1932

Abstract

The elastic properties of conductance arteries are one of the most important hemodynamic functions in the body, and data continue to emerge regarding the importance of their dysfunction in vascular aging and a range of cardiovascular diseases. Here, we provide new insight into the integrative physiology of arterial stiffening and its clinical consequence. We also comprehensively review progress made on pathways/molecules that appear today as important basic determinants of arterial stiffness, particularly those mediating the vascular smooth muscle cell (VSMC) contractility, plasticity and stiffness. We focus on membrane and nuclear mechanotransduction, clearance function of the vascular wall, phenotypic switching of VSMCs, immunoinflammatory stimuli and epigenetic mechanisms. Finally, we discuss the most important advances of the latest clinical studies that revisit the classical therapeutic concepts of arterial stiffness and lead to a patient-by-patient strategy according to cardiovascular risk exposure and underlying disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042022-031925
2024-02-12
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042022-031925.html?itemId=/content/journals/10.1146/annurev-physiol-042022-031925&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chirinos JA, Segers P, Hughes T, Townsend R. 2019. Large-artery stiffness in health and disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 74:1237–63
    [Google Scholar]
  2. 2.
    Dobrin P. 1983. Vascular mechanics. Handbook of Physiology Section 2: The Cardiovascular System 3 Peripheral Circulation and Organ Blood Flow JT Shepherd, FM Abboud 65–102 Baltimore, MD: Am. Physiol. Soc.
    [Google Scholar]
  3. 3.
    Folkow B. 1982. Physiological aspects of primary hypertension. Physiol. Rev. 62:347–504
    [Google Scholar]
  4. 4.
    Intengan HD, Schiffrin EL. 2001. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38:581–87
    [Google Scholar]
  5. 5.
    Lacolley P, Regnault V, Segers P, Laurent S. 2017. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol. Rev. 97:1555–617
    [Google Scholar]
  6. 6.
    Laurent S, Boutouyrie P. 2015. The structural factor of hypertension: large and small artery alterations. Circ. Res. 116:1007–21
    [Google Scholar]
  7. 7.
    Laurent S, Marais L, Boutouyrie P. 2016. The noninvasive assessment of vascular aging. Can. J. Cardiol. 32:669–79
    [Google Scholar]
  8. 8.
    Nichols WW, O'Rourke MF, Vlachopoulos C. 2005. McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  9. 9.
    O'Rourke MF, Hashimoto J. 2007. Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50:1–13
    [Google Scholar]
  10. 10.
    Safar ME, London GM. 1994. The arterial system in human hypertension. Textbook of Hypertension J Swales 85–102 London, UK: Blackwell Sci
    [Google Scholar]
  11. 11.
    Safar ME, Asmar R, Benetos A, Blacher J, Boutouyrie P et al. 2018. Interaction between hypertension and arterial stiffness. Hypertension 72:796–805
    [Google Scholar]
  12. 12.
    Westerhof N, Sipkema P, van den Bos GC, Elzinga G. 1972. Forward and backward waves in the arterial system. Cardiovasc. Res. 6:648–56
    [Google Scholar]
  13. 13.
    Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C et al. 2006. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27:2588–605
    [Google Scholar]
  14. 14.
    Bargiotas I, Bollache E, Mousseaux E, Giron A, de Cesare A et al. 2015. MR and applanation tonometry derived aortic impedance: association with aging and left ventricular remodeling. J. Magn. Reson. Imaging 41:781–87
    [Google Scholar]
  15. 15.
    Cohn JN, Finkelstein S, McVeigh G, Morgan D, LeMay L et al. 1995. Noninvasive pulse wave analysis for the early detection of vascular disease. Hypertension 26:503–8
    [Google Scholar]
  16. 16.
    Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ et al. 2010. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121:505–11
    [Google Scholar]
  17. 17.
    Simon AC, Laurent S, Levenson JA, Bouthier JE, Safar ME. 1983. Estimation of forearm arterial compliance in normal and hypertensive men from simultaneous pressure and flow measurements in the brachial artery, using a pulsed Doppler device and a first-order arterial model during diastole. Cardiovasc. Res. 17:331–38
    [Google Scholar]
  18. 18.
    Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B et al. 1995. Assessment of arterial distensibility by automatic pulse wave velocity measurement: validation and clinical application studies. Hypertension 26:485–90
    [Google Scholar]
  19. 19.
    Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME. 1993. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler. Thromb. 13:90–97
    [Google Scholar]
  20. 20.
    Boutouyrie P, Bussy C, Lacolley P, Girerd X, Laloux B, Laurent S. 1999. Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 100:1387–93
    [Google Scholar]
  21. 21.
    Engelen L, Ferreira I, Stehouwer CD, Boutouyrie P, Laurent S. 2013. Reference intervals for common carotid intima-media thickness measured with echotracking: relation with risk factors. Eur. Heart J. 34:2368–80
    [Google Scholar]
  22. 22.
    Laurent S, Caviezel B, Beck L, Girerd X, Billaud E et al. 1994. Carotid artery distensibility and distending pressure in hypertensive humans. Hypertension 23:878–83
    [Google Scholar]
  23. 23.
    Roman MJ, Saba PS, Pini R, Spitzer M, Pickering TG et al. 1992. Parallel cardiac and vascular adaptation in hypertension. Circulation 86:1909–18
    [Google Scholar]
  24. 24.
    Hoeks AP, Willekes C, Boutouyrie P, Brands PJ, Willigers JM, Reneman RS. 1997. Automated detection of local artery wall thickness based on M-line signal processing. Ultrasound Med. Biol. 23:1017–23
    [Google Scholar]
  25. 25.
    Giannattasio C, Salvi P, Valbusa F, Kearney-Schwartz A, Capra A et al. 2008. Simultaneous measurement of beat-to-beat carotid diameter and pressure changes to assess arterial mechanical properties. Hypertension 52:896–902
    [Google Scholar]
  26. 26.
    Van Bortel LM, Balkestein EJ, van der Heijden-Spek JJ, Vanmolkot FH, Staessen JA et al. 2001. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J. Hypertens. 19:1037–44
    [Google Scholar]
  27. 27.
    Vermeersch SJ, Rietzschel ER, De Buyzere ML, De Bacquer D, De Backer G et al. 2008. Age and gender related patterns in carotid-femoral PWV and carotid and femoral stiffness in a large healthy, middle-aged population. J. Hypertens. 26:1411–19
    [Google Scholar]
  28. 28.
    Redheuil A, Wu CO, Kachenoura N, Ohyama Y, Yan RT et al. 2014. Proximal aortic distensibility is an independent predictor of all-cause mortality and incident CV events: the MESA Study. J. Am. Coll. Cardiol. 64:2619–29
    [Google Scholar]
  29. 29.
    Houriez-Gombaud-Saintonge S, Mousseaux E, Bargiotas I, De Cesare A, Dietenbeck T et al. 2019. Comparison of different methods for the estimation of aortic pulse wave velocity from 4D flow cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 21:75
    [Google Scholar]
  30. 30.
    Dietenbeck T, Houriez-Gombaud-Saintonge S, Charpentier E, Gencer U, Giron A et al. 2021. Quantitative magnetic resonance imaging measures of three-dimensional aortic morphology in healthy aging and hypertension. J. Magn. Reson. Imaging 53:1471–83
    [Google Scholar]
  31. 31.
    Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. 2014. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur. Heart J. 35:3122–33
    [Google Scholar]
  32. 32.
    Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA et al. 2012. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308:875–81
    [Google Scholar]
  33. 33.
    Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S. 2016. Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ. Res. 118:379–81
    [Google Scholar]
  34. 34.
    Henry RM, Kostense PJ, Spijkerman AM, Dekker JM, Nijpels G et al. 2003. Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn Study. Circulation 107:2089–95
    [Google Scholar]
  35. 35.
    Woolam GL, Schnur PL, Vallbona C, Hoff HE. 1962. The pulse wave velocity as an early indicator of atherosclerosis in diabetic subjects. Circulation 25:533–39
    [Google Scholar]
  36. 36.
    Climie RE, van Sloten TT, Bruno RM, Taddei S, Empana JP et al. 2019. Macrovasculature and microvasculature at the crossroads between type 2 diabetes mellitus and hypertension. Hypertension 73:1138–49
    [Google Scholar]
  37. 37.
    Bruno RM, Penno G, Daniele G, Pucci L, Lucchesi D et al. 2012. Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia 55:1847–55
    [Google Scholar]
  38. 38.
    Cockcroft JR, Webb DJ, Wilkinson IB. 2000. Arterial stiffness, hypertension and diabetes mellitus. J. Hum. Hypertens. 14:377–80
    [Google Scholar]
  39. 39.
    Hajdu MA, Baumbach GL. 1994. Mechanics of large and small cerebral arteries in chronic hypertension. Am. J. Physiol. 266:H1027–33
    [Google Scholar]
  40. 40.
    Izzard AS, Rizzoni D, Agabiti-Rosei E, Heagerty AM. 2005. Small artery structure and hypertension: adaptive changes and target organ damage. J. Hypertens. 23:247–50
    [Google Scholar]
  41. 41.
    Mulvany MJ. 1992. A reduced elastic modulus of vascular wall components in hypertension?. Hypertension 20:7–9
    [Google Scholar]
  42. 42.
    Folkow B. 1995. Hypertensive structural changes in systemic precapillary resistance vessels: How important are they for in vivo haemodynamics?. J. Hypertens. 13:1546–59
    [Google Scholar]
  43. 43.
    Laurent S, Agabiti-Rosei C, Bruno RM, Rizzoni D. 2022. Microcirculation and macrocirculation in hypertension: A dangerous cross-link?. Hypertension 79:479–90
    [Google Scholar]
  44. 44.
    Laurent S, Briet M, Boutouyrie P. 2009. Large and small artery cross-talk and recent morbidity-mortality trials in hypertension. Hypertension 54:388–92
    [Google Scholar]
  45. 45.
    Christensen KL. 1991. Reducing pulse pressure in hypertension may normalize small artery structure. Hypertension 18:722–27
    [Google Scholar]
  46. 46.
    James MA, Watt PA, Potter JF, Thurston H, Swales JD. 1995. Pulse pressure and resistance artery structure in the elderly. Hypertension 26:301–6
    [Google Scholar]
  47. 47.
    Muiesan ML, Salvetti M, Rizzoni D, Paini A, Agabiti-Rosei C et al. 2013. Pulsatile hemodynamics and microcirculation: evidence for a close relationship in hypertensive patients. Hypertension 61:130–36
    [Google Scholar]
  48. 48.
    Salvetti M, Agabiti Rosei C, Paini A, Aggiusti C, Cancarini A et al. 2014. Relationship of wall-to-lumen ratio of retinal arterioles with clinic and 24-hour blood pressure. Hypertension 63:1110–15
    [Google Scholar]
  49. 49.
    Climie RED, Picone DS, Blackwood S, Keel SE, Qasem A et al. 2018. Pulsatile interaction between the macro-vasculature and micro-vasculature: proof-of-concept among patients with type 2 diabetes. Eur. J. Appl. Physiol. 118:2455–63
    [Google Scholar]
  50. 50.
    Mitchell GF. 2008. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J. Appl. Physiol. 105:1652–60
    [Google Scholar]
  51. 51.
    O'Rourke MF, Safar ME. 2005. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46:200–4
    [Google Scholar]
  52. 52.
    Angouras D, Sokolis DP, Dosios T, Kostomitsopoulos N, Boudoulas H et al. 2000. Effect of impaired vasa vasorum flow on the structure and mechanics of the thoracic aorta: implications for the pathogenesis of aortic dissection. Eur. J. Cardiothorac. Surg. 17:468–73
    [Google Scholar]
  53. 53.
    Stefanadis C, Vlachopoulos C, Karayannacos P, Boudoulas H, Stratos C et al. 1995. Effect of vasa vasorum flow on structure and function of the aorta in experimental animals. Circulation 91:2669–78
    [Google Scholar]
  54. 54.
    Chirinos JA, Segers P, Gupta AK, Swillens A, Rietzschel ER et al. 2009. Time-varying myocardial stress and systolic pressure-stress relationship: role in myocardial-arterial coupling in hypertension. Circulation 119:2798–807
    [Google Scholar]
  55. 55.
    Kobayashi S, Yano M, Kohno M, Obayashi M, Hisamatsu Y et al. 1996. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation 94:3362–68
    [Google Scholar]
  56. 56.
    Weber T, O'Rourke MF, Ammer M, Kvas E, Punzengruber C, Eber B. 2008. Arterial stiffness and arterial wave reflections are associated with systolic and diastolic function in patients with normal ejection fraction. Am. J. Hypertens. 21:1194–202
    [Google Scholar]
  57. 57.
    Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE et al. 2006. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 37:1391–98
    [Google Scholar]
  58. 58.
    Laurent S, Katsahian S, Fassot C, Tropeano AI, Gautier I et al. 2003. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke 34:1203–6
    [Google Scholar]
  59. 59.
    Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE et al. 2010. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 375:895–905
    [Google Scholar]
  60. 60.
    Schillaci G, Bilo G, Pucci G, Laurent S, Macquin-Mavier I et al. 2012. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension 60:369–77
    [Google Scholar]
  61. 61.
    Scuteri A, Nilsson PM, Tzourio C, Redon J, Laurent S. 2011. Microvascular brain damage with aging and hypertension: pathophysiological consideration and clinical implications. J. Hypertens. 29:1469–77
    [Google Scholar]
  62. 62.
    Zureik M, Bureau JM, Temmar M, Adamopoulos C, Courbon D et al. 2003. Echogenic carotid plaques are associated with aortic arterial stiffness in subjects with subclinical carotid atherosclerosis. Hypertension 41:519–27
    [Google Scholar]
  63. 63.
    Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK et al. 2011. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility–Reykjavik study. Brain 134:3398–407
    [Google Scholar]
  64. 64.
    Webb AJ, Simoni M, Mazzucco S, Kuker W, Schulz U, Rothwell PM. 2012. Increased cerebral arterial pulsatility in patients with leukoaraiosis: arterial stiffness enhances transmission of aortic pulsatility. Stroke 43:2631–36
    [Google Scholar]
  65. 65.
    Evans LE, Taylor JL, Smith CJ, Pritchard HAT, Greenstein AS, Allan SM. 2021. Cardiovascular comorbidities, inflammation, and cerebral small vessel disease. Cardiovasc. Res. 117:2575–88
    [Google Scholar]
  66. 66.
    Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML et al. 2006. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113:657–63
    [Google Scholar]
  67. 67.
    Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG et al. 2014. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 63:636–46
    [Google Scholar]
  68. 68.
    Vlachopoulos C, Aznaouridis K, Stefanadis C. 2010. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 55:1318–27
    [Google Scholar]
  69. 69.
    Loutzenhiser R, Bidani A, Chilton L. 2002. Renal myogenic response: kinetic attributes and physiological role. Circ. Res. 90:1316–24
    [Google Scholar]
  70. 70.
    Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A et al. 2002. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 39:10–15
    [Google Scholar]
  71. 71.
    Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B et al. 2001. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–41
    [Google Scholar]
  72. 72.
    Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. 2002. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function?. Circulation 106:2085–90
    [Google Scholar]
  73. 73.
    Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME, London GM. 1998. Carotid arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-stage renal disease. Hypertension 32:570–74
    [Google Scholar]
  74. 74.
    Meaume S, Benetos A, Henry OF, Rudnichi A, Safar ME. 2001. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler. Thromb. Vasc. Biol. 21:2046–50
    [Google Scholar]
  75. 75.
    van Sloten TT, Sedaghat S, Laurent S, London GM, Pannier B et al. 2015. Carotid stiffness is associated with incident stroke: a systematic review and individual participant data meta-analysis. J. Am. Coll. Cardiol. 66:2116–25
    [Google Scholar]
  76. 76.
    Zhong Q, Hu MJ, Cui YJ, Liang L, Zhou MM et al. 2018. Carotid-femoral pulse wave velocity in the prediction of cardiovascular events and mortality: an updated systematic review and meta-analysis. Angiology 69:617–29
    [Google Scholar]
  77. 77.
    Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, Ioakeimidis N, Stefanadis C. 2012. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. Hypertension 60:556–62
    [Google Scholar]
  78. 78.
    Sehgel NL, Sun Z, Hong Z, Hunter WC, Hill MA et al. 2015. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging. Hypertension 65:370–77
    [Google Scholar]
  79. 79.
    Maurer M, Lammerding J. 2019. The driving force: nuclear mechanotransduction in cellular function, fate, and disease. Annu. Rev. Biomed. Eng. 21:443–68
    [Google Scholar]
  80. 80.
    Agabiti-Rosei E, Heagerty AM, Rizzoni D. 2009. Effects of antihypertensive treatment on small artery remodelling. J. Hypertens. 27:1107–14
    [Google Scholar]
  81. 81.
    Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. 2003. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am. J. Med. 115:41–46
    [Google Scholar]
  82. 82.
    Chi C, Tai C, Bai B, Yu S, Karamanou M et al. 2016. Angiotensin system blockade combined with calcium channel blockers is superior to other combinations in cardiovascular protection with similar blood pressure reduction: a meta-analysis in 20,451 hypertensive patients. J. Clin. Hypertens. 18:801–8
    [Google Scholar]
  83. 83.
    Rouch L, Cestac P, Hanon O, Cool C, Helmer C et al. 2015. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 29:113–30
    [Google Scholar]
  84. 84.
    Marx N, Davies MJ, Grant PJ, Mathieu C, Petrie JR et al. 2021. Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. Lancet Diabetes Endocrinol. 9:46–52
    [Google Scholar]
  85. 85.
    Batzias K, Antonopoulos AS, Oikonomou E, Siasos G, Bletsa E et al. 2018. Effects of newer antidiabetic drugs on endothelial function and arterial stiffness: a systematic review and meta-analysis. J. Diabetes Res. 2018:1232583
    [Google Scholar]
  86. 86.
    Liu L, Guo M, Lv X, Wang Z, Yang J et al. 2021. Role of transient receptor potential vanilloid 4 in vascular function. Front. Mol. Biosci. 8:677661
    [Google Scholar]
  87. 87.
    Cohen JB, Brown NJ, Brown SA, Dent S, van Dorst DCH et al. 2023. Cancer therapy-related hypertension: a scientific statement from the American Heart Association. Hypertension 80:e46–57
    [Google Scholar]
  88. 88.
    Wu J, Montaniel KR, Saleh MA, Xiao L, Chen W et al. 2016. Origin of matrix-producing cells that contribute to aortic fibrosis in hypertension. Hypertension 67:461–68
    [Google Scholar]
  89. 89.
    Humphrey JD, Schwartz MA. 2021. Vascular mechanobiology: homeostasis, adaptation, and disease. Annu. Rev. Biomed. Eng. 23:1–27
    [Google Scholar]
  90. 90.
    Bezie Y, Lamaziere JM, Laurent S, Challande P, Cunha RS et al. 1998. Fibronectin expression and aortic wall elastic modulus in spontaneously hypertensive rats. Arterioscler. Thromb. Vasc. Biol. 18:1027–34
    [Google Scholar]
  91. 91.
    Hoffman BD, Grashoff C, Schwartz MA. 2011. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–23
    [Google Scholar]
  92. 92.
    Lacolley P, Regnault V, Avolio AP. 2018. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc. Res. 114:513–28
    [Google Scholar]
  93. 93.
    Hamczyk MR, del Campo L, Andrés V. 2018. Aging in the cardiovascular system: lessons from Hutchinson-Gilford progeria syndrome. Annu. Rev. Physiol. 80:27–48
    [Google Scholar]
  94. 94.
    Song M, San H, Anderson SA, Cannon RO 3rd, Orlic D. 2014. Shear stress-induced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria. Stem Cell Res. Ther. 5:41
    [Google Scholar]
  95. 95.
    Mangino M, Cecelja M, Menni C, Tsai PC, Yuan W et al. 2016. Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity. J. Hypertens. 34:79–87
    [Google Scholar]
  96. 96.
    Shu YN, Dong LH, Li H, Pei QQ, Miao SB et al. 2017. CKII-SIRT1-SM22α loop evokes a self-limited inflammatory response in vascular smooth muscle cells. Cardiovasc. Res. 113:1198–207
    [Google Scholar]
  97. 97.
    Majesky MW, Horita H, Ostriker A, Lu S, Regan JN et al. 2017. Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4. Circ. Res. 120:296–311
    [Google Scholar]
  98. 98.
    Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K et al. 2014. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ. Res. 115:662–67
    [Google Scholar]
  99. 99.
    Evangelou K, Vasileiou PVS, Papaspyropoulos A, Hazapis O, Petty R et al. 2023. Cellular senescence and cardiovascular diseases: moving to the “heart” of the problem. Physiol. Rev. 103:609–47
    [Google Scholar]
  100. 100.
    Michel JB, Lagrange J, Regnault V, Lacolley P. 2022. Conductance artery wall layers and their respective roles in the clearance functions. Arterioscler. Thromb. Vasc. Biol. 42:e253–72
    [Google Scholar]
  101. 101.
    Regnault V, Challande P, Pinet F, Li Z, Lacolley P. 2021. Cell senescence: basic mechanisms and the need for computational networks in vascular ageing. Cardiovasc. Res. 117:1841–58
    [Google Scholar]
  102. 102.
    Benetos A, Toupance S, Gautier S, Labat C, Kimura M et al. 2018. Short leukocyte telomere length precedes clinical expression of atherosclerosis: the blood-and-muscle model. Circ. Res. 122:616–23
    [Google Scholar]
  103. 103.
    Lu Y, Jiang H, Li B, Cao L, Shen Q et al. 2020. Telomere dysfunction promotes small vessel vasculitis via the LL37-NETs-dependent mechanism. Ann. Transl. Med. 8:357
    [Google Scholar]
  104. 104.
    Kyuragi R, Matsumoto T, Harada Y, Saito S, Onimaru M et al. 2015. BubR1 insufficiency inhibits neointimal hyperplasia through impaired vascular smooth muscle cell proliferation in mice. Arterioscler. Thromb. Vasc. Biol. 35:341–47
    [Google Scholar]
  105. 105.
    Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK et al. 2018. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24:1246–56
    [Google Scholar]
  106. 106.
    Aggarwal A, Jennings CL, Manning E, Cameron SJ. 2023. Platelets at the vessel wall in non-thrombotic disease. Circ. Res. 132:775–90
    [Google Scholar]
  107. 107.
    Regnault V, Perret-Guillaume C, Kearney-Schwartz A, Max JP, Labat C et al. 2011. Tissue factor pathway inhibitor: a new link among arterial stiffness, pulse pressure, and coagulation in postmenopausal women. Arterioscler. Thromb. Vasc. Biol. 31:1226–32
    [Google Scholar]
  108. 108.
    Dekkers IA, de Mutsert R, de Vries APJ, Rosendaal FR, Cannegieter SC et al. 2018. Determinants of impaired renal and vascular function are associated with elevated levels of procoagulant factors in the general population. J. Thromb. Haemost. 16:519–28
    [Google Scholar]
  109. 109.
    Tran L, Pannier B, Lacolley P, Serrato T, Benetos A et al. 2021. A case-control study indicates that coagulation imbalance is associated with arteriosclerosis and markers of endothelial dysfunction in kidney failure. Kidney Int. 99:1162–72
    [Google Scholar]
  110. 110.
    Engelmann B, Massberg S. 2013. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13:34–45
    [Google Scholar]
  111. 111.
    Yu X, Tan J, Diamond SL. 2018. Hemodynamic force triggers rapid NETosis within sterile thrombotic occlusions. J. Thromb. Haemost. 16:316–29
    [Google Scholar]
  112. 112.
    Abaricia JO, Shah AH, Olivares-Navarrete R. 2021. Substrate stiffness induces neutrophil extracellular trap (NET) formation through focal adhesion kinase activation. Biomaterials 271:120715
    [Google Scholar]
  113. 113.
    Chrysanthopoulou A, Gkaliagkousi E, Lazaridis A, Arelaki S, Pateinakis P et al. 2021. Angiotensin II triggers release of neutrophil extracellular traps, linking thromboinflammation with essential hypertension. JCI Insight 6:e148668
    [Google Scholar]
  114. 114.
    Barrera-Chimal J, Bonnard B, Jaisser F. 2022. Roles of mineralocorticoid receptors in cardiovascular and cardiorenal diseases. Annu. Rev. Physiol. 84:585–610
    [Google Scholar]
  115. 115.
    Back M, Yurdagul A Jr., Tabas I, Oorni K, Kovanen PT 2019. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16:389–406
    [Google Scholar]
  116. 116.
    Mozos I, Malainer C, Horbanczuk J, Gug C, Stoian D et al. 2017. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front. Immunol. 8:1058
    [Google Scholar]
  117. 117.
    Zanetti M, Grillo A, Losurdo P, Panizon E, Mearelli F et al. 2015. Omega-3 polyunsaturated fatty acids: structural and functional effects on the vascular wall. Biomed. Res. Int. 2015:791978
    [Google Scholar]
  118. 118.
    Back M, Xhaard C, Rouget R, Thuillier Q, Plunde O et al. 2022. Fatty acid desaturase genetic variations and dietary omega-3 fatty acid intake associate with arterial stiffness. Eur. Heart J. Open 2:oeac016
    [Google Scholar]
  119. 119.
    Cui JZ, Lee L, Sheng X, Chu F, Gibson CP et al. 2019. In vivo characterization of doxycycline-mediated protection of aortic function and structure in a mouse model of Marfan syndrome-associated aortic aneurysm. Sci. Rep. 9:2071
    [Google Scholar]
  120. 120.
    Wang M, Kim SH, Monticone RE, Lakatta EG. 2015. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 65:698–703
    [Google Scholar]
  121. 121.
    Pahk K, Noh H, Joung C, Jang M, Song HY et al. 2019. A novel CD147 inhibitor, SP-8356, reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. J. Transl. Med. 17:274
    [Google Scholar]
  122. 122.
    Ruscica M, Ferri N, Fogacci F, Rosticci M, Botta M et al. 2017. Circulating levels of proprotein convertase subtilisin/kexin type 9 and arterial stiffness in a large population sample: data from the Brisighella Heart Study. J. Am. Heart Assoc. 6:e005764
    [Google Scholar]
  123. 123.
    Mandraffino G, Scicali R, Rodriguez-Carrio J, Savarino F, Mamone F et al. 2020. Arterial stiffness improvement after adding on PCSK9 inhibitors or ezetimibe to high-intensity statins in patients with familial hypercholesterolemia: A Two-Lipid Center Real-World Experience. J. Clin. Lipidol. 14:231–40
    [Google Scholar]
  124. 124.
    Schremmer J, Busch L, Baasen S, Heinen Y, Sansone R et al. 2023. Chronic PCSK9 inhibitor therapy leads to sustained improvements in endothelial function, arterial stiffness, and microvascular function. Microvasc. Res. 148:104513
    [Google Scholar]
  125. 125.
    Silla A, Fogacci F, Punzo A, Hrelia S, Simoni P et al. 2023. Treatment with PCSK9 inhibitor evolocumab improves vascular oxidative stress and arterial stiffness in hypercholesterolemic patients with high cardiovascular risk. Antioxidants 12:578
    [Google Scholar]
  126. 126.
    Dominguez-Andres J, Dos Santos JC, Bekkering S, Mulder WJM, van der Meer JWM et al. 2023. Trained immunity: adaptation within innate immune mechanisms. Physiol. Rev. 103:313–46
    [Google Scholar]
  127. 127.
    Schnack L, Sohrabi Y, Lagache SMM, Kahles F, Bruemmer D et al. 2019. Mechanisms of trained innate immunity in oxLDL primed human coronary smooth muscle cells. Front. Immunol. 10:13
    [Google Scholar]
  128. 128.
    Kusters PJH, Lutgens E, Seijkens TTP. 2018. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovasc. Res. 114:368–77
    [Google Scholar]
  129. 129.
    Deckers J, Anbergen T, Hokke AM, de Dreu A, Schrijver DP et al. 2023. Engineering cytokine therapeutics. Nat. Rev. Bioeng. 1:286–303
    [Google Scholar]
  130. 130.
    Paapstel K, Kals J. 2022. Metabolomics of arterial stiffness. Metabolites 12:370
    [Google Scholar]
  131. 131.
    Gheysen L, Maes L, Famaey N, Segers P. 2023. Pulse wave velocity: a clinical measure to aid material parameter estimation in computational arterial biomechanics. J. Biomech. 149:111482
    [Google Scholar]
  132. 132.
    Huttunen JMJ, Karkkainen L, Lindholm H. 2019. Pulse transit time estimation of aortic pulse wave velocity and blood pressure using machine learning and simulated training data. PLOS Comput. Biol. 15:e1007259
    [Google Scholar]
  133. 133.
    Jin W, Chowienczyk P, Alastruey J. 2021. Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms. PLOS ONE 16:e0245026
    [Google Scholar]
  134. 134.
    Bikia V, Rovas G, Pagoulatou S, Stergiopulos N. 2021. Determination of aortic characteristic impedance and total arterial compliance from regional pulse wave velocities using machine learning: an in-silico study. Front. Bioeng. Biotechnol. 9:649866
    [Google Scholar]
  135. 135.
    Zancla A, Mozetic P, Orsini M, Forte G, Rainer A. 2022. A primer to traction force microscopy. J. Biol. Chem. 298:101867
    [Google Scholar]
  136. 136.
    Doherty EL, Aw WY, Hickey AJ, Polacheck WJ. 2021. Microfluidic and organ-on-a-chip approaches to investigate cellular and microenvironmental contributions to cardiovascular function and pathology. Front. Bioeng. Biotechnol. 9:624435
    [Google Scholar]
  137. 137.
    Paloschi V, Sabater-Lleal M, Middelkamp H, Vivas A, Johansson S et al. 2021. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc. Res. 117:2742–54
    [Google Scholar]
  138. 138.
    Moses SR, Adorno JJ, Palmer AF, Song JW. 2021. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. Am. J. Physiol. Cell Physiol. 320:C92–105
    [Google Scholar]
  139. 139.
    Salipante PF, Hudson SD, Alimperti S. 2021. Blood vessel-on-a-chip examines the biomechanics of microvasculature. Soft Matter 18:117–25
    [Google Scholar]
  140. 140.
    Vila Cuenca M, Cochrane A, van den Hil FE, de Vries AAF, Lesnik Oberstein SAJ et al. 2021. Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells. Stem. Cell Rep. 16:2159–68
    [Google Scholar]
  141. 141.
    Skourtis D, Stavroulaki D, Athanasiou V, Fragouli PG, Iatrou H. 2020. Nanostructured polymeric, liposomal and other materials to control the drug delivery for cardiovascular diseases. Pharmaceutics 12:1160
    [Google Scholar]
  142. 142.
    Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. 2019. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov. 18:553–66
    [Google Scholar]
  143. 143.
    Chew NWS, Loong SSE, Foo R. 2023. Epigenetics in cardiovascular health and disease. Prog. Mol. Biol. Transl. Sci. 197:105–34
    [Google Scholar]
  144. 144.
    Hazra S, Henson GD, Morgan RG, Breevoort SR, Ives SJ et al. 2016. Experimental reduction of miR-92a mimics arterial aging. Exp. Gerontol. 83:165–70
    [Google Scholar]
  145. 145.
    Hoong CWS, Chua MWJ. 2021. SGLT2 inhibitors as calorie restriction mimetics: insights on longevity pathways and age-related diseases. Endocrinology 162:bqab079
    [Google Scholar]
  146. 146.
    Hussey B, Lindley MR, Mastana SS. 2017. Omega 3 fatty acids, inflammation and DNA methylation: an overview. Clin. Lipidol. 12:24–32
    [Google Scholar]
  147. 147.
    Li H, Xia N, Hasselwander S, Daiber A. 2019. Resveratrol and vascular function. Int. J. Mol. Sci. 20:2155
    [Google Scholar]
  148. 148.
    Machin DR, Auduong Y, Gogulamudi VR, Liu Y, Islam MT et al. 2020. Lifelong SIRT-1 overexpression attenuates large artery stiffening with advancing age. Aging 12:11314–24
    [Google Scholar]
  149. 149.
    Bahrar H, Bekkering S, Stienstra R, Netea MG, Riksen NP. 2023. Innate immune memory in cardiometabolic disease. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvad030
    [Crossref] [Google Scholar]
  150. 150.
    Speer T, Dimmeler S, Schunk SJ, Fliser D, Ridker PM. 2022. Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat. Rev. Nephrol. 18:762–78
    [Google Scholar]
  151. 151.
    Salih AM, Pujadas ER, Campello VM, McCracken C, Harvey NC et al. 2023. Image-based biological heart age estimation reveals differential aging patterns across cardiac chambers. J. Magn. Reson. Imaging. https://doi.org/10.1002/jmri.28675
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-042022-031925
Loading
/content/journals/10.1146/annurev-physiol-042022-031925
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error