Histochem. Cytochem. 47:1021–30
    [Google Scholar]
  93. 93.
    Devraj K, Klinger ME, Myers RL, Mokashi A, Hawkins RA, Simpson IA. 2011. GLUT-1 glucose transporters in the blood-brain barrier: differential phosphorylation. J. Neurosci. Res. 89:1913–25
    [Google Scholar]
  94. 94.
    Simpson IA, Appel NM, Hokari M, Oki J, Holman GD et al. 1999. Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J. Neurochem. 72:238–47
    [Google Scholar]
  95. 95.
    Barros LF. 2022. How expensive is the astrocyte?. J. Cereb. Blood Flow Metab. 42:738–45
    [Google Scholar]
  96. 96.
    Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A et al. 2016. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165:882–95
    [Google Scholar]
  97. 97.
    Huang Y, Lei L, Liu D, Jovin I, Russell R et al. 2012. Normal glucose uptake in the brain and heart requires an endothelial cell-specific HIF-1α-dependent function. PNAS 109:17478–83
    [Google Scholar]
  98. 98.
    Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. 2009. Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. PNAS 106:641–46
    [Google Scholar]
  99. 99.
    Gastfriend BD, Nishihara H, Canfield SG, Foreman KL, Engelhardt B et al. 2021. Wnt signaling mediates acquisition of blood-brain barrier properties in naive endothelium derived from human pluripotent stem cells. eLife 10:e70992
    [Google Scholar]
  100. 100.
    Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP. 2008. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–50
    [Google Scholar]
  101. 101.
    Barros LF, San Martin A, Ruminot I, Sandoval PY, Fernandez-Moncada I et al. 2017. Near-critical GLUT1 and neurodegeneration. J. Neurosci. Res. 95:2267–74
    [Google Scholar]
  102. 102.
    Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD et al. 2015. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18:521–30
    [Google Scholar]
  103. 103.
    Adanyeguh IM, Rinaldi D, Henry PG, Caillet S, Valabregue R et al. 2015. Triheptanoin improves brain energy metabolism in patients with Huntington disease. Neurology 84:490–95
    [Google Scholar]
  104. 104.
    Klepper J, Akman C, Armeno M, Auvin S, Cervenka M et al. 2020. Glut1 Deficiency Syndrome (Glut1DS): state of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open 5:354–65
    [Google Scholar]
  105. 105.
    Tang M, Monani UR. 2021. Glut1 deficiency syndrome: new and emerging insights into a prototypical brain energy failure disorder. Neurosci. Insights 2021:16
    [Google Scholar]
  106. 106.
    Akman CI, Provenzano F, Wang D, Engelstad K, Hinton V et al. 2015. Topography of brain glucose hypometabolism and epileptic network in glucose transporter 1 deficiency. Epilepsy Res. 110:206–15
    [Google Scholar]
  107. 107.
    Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. 2002. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann. Neurol. 52:458–64
    [Google Scholar]
  108. 108.
    Wang D, Pascual JM, Yang H, Engelstad K, Mao X et al. 2006. A mouse model for Glut-1 haploinsufficiency. Hum. Mol. Genet. 15:1169–79
    [Google Scholar]
  109. 109.
    Ardanaz CG, de la Cruz A, Elizalde-Horcada M, Puerta E, Ramírez MJ et al. 2022. GLUT1 ablation in astrocytes paradoxically improves central and peripheral glucose metabolism via enhanced insulin-stimulated ATP release. BioRxiv 51112. https://doi.org/10.1101/2022.10.06.511112
  110. 110.
    Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. 2022. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell. Mol. Life Sci. 79:372
    [Google Scholar]
  111. 111.
    Wang Y, Sabbagh MF, Gu X, Rattner A, Williams J, Nathans J. 2019. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. eLife 8:e43257
    [Google Scholar]
  112. 112.
    De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW et al. 2013. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–63
    [Google Scholar]
  113. 113.
    Kim B, Li J, Jang C, Arany Z. 2017. Glutamine fuels proliferation but not migration of endothelial cells. EMBO J. 36:2321–33
    [Google Scholar]
  114. 114.
    Cantelmo AR, Conradi LC, Brajic A, Goveia J, Kalucka J et al. 2016. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30:968–85
    [Google Scholar]
  115. 115.
    Schoors S, De Bock K, Cantelmo AR, Georgiadou M, Ghesquiere B et al. 2014. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19:37–48
    [Google Scholar]
  116. 116.
    Xu Y, An X, Guo X, Habtetsion TG, Wang Y et al. 2014. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 34:1231–39
    [Google Scholar]
  117. 117.
    Yu P, Wilhelm K, Dubrac A, Tung JK, Alves TC et al. 2017. FGF-dependent metabolic control of vascular development. Nature 545:224–28
    [Google Scholar]
  118. 118.
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–95
    [Google Scholar]
  119. 119.
    Kalucka J, Bierhansl L, Conchinha NV, Missiaen R, Elia I et al. 2018. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 28:881–94.e13
    [Google Scholar]
  120. 120.
    Patella F, Schug ZT, Persi E, Neilson LJ, Erami Z et al. 2015. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol. Cell. Proteom. 14:621–34
    [Google Scholar]
  121. 121.
    Doddaballapur A, Michalik KM, Manavski Y, Lucas T, Houtkooper RH et al. 2015. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler. Thromb. Vasc. Biol. 35:137–45
    [Google Scholar]
  122. 122.
    Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF et al. 2016. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529:216–20
    [Google Scholar]
  123. 123.
    Williams LM, Fujimoto T, Weaver RR, Logsdon AF, Evitts KM et al. 2022. Prolonged culturing of iPSC-derived brain endothelial-like cells is associated with quiescence, downregulation of glycolysis, and resistance to disruption by an Alzheimer's brain milieu. Fluids Barriers CNS 19:10
    [Google Scholar]
  124. 124.
    Kim ES, Kim KS, Lee CH, Jeon MT, Lee SB et al. 2022. Brain endothelial cells utilize glycolysis for the maintenance of the transcellular permeability. Mol. Neurobiol. 59:4315–33
    [Google Scholar]
  125. 125.
    Moreno V, Gonzalo P, Gomez-Escudero J, Pollan A, Acin-Perez R et al. 2014. An EMMPRIN-γ-catenin-Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions. J. Cell Sci. 127:3768–81
    [Google Scholar]
  126. 126.
    Wu D, Harrison DL, Szasz T, Yeh CF, Shentu TP et al. 2021. Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic burst in motile endothelial cells. Nat. Metab. 3:714–27
    [Google Scholar]
  127. 127.
    Amemiya T. 1983. Glycogen metabolism in the capillary endothelium: electron histochemical study of glycogen synthetase and phosphorylase in the pecten capillary of the chick. Acta Histochem. 73:93–96
    [Google Scholar]
  128. 128.
    Artwohl M, Brunmair B, Furnsinn C, Holzenbein T, Rainer G et al. 2007. Insulin does not regulate glucose transport and metabolism in human endothelium. Eur. J. Clin. Investig. 37:643–50
    [Google Scholar]
  129. 129.
    Jaldin-Fincati JR, Pereira RVS, Bilan PJ, Klip A. 2018. Insulin uptake and action in microvascular endothelial cells of lymphatic and blood origin. Am. J. Physiol. Endocrinol. Metab. 315:E204–17
    [Google Scholar]
  130. 130.
    Wang D, Yang H, Shi L, Ma L, Fujii T et al. 2008. Functional studies of the T295M mutation causing Glut1 deficiency: glucose efflux preferentially affected by T295M. Pediatr. Res. 64:538–43
    [Google Scholar]
  131. 131.
    Goldstein GW, Csejtey J, Diamond I. 1977. Carrier mediated glucose transport in capillaries isolated from rat brain. J. Neurochem. 28:725–28
    [Google Scholar]
  132. 132.
    Schmidley JW, Wissig SL. 1983. Abundant, uniquely oriented endoplasmic reticulum in capillaries of the CNS: demonstration using reduced-osmium and glucose-6-phosphatase cytochemistry. Brain Res. 262:9–15
    [Google Scholar]
  133. 133.
    Lee HW, Xu Y, Zhu X, Jang C, Choi W et al. 2022. Endothelium-derived lactate is required for pericyte function and blood-brain barrier maintenance. EMBO J. 41:e109890
    [Google Scholar]
  134. 134.
    Tang M, Park SH, Petri S, Yu H, Rueda CB et al. 2021. An early endothelial cell-specific requirement for Glut1 is revealed in Glut1 deficiency syndrome model mice. JCI Insight 6:e145789
    [Google Scholar]
  135. 135.
    Jarad G, Miner JH. 2009. Update on the glomerular filtration barrier. Curr. Opin. Nephrol. Hypertens. 18:226–32
    [Google Scholar]
  136. 136.
    Liu JJ, Lee T, DeFronzo RA. 2012. Why do SGLT2 inhibitors inhibit only 30–50% of renal glucose reabsorption in humans?. Diabetes 61:2199–204
    [Google Scholar]
  137. 137.
    Wright EM. 2021. SGLT2 inhibitors: physiology and pharmacology. Kidney360 2:2027–37
    [Google Scholar]
  138. 138.
    Bhargava P, Schnellmann RG. 2017. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13:629–46
    [Google Scholar]
  139. 139.
    Uchida S, Endou H. 1988. Substrate specificity to maintain cellular ATP along the mouse nephron. Am. J. Physiol. Renal Physiol. 255:F977–83
    [Google Scholar]
  140. 140.
    Kanamura S. 1971. Ultrastructural localization of glucose-6-phosphatase activity in proximal convoluted tubule cells of rat kidney. Histochemie 28:288–95
    [Google Scholar]
  141. 141.
    Faivre A, Verissimo T, Auwerx H, Legouis D, de Seigneux S. 2021. Tubular cell glucose metabolism shift during acute and chronic injuries. Front. Med. 8:742072
    [Google Scholar]
  142. 142.
    Ekberg K, Landau BR, Wajngot A, Chandramouli V, Efendic S et al. 1999. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48:292–98
    [Google Scholar]
  143. 143.
    Cano N. 2002. Bench-to-bedside review: glucose production from the kidney. Crit. Care 6:317–21
    [Google Scholar]
  144. 144.
    Gronda E, Jessup M, Iacoviello M, Palazzuoli A, Napoli C. 2020. Glucose metabolism in the kidney: neurohormonal activation and heart failure development. J. Am. Heart Assoc. 9:e018889
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042022-031657
Loading
/content/journals/10.1146/annurev-physiol-042022-031657
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error