1932

Abstract

Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042222-022728
2024-02-12
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042222-022728.html?itemId=/content/journals/10.1146/annurev-physiol-042222-022728&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bers DM. 2000. Calcium fluxes involved in control of cardiac myocyte contraction. Circ. Res. 87:275–81
    [Google Scholar]
  2. 2.
    Lamb GD. 2000. Excitation-contraction coupling in skeletal muscle: comparisons with cardiac muscle. Clin. Exp. Pharmacol. Physiol. 27:216–24
    [Google Scholar]
  3. 3.
    Baylor SM, Hollingworth S. 2003. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. J. Physiol. 551:125–38
    [Google Scholar]
  4. 4.
    Janssen PM, Stull LB, Marban E. 2002. Myofilament properties comprise the rate-limiting step for cardiac relaxation at body temperature in the rat. Am. J. Physiol. Heart Circ. Physiol. 282:H499–507
    [Google Scholar]
  5. 5.
    Backx PH, Ter Keurs HE. 1993. Fluorescent properties of rat cardiac trabeculae microinjected with fura-2 salt. Am. J. Physiol. 264:H1098–110
    [Google Scholar]
  6. 6.
    Gordon AM, Homsher E, Regnier M. 2000. Regulation of contraction in striated muscle. Physiol. Rev. 80:853–924
    [Google Scholar]
  7. 7.
    Irving M. 2017. Regulation of contraction by the thick filaments in skeletal muscle. Biophys. J. 113:2579–94
    [Google Scholar]
  8. 8.
    Piazzesi G, Caremani M, Linari M, Reconditi M, Lombardi V. 2018. Thick filament mechano-sensing in skeletal and cardiac muscles: a common mechanism able to adapt the energetic cost of the contraction to the task. Front. Physiol. 9:736
    [Google Scholar]
  9. 9.
    Marcucci L. 2023. Muscle mechanics and thick filament activation: an emerging two-way interaction for the vertebrate striated muscle fine regulation. Int. J. Mol. Sci. 24:6265
    [Google Scholar]
  10. 10.
    Wendt T, Taylor D, Trybus KM, Taylor K. 2001. Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. PNAS 98:4361–66
    [Google Scholar]
  11. 11.
    Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padron R. 2005. Atomic model of a myosin filament in the relaxed state. Nature 436:1195–99
    [Google Scholar]
  12. 12.
    Linari M, Brunello E, Reconditi M, Fusi L, Caremani M et al. 2015. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528:276–79
    [Google Scholar]
  13. 13.
    Fusi L, Brunello E, Yan Z, Irving M. 2016. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle. Nat. Commun. 7:13281
    [Google Scholar]
  14. 14.
    Kress M, Huxley HE, Faruqi AR, Hendrix J. 1986. Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J. Mol. Biol. 188:325–42
    [Google Scholar]
  15. 15.
    Hill C, Brunello E, Fusi L, Ovejero JG, Irving M. 2021. Myosin-based regulation of twitch and tetanic contractions in mammalian skeletal muscle. eLife 10:e68211
    [Google Scholar]
  16. 16.
    Brunello E, Fusi L, Ghisleni A, Park-Holohan SJ, Ovejero JG et al. 2020. Myosin filament-based regulation of the dynamics of contraction in heart muscle. PNAS 117:8177–86
    [Google Scholar]
  17. 17.
    Brunello E, Fusi L, Reconditi M, Linari M, Bianco P et al. 2009. Structural changes in myosin motors and filaments during relaxation of skeletal muscle. J. Physiol. 587:4509–21
    [Google Scholar]
  18. 18.
    Poggesi C, Tesi C, Stehle R. 2005. Sarcomeric determinants of striated muscle relaxation kinetics. Pflügers Arch 449:505–17
    [Google Scholar]
  19. 19.
    Vibert PJ, Haselgrove JC, Lowy J, Poulsen FR. 1972. Structural changes in actin-containing filaments of muscle. J. Mol. Biol. 71:757–67
    [Google Scholar]
  20. 20.
    Parry DA, Squire JM. 1973. Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol. 75:33–55
    [Google Scholar]
  21. 21.
    Lehman W. 2016. Thin filament structure and the steric blocking model. Compr. Physiol. 6:1043–69
    [Google Scholar]
  22. 22.
    Poole KJ, Lorenz M, Evans G, Rosenbaum G, Pirani A et al. 2006. A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J. Struct. Biol. 155:273–84
    [Google Scholar]
  23. 23.
    Yamada Y, Namba K, Fujii T. 2020. Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat. Commun. 11:153
    [Google Scholar]
  24. 24.
    Risi CM, Pepper I, Belknap B, Landim-Vieira M, White HD et al. 2021. The structure of the native cardiac thin filament at systolic Ca2+ levels. PNAS 118:e2024288118
    [Google Scholar]
  25. 25.
    Tobacman LS. 2021. Troponin revealed: uncovering the structure of the thin filament on-off switch in striated muscle. Biophys. J. 120:1–9
    [Google Scholar]
  26. 26.
    Lehman W, Pavadai E, Rynkiewicz MJ. 2021. C-terminal troponin-I residues trap tropomyosin in the muscle thin filament blocked-state. Biochem. Biophys. Res. Commun. 551:27–32
    [Google Scholar]
  27. 27.
    McKillop DF, Geeves MA. 1993. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys. J. 65:693–701
    [Google Scholar]
  28. 28.
    Geeves MA. 2012. Thin filament regulation. Comprehensive Biophysics EH Egelman 251–67 Amsterdam: Elsevier
    [Google Scholar]
  29. 29.
    von der Ecken J, Heissler SM, Pathan-Chhatbar S, Manstein DJ, Raunser S. 2016. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 534:724–28
    [Google Scholar]
  30. 30.
    Desai R, Geeves MA, Kad NM. 2015. Using fluorescent myosin to directly visualize cooperative activation of thin filaments. J. Biol. Chem. 290:1915–25
    [Google Scholar]
  31. 31.
    Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. 2021. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Cell 184:2135–50.e13
    [Google Scholar]
  32. 32.
    Wang Z, Raunser S. 2023. Structural biochemistry of muscle contraction. Annu. Rev. Biochem. 92:411–33
    [Google Scholar]
  33. 33.
    Ferguson RE, Sun YB, Mercier P, Brack AS, Sykes BD et al. 2003. In situ orientations of protein domains: troponin C in skeletal muscle fibers. Mol. Cell 11:865–74
    [Google Scholar]
  34. 34.
    Sun YB, Brandmeier B, Irving M. 2006. Structural changes in troponin in response to Ca2+ and myosin binding to thin filaments during activation of skeletal muscle. PNAS 103:17771–76
    [Google Scholar]
  35. 35.
    Knowles AC, Irving M, Sun YB. 2012. Conformation of the troponin core complex in the thin filaments of skeletal muscle during relaxation and active contraction. J. Mol. Biol. 421:125–37
    [Google Scholar]
  36. 36.
    Sevrieva I, Knowles AC, Kampourakis T, Sun YB. 2014. Regulatory domain of troponin moves dynamically during activation of cardiac muscle. J. Mol. Cell. Cardiol. 75:181–87
    [Google Scholar]
  37. 37.
    Sun YB, Lou F, Irving M. 2009. Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle. J. Physiol. 587:155–63
    [Google Scholar]
  38. 38.
    Zhang X, Kampourakis T, Yan Z, Sevrieva I, Irving M, Sun YB. 2017. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. eLife 6:e24081
    [Google Scholar]
  39. 39.
    Corrie JE, Brandmeier BD, Ferguson RE, Trentham DR, Kendrick-Jones J et al. 1999. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400:425–30
    [Google Scholar]
  40. 40.
    Brunello E, Marcucci L, Irving M, Fusi L. 2023. Activation of skeletal muscle is controlled by a dual-filament mechano-sensing mechanism. PNAS 120:e2302837120
    [Google Scholar]
  41. 41.
    Caremani M, Fusi L, Linari M, Reconditi M, Piazzesi G et al. 2021. Dependence of thick filament structure in relaxed mammalian skeletal muscle on temperature and interfilament spacing. J. Gen. Physiol. 153:e202012713
    [Google Scholar]
  42. 42.
    Fusi L, Huang Z, Irving M. 2015. The conformation of myosin heads in relaxed skeletal muscle: implications for myosin-based regulation. Biophys. J. 109:783–92
    [Google Scholar]
  43. 43.
    Caremani M, Brunello E, Linari M, Fusi L, Irving TC et al. 2019. Low temperature traps myosin motors of mammalian muscle in a refractory state that prevents activation. J. Gen. Physiol. 151:1272–86
    [Google Scholar]
  44. 44.
    Lopez-Davila AJ, Chalovich JM, Zittrich S, Piep B, Matinmehr F et al. 2020. Cycling cross-bridges contribute to thin filament activation in human slow-twitch fibers. Front. Physiol. 11:144
    [Google Scholar]
  45. 45.
    Caremani M, Marcello M, Morotti I, Pertici I, Squarci C et al. 2022. The force of the myosin motor sets cooperativity in thin filament activation of skeletal muscles. Commun. Biol. 5:1266
    [Google Scholar]
  46. 46.
    Risi C, Eisner J, Belknap B, Heeley DH, White HD et al. 2017. Ca2+-induced movement of tropomyosin on native cardiac thin filaments revealed by cryoelectron microscopy. PNAS 114:6782–87
    [Google Scholar]
  47. 47.
    Ovejero JG, Fusi L, Park-Holohan SJ, Ghisleni A, Narayanan T et al. 2022. Cooling intact and demembranated trabeculae from rat heart releases myosin motors from their inhibited conformation. J. Gen. Physiol. 154:e202113029
    [Google Scholar]
  48. 48.
    Geeves MA, Lehrer SS. 1994. Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys. J. 67:273–82
    [Google Scholar]
  49. 49.
    Ma W, Irving TC. 2022. Small angle X-ray diffraction as a tool for structural characterization of muscle disease. Int. J. Mol. Sci. 23:3052
    [Google Scholar]
  50. 50.
    Matsuo T, Yagi N. 2008. Structural changes in the muscle thin filament during contractions caused by single and double electrical pulses. J. Mol. Biol. 383:1019–36
    [Google Scholar]
  51. 51.
    Iwamoto H, Suzuki T, Fujisawa T. 2000. Time-resolved two-dimensional X-ray diffraction study of the effect of shortening on activation of contracting skeletal muscle. Pflügers Arch 439:646–49
    [Google Scholar]
  52. 52.
    Tamura T, Wakayama J, Inoue K, Yagi N, Iwamoto H. 2009. Dynamics of thin-filament activation in rabbit skeletal muscle fibers examined by time-resolved X-ray diffraction. Biophys. J. 96:1045–55
    [Google Scholar]
  53. 53.
    Bershitsky SY, Koubassova NA, Ferenczi MA, Kopylova GV, Narayanan T, Tsaturyan AK. 2017. The closed state of the thin filament is not occupied in fully activated skeletal muscle. Biophys. J. 112:1455–61
    [Google Scholar]
  54. 54.
    Narayanan T, Sztucki M, Van Vaerenbergh P, Leonardon J, Gorini J et al. 2018. A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering. J. Appl. Crystallogr. 51:1511–24
    [Google Scholar]
  55. 55.
    Fusi L, Brunello E, Sevrieva IR, Sun YB, Irving M. 2014. Structural dynamics of troponin during activation of skeletal muscle. PNAS 111:4626–31
    [Google Scholar]
  56. 56.
    Bell MG, Lankford EB, Gonye GE, Ellis-Davies GC, Martyn DA et al. 2006. Kinetics of cardiac thin-filament activation probed by fluorescence polarization of rhodamine-labeled troponin C in skinned guinea pig trabeculae. Biophys. J. 90:531–43
    [Google Scholar]
  57. 57.
    Tonino P, Kiss B, Gohlke J, Smith JE 3rd, Granzier H. 2019. Fine mapping titin's C-zone: Matching cardiac myosin-binding protein C stripes with titin's super-repeats. J. Mol. Cell. Cardiol. 133:47–56
    [Google Scholar]
  58. 58.
    Bennett P, Rees M, Gautel M. 2020. The axial alignment of titin on the muscle thick filament supports its role as a molecular ruler. J. Mol. Biol. 432:4815–29
    [Google Scholar]
  59. 59.
    Harris SP. 2021. Making waves: a proposed new role for myosin-binding protein C in regulating oscillatory contractions in vertebrate striated muscle. J. Gen. Physiol. 153:e202012729
    [Google Scholar]
  60. 60.
    Nag S, Trivedi DV, Sarkar SS, Adhikari AS, Sunitha MS et al. 2017. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat. Struct. Mol. Biol. 24:525–33
    [Google Scholar]
  61. 61.
    Ponnam S, Sevrieva I, Sun YB, Irving M, Kampourakis T. 2019. Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. PNAS 116:15485–94
    [Google Scholar]
  62. 62.
    Previs MJ, Beck Previs S, Gulick J, Robbins J, Warshaw DM 2012. Molecular mechanics of cardiac myosin-binding protein C in native thick filaments. Science 337:1215–18
    [Google Scholar]
  63. 63.
    Zoghbi ME, Woodhead JL, Moss RL, Craig R. 2008. Three-dimensional structure of vertebrate cardiac muscle myosin filaments. PNAS 105:2386–90
    [Google Scholar]
  64. 64.
    Al-Khayat HA, Kensler RW, Squire JM, Marston SB, Morris EP. 2013. Atomic model of the human cardiac muscle myosin filament. PNAS 110:318–23
    [Google Scholar]
  65. 65.
    Alamo L, Ware JS, Pinto A, Gillilan RE, Seidman JG et al. 2017. Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes. eLife 6:e24634
    [Google Scholar]
  66. 66.
    Craig R, Padron R. 2022. Structural basis of the super- and hyper-relaxed states of myosin II. J. Gen. Physiol. 154:e202113012
    [Google Scholar]
  67. 67.
    Lee KH, Sulbaran G, Yang S, Mun JY, Alamo L et al. 2018. Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. PNAS 115:E1991–2000
    [Google Scholar]
  68. 68.
    Grinzato A, Auguin D, Kikuti C, Nandwani N, Moussaoui D et al. 2023. Cryo-EM structure of the folded-back state of human β-cardiac myosin. Nat. Commun. 14:3166
    [Google Scholar]
  69. 69.
    Dutta D, Nguyen V, Campbell KS, Padron R, Craig R. 2023. Cryo-EM structure of the human cardiac myosin filament. Nature 623853–62
    [Google Scholar]
  70. 70.
    Tamborrini D, Wang Z, Wagner T, Tacke S, Stabrin M et al. 2023. Structure of the native myosin filament in the relaxed cardiac sarcomere. Nature 623863–71
    [Google Scholar]
  71. 71.
    Huang X, Torre I, Chiappi M, Yin Z, Vydyanath A et al. 2023. Cryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments. J. Muscle Res. Cell Motil. 44:165–78
    [Google Scholar]
  72. 72.
    Stewart MA, Franks-Skiba K, Chen S, Cooke R. 2010. Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. PNAS 107:430–35
    [Google Scholar]
  73. 73.
    Walklate J, Kao K, Regnier M, Geeves MA. 2022. Exploring the super-relaxed state of myosin in myofibrils from fast-twitch, slow-twitch, and cardiac muscle. J. Biol. Chem. 298:101640
    [Google Scholar]
  74. 74.
    Hooijman P, Stewart MA, Cooke R. 2011. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys. J. 100:1969–76
    [Google Scholar]
  75. 75.
    Cooke R. 2011. The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle. Biophys. Rev. 3:33–45
    [Google Scholar]
  76. 76.
    Nogara L, Naber N, Pate E, Canton M, Reggiani C, Cooke R. 2016. Piperine's mitigation of obesity and diabetes can be explained by its up-regulation of the metabolic rate of resting muscle. PNAS 113:13009–14
    [Google Scholar]
  77. 77.
    Ma W, McMillen TS, Childers MC, Gong H, Regnier M, Irving T. 2023. Structural OFF/ON transitions of myosin in relaxed porcine myocardium predict calcium-activated force. PNAS 120:e2207615120
    [Google Scholar]
  78. 78.
    Alamo L, Pinto A, Sulbaran G, Mavarez J, Padron R. 2017. Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophys. Rev. 9:461–80
    [Google Scholar]
  79. 79.
    Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA. 2017. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys. Rev. 10:27–48
    [Google Scholar]
  80. 80.
    Toepfer CN, Wakimoto H, Garfinkel AC, McDonough B, Liao D et al. 2019. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci. Transl. Med. 11:eaat1199
    [Google Scholar]
  81. 81.
    Reconditi M, Brunello E, Linari M, Bianco P, Narayanan T et al. 2011. Motion of myosin head domains during activation and force development in skeletal muscle. PNAS 108:7236–40
    [Google Scholar]
  82. 82.
    Reconditi M, Caremani M, Pinzauti F, Powers JD, Narayanan T et al. 2017. Myosin filament activation in the heart is tuned to the mechanical task. PNAS 114:3240–45
    [Google Scholar]
  83. 83.
    Nelson SR, Li A, Beck-Previs S, Kennedy GG, Warshaw DM. 2020. Imaging ATP consumption in resting skeletal muscle: one molecule at a time. Biophys. J. 119:1050–55
    [Google Scholar]
  84. 84.
    Pilagov M, Heling L, Walklate J, Geeves MA, Kad NM. 2023. Single-molecule imaging reveals how mavacamten and PKA modulate ATP turnover in skeletal muscle myofibrils. J. Gen. Physiol. 155:e202213087
    [Google Scholar]
  85. 85.
    Nelson S, Beck-Previs S, Sadayappan S, Tong C, Warshaw DM. 2023. Myosin-binding protein C stabilizes, but is not the sole determinant of SRX myosin in cardiac muscle. J. Gen. Physiol. 155:e202213276
    [Google Scholar]
  86. 86.
    Ovejero JG, Fusi L, Park-Holohan S, Ghisleni A, Narayanan T et al. 2019. The OFF-to-ON transition of thick filaments in isolated trabeculae from rat heart induced by cooling. Biophys. J. 116:263A
    [Google Scholar]
  87. 87.
    Park-Holohan SJ, Brunello E, Kampourakis T, Rees M, Irving M, Fusi L. 2021. Stress-dependent activation of myosin in the heart requires thin filament activation and thick filament mechanosensing. PNAS 118:e2023706118
    [Google Scholar]
  88. 88.
    Hill C, Brunello E, Fusi L, Ovejero JG, Irving M. 2022. Activation of the myosin motors in fast-twitch muscle of the mouse is controlled by mechano-sensing in the myosin filaments. J. Physiol. 600:3983–4000
    [Google Scholar]
  89. 89.
    Brunello E, Bianco P, Piazzesi G, Linari M, Reconditi M et al. 2006. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements. J. Physiol. 577:971–84
    [Google Scholar]
  90. 90.
    Caremani M, Fusi L, Reconditi M, Piazzesi G, Narayanan T et al. 2023. Dependence of myosin filament structure on intracellular calcium concentration in skeletal muscle. J. Gen. Physiol. 155:e202313393
    [Google Scholar]
  91. 91.
    Marcucci L, Reggiani C. 2016. Mechanosensing in myosin filament solves a 60 years old conflict in skeletal muscle modeling between high power output and slow rise in tension. Front. Physiol. 7:427
    [Google Scholar]
  92. 92.
    Marcucci L, Washio T, Yanagida T. 2017. Titin-mediated thick filament activation, through a mechanosensing mechanism, introduces sarcomere-length dependencies in mathematical models of rat trabecula and whole ventricle. Sci. Rep. 7:5546
    [Google Scholar]
  93. 93.
    Campbell KS, Janssen PML, Campbell SG. 2018. Force-dependent recruitment from the myosin off state contributes to length-dependent activation. Biophys. J. 115:543–53
    [Google Scholar]
  94. 94.
    Mijailovich SM, Prodanovic M, Poggesi C, Geeves MA, Regnier M. 2021. Multiscale modeling of twitch contractions in cardiac trabeculae. J. Gen. Physiol. 153:e202012604
    [Google Scholar]
  95. 95.
    Marcucci L, Washio T, Yanagida T. 2019. Proposed mechanism for the length dependence of the force developed in maximally activated muscles. Sci. Rep. 9:1317
    [Google Scholar]
  96. 96.
    Ma W, Nag S, Gong H, Qi L, Irving TC. 2022. Cardiac myosin filaments are directly regulated by calcium. J. Gen. Physiol. 154:e202213213
    [Google Scholar]
  97. 97.
    Holroyde MJ, Potter JD, Solaro RJ. 1979. The calcium binding properties of phosphorylated and unphosphorylated cardiac and skeletal myosins. J. Biol. Chem. 254:6478–82
    [Google Scholar]
  98. 98.
    Previs MJ, Mun JY, Michalek AJ, Previs SB, Gulick J et al. 2016. Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. PNAS 113:3239–44
    [Google Scholar]
  99. 99.
    Matsubara I, Yagi N, Endoh M. 1979. Movement of myosin heads during a heart beat. Nature 278:474–76
    [Google Scholar]
  100. 100.
    Matsubara I, Yagi N, Endoh M. 1980. The states of myosin heads in heart muscle during systolic and diastolic phases. Eur. Heart J. 1:17–20
    [Google Scholar]
  101. 101.
    Previs MJ. 2023. Calcium activation through thick and thin?. J. Gen. Physiol. 155:e202213265
    [Google Scholar]
  102. 102.
    Mun JY, Previs MJ, Yu HY, Gulick J, Tobacman LS et al. 2014. Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism. PNAS 111:2170–75
    [Google Scholar]
  103. 103.
    Kampourakis T, Yan Z, Gautel M, Sun YB, Irving M. 2014. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. PNAS 111:18763–68
    [Google Scholar]
  104. 104.
    Tskhovrebova L, Trinick J. 2003. Titin: properties and family relationships. Nat. Rev. Mol. Cell Biol. 4:679–89
    [Google Scholar]
  105. 105.
    Linke WA. 2018. Titin gene and protein functions in passive and active muscle. Annu. Rev. Physiol. 80:389–411
    [Google Scholar]
  106. 106.
    Tonino P, Kiss B, Strom J, Methawasin M, Smith JE 3rd et al. 2017. The giant protein titin regulates the length of the striated muscle thick filament. Nat. Commun. 8:1041
    [Google Scholar]
  107. 107.
    Powers JD, Bianco P, Pertici I, Reconditi M, Lombardi V, Piazzesi G. 2019. Contracting striated muscle has a dynamic I-band spring with an undamped stiffness one hundred times larger than the passive stiffness. J. Physiol. 598:331–45
    [Google Scholar]
  108. 108.
    Labeit D, Watanabe K, Witt C, Fujita H, Wu Y et al. 2003. Calcium-dependent molecular spring elements in the giant protein titin. PNAS 100:13716–21
    [Google Scholar]
  109. 109.
    Cornachione AS, Leite F, Bagni MA, Rassier DE. 2016. The increase in non-cross-bridge forces after stretch of activated striated muscle is related to titin isoforms. Am. J. Physiol. Cell Physiol. 310:C19–26
    [Google Scholar]
  110. 110.
    Squarci C, Bianco P, Reconditi M, Pertici I, Caremani M et al. 2023. Titin activates myosin filaments in skeletal muscle by switching from an extensible spring to a mechanical rectifier. PNAS 120:e2219346120
    [Google Scholar]
  111. 111.
    Li Y, Hessel AL, Unger A, Ing D, Recker J et al. 2020. Graded titin cleavage progressively reduces tension and uncovers the source of A-band stability in contracting muscle. eLife 9:e64107
    [Google Scholar]
  112. 112.
    Hessel AL, Ma W, Mazara N, Rice PE, Nissen D et al. 2022. Titin force in muscle cells alters lattice order, thick and thin filament protein formation. PNAS 119:e2209441119
    [Google Scholar]
  113. 113.
    Brunello E, Reconditi M, Elangovan R, Linari M, Sun YB et al. 2007. Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin. PNAS 104:20114–19
    [Google Scholar]
  114. 114.
    Fusi L, Reconditi M, Linari M, Brunello E, Elangovan R et al. 2010. The mechanism of the resistance to stretch of isometrically contracting single muscle fibres. J. Physiol. 588:495–510
    [Google Scholar]
  115. 115.
    Caremani M, Pinzauti F, Powers JD, Governali S, Narayanan T et al. 2018. Inotropic interventions do not change the resting state of myosin motors during cardiac diastole. J. Gen. Physiol. 151:53–65
    [Google Scholar]
  116. 116.
    Ait-Mou Y, Hsu K, Farman GP, Kumar M, Greaser ML et al. 2016. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. PNAS 113:2306–11
    [Google Scholar]
  117. 117.
    Kellermayer D, Smith JE 3rd, Granzier H. 2019. Titin mutations and muscle disease. Pflügers Arch 471:673–82
    [Google Scholar]
  118. 118.
    Loescher CM, Hobbach AJ, Linke WA. 2022. Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovasc. Res. 118:2903–18
    [Google Scholar]
  119. 119.
    Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P et al. 2012. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366:619–28
    [Google Scholar]
  120. 120.
    Rees M, Nikoopour R, Fukuzawa A, Kho AL, Fernandez-Garcia MA et al. 2021. Making sense of missense variants in TTN-related congenital myopathies. Acta Neuropathol. 141:431–53
    [Google Scholar]
  121. 121.
    de Tombe PP, Mateja RD, Tachampa K, Mou YA, Farman GP, Irving TC. 2010. Myofilament length dependent activation. J. Mol. Cell. Cardiol. 48:851–58
    [Google Scholar]
  122. 122.
    Sequeira V, van der Velden J. 2017. The Frank-Starling Law: a jigsaw of titin proportions. Biophys. Rev. 9:259–67
    [Google Scholar]
  123. 123.
    Allen DG, Kentish JC. 1985. The cellular basis of the length-tension relation in cardiac muscle. J. Mol. Cell. Cardiol. 17:821–40
    [Google Scholar]
  124. 124.
    Han JC, Taberner AJ, Loiselle DS, Tran K. 2022. Cardiac efficiency and Starling's Law of the Heart. J. Physiol. 600:4265–85
    [Google Scholar]
  125. 125.
    Sequeira V, Wijnker PJ, Nijenkamp LL, Kuster DW, Najafi A et al. 2013. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ. Res. 112:1491–505
    [Google Scholar]
  126. 126.
    Tanner BCW, Awinda PO, Agonias KB, Attili S, Blair CA et al. 2023. Sarcomere length affects Ca2+ sensitivity of contraction in ischemic but not non-ischemic myocardium. J. Gen. Physiol. 155:e202213200
    [Google Scholar]
  127. 127.
    Ma W, Henze M, Anderson RL, Gong H, Wong FL et al. 2021. The super-relaxed state and length dependent activation in porcine myocardium. Circ. Res. 129:617–30
    [Google Scholar]
  128. 128.
    Kampourakis T, Irving M. 2021. The regulatory light chain mediates inactivation of myosin motors during active shortening of cardiac muscle. Nat. Commun. 12:5272
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042222-022728
Loading
/content/journals/10.1146/annurev-physiol-042222-022728
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error