1932

Abstract

Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042222-025000
2024-02-12
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042222-025000.html?itemId=/content/journals/10.1146/annurev-physiol-042222-025000&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B et al. 2010. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92:1369–77
    [Google Scholar]
  2. 2.
    Soltoff SP. 1986. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48:9–31
    [Google Scholar]
  3. 3.
    Bhargava P, Schnellmann RG. 2017. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13:629–46
    [Google Scholar]
  4. 4.
    Galluzzi L, Kepp O, Kroemer G. 2012. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13:780–88
    [Google Scholar]
  5. 5.
    Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. 2012. Mitochondrial control of cellular life, stress, and death. Circ. Res. 111:1198–207
    [Google Scholar]
  6. 6.
    Honda T, Hirakawa Y, Nangaku M. 2019. The role of oxidative stress and hypoxia in renal disease. Kidney Res. Clin. Pract. 38:414–26
    [Google Scholar]
  7. 7.
    Zhan M, Brooks C, Liu F, Sun L, Dong Z. 2013. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83:568–81
    [Google Scholar]
  8. 8.
    Forbes JM, Thorburn DR. 2018. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 14:291–312
    [Google Scholar]
  9. 9.
    Emma F, Montini G, Parikh SM, Salviati L. 2016. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol. 12:267–80
    [Google Scholar]
  10. 10.
    Zhang X, Agborbesong E, Li X. 2021. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int. J. Mol. Sci. 22:11253
    [Google Scholar]
  11. 11.
    Ralto KM, Parikh SM. 2016. Mitochondria in acute kidney injury. Semin. Nephrol. 36:8–16
    [Google Scholar]
  12. 12.
    Sun J, Zhang J, Tian J, Virzì GM, Digvijay K et al. 2019. Mitochondria in sepsis-induced AKI. J. Am. Soc. Nephrol. 30:1151–61
    [Google Scholar]
  13. 13.
    Hall AM, Schuh CD. 2016. Mitochondria as therapeutic targets in acute kidney injury. Curr. Opin. Nephrol. Hypertens. 25:355–62
    [Google Scholar]
  14. 14.
    Braga PC, Alves MG, Rodrigues AS, Oliveira PF. 2022. Mitochondrial pathophysiology on chronic kidney disease. Int. J. Mol. Sci. 23:1776
    [Google Scholar]
  15. 15.
    Duann P, Lin PH. 2017. Mitochondria damage and kidney disease. Adv. Exp. Med. Biol. 982:529–51
    [Google Scholar]
  16. 16.
    Bakis H, Trimouille A, Vermorel A, Goizet C, Belaroussi Y et al. 2023. Renal involvement is frequent in adults with primary mitochondrial disorders: an observational study. Clin. Kidney J. 16:100–10Observational cohort study showing that nephropathies are present in 50% of adults with mitochondrial cytopathies.
    [Google Scholar]
  17. 17.
    Viering D, Schlingmann KP, Hureaux M, Nijenhuis T, Mallett A et al. 2022. Gitelman-like syndrome caused by pathogenic variants in mtDNA. J. Am. Soc. Nephrol. 33:305–25Translational study identifying mitochondrial tRNA mutations as the cause for Gitelman syndrome.
    [Google Scholar]
  18. 18.
    Lee JJ, Tripi LM, Erbe RW, Garimella-Krovi S, Springate JE. 2012. A mitochondrial DNA deletion presenting with corneal clouding and severe Fanconi syndrome. Pediatr. Nephrol. 27:869–72
    [Google Scholar]
  19. 19.
    Kanako KI, Sakakibara N, Murayama K, Nagatani K, Murata S et al. 2022. BCS1L mutations produce Fanconi syndrome with developmental disability. J. Hum. Genet. 67:143–48
    [Google Scholar]
  20. 20.
    Zhou Y, Zhong C, Yang Q, Zhang G, Yang H et al. 2021. Novel SARS2 variants identified in a Chinese girl with HUPRA syndrome. Mol. Genet. Genom. Med. 9:e1650
    [Google Scholar]
  21. 21.
    Fernie AR, Carrari F, Sweetlove LJ. 2004. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 7:254–61
    [Google Scholar]
  22. 22.
    Reichert AS, Neupert W. 2004. Mitochondriomics or what makes us breathe. Trends Genet. 20:555–62
    [Google Scholar]
  23. 23.
    Clark AJ, Parikh SM. 2020. Mitochondrial metabolism in acute kidney injury. Semin. Nephrol. 40:101–13
    [Google Scholar]
  24. 24.
    Duee ED, Vignais PV. 1965. Exchange between extra- and intramitochondrial adenine nucleotides. Biochim. Biophys. Acta Gen. Subj. 107:184–88
    [Google Scholar]
  25. 25.
    Riley JS, Tait SW. 2020. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 21:e49799
    [Google Scholar]
  26. 26.
    Tiku V, Tan MW, Dikic I. 2020. Mitochondrial functions in infection and immunity. Trends Cell Biol. 30:263–75
    [Google Scholar]
  27. 27.
    Weinberg SE, Sena LA, Chandel NS. 2015. Mitochondria in the regulation of innate and adaptive immunity. Immunity 42:406–17
    [Google Scholar]
  28. 28.
    Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. 2017. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun. 482:426–31
    [Google Scholar]
  29. 29.
    Osellame LD, Blacker TS, Duchen MR. 2012. Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin. Endocrinol. Metab. 26:711–23
    [Google Scholar]
  30. 30.
    Angajala A, Lim S, Phillips JB, Kim JH, Yates C et al. 2018. Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front. Immunol. 9:1605
    [Google Scholar]
  31. 31.
    Bock FJ, Tait SWG. 2020. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21:85–100
    [Google Scholar]
  32. 32.
    Rolfe DF, Brown GC. 1997. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77:731–58
    [Google Scholar]
  33. 33.
    Weinberg JM, Venkatachalam MA, Roeser NF, Saikumar P, Dong Z et al. 2000. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am. J. Physiol. Ren. Physiol. 279:F927–43
    [Google Scholar]
  34. 34.
    Hall AM, Unwin RJ, Parker N, Duchen MR. 2009. Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J. Am. Soc. Nephrol. 20:1293–302
    [Google Scholar]
  35. 35.
    Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. 2020. The role of mitochondria in drug-induced kidney injury. Front. Physiol. 11:1079
    [Google Scholar]
  36. 36.
    Gewin LS. 2021. Sugar or fat? Renal tubular metabolism reviewed in health and disease. Nutrients 13:1580
    [Google Scholar]
  37. 37.
    Simon N, Hertig A. 2015. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front. Med. 2:52
    [Google Scholar]
  38. 38.
    Kang HM, Ahn SH, Choi P, Ko YA, Han SH et al. 2015. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21:37–46
    [Google Scholar]
  39. 39.
    Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Pedraza-Chaverri J 2021. Mitochondrial redox signaling and oxidative stress in kidney diseases. Biomolecules 11:1144
    [Google Scholar]
  40. 40.
    Forbes JM. 2016. Mitochondria—power players in kidney function?. Trends Endocrinol. Metab. 27:441–42
    [Google Scholar]
  41. 41.
    Sabbahy ME, Vaidya VS. 2011. Ischemic kidney injury and mechanisms of tissue repair. Wiley Interdiscip. Rev. Syst. Biol. Med. 3:606–18
    [Google Scholar]
  42. 42.
    Houten SM, Wanders RJ. 2010. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 33:469–77
    [Google Scholar]
  43. 43.
    Tian Z, Liang M. 2021. Renal metabolism and hypertension. Nat. Commun. 12:963
    [Google Scholar]
  44. 44.
    Guder WG, Ross BD. 1984. Enzyme distribution along the nephron. Kidney Int. 26:101–11
    [Google Scholar]
  45. 45.
    Rabinowitz JD, Enerbäck S. 2020. Lactate: the ugly duckling of energy metabolism. Nat. Metab. 2:566–71
    [Google Scholar]
  46. 46.
    Holmström KM, Finkel T. 2014. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15:411–21
    [Google Scholar]
  47. 47.
    Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. 2021. Physiological signaling functions of reactive oxygen species in stem cells: from flies to man. Front. Cell Dev. Biol. 9:714370
    [Google Scholar]
  48. 48.
    Matilainen O, Quirós PM, Auwerx J. 2017. Mitochondria and epigenetics—crosstalk in homeostasis and stress. Trends Cell Biol. 27:453–63
    [Google Scholar]
  49. 49.
    Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH et al. 2007. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–39
    [Google Scholar]
  50. 50.
    Gonzalez-Vicente A, Hong N, Garvin JL. 2019. Effects of reactive oxygen species on renal tubular transport. Am. J. Physiol. Ren. Physiol. 317:F444–55
    [Google Scholar]
  51. 51.
    Yu L, Bao H-F, Self JL, Eaton DC, Helms MN. 2007. Aldosterone-induced increases in superoxide production counters nitric oxide inhibition of epithelial Na channel activity in A6 distal nephron cells. Am. J. Physiol. Ren. Physiol. 293:F1666–77
    [Google Scholar]
  52. 52.
    Ortiz PA, Garvin JL. 2002. Superoxide stimulates NaCl absorption by the thick ascending limb. Am. J. Physiol. Ren. Physiol. 283:F957–62
    [Google Scholar]
  53. 53.
    Sharma S, Dewald O, Adrogue J, Salazar RL, Razeghi P et al. 2006. Induction of antioxidant gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species. Free Radic. Biol. Med. 40:2223–31
    [Google Scholar]
  54. 54.
    Sohal RS, Dubey A. 1994. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic. Biol. Med. 16:621–26
    [Google Scholar]
  55. 55.
    Shields HJ, Traa A, Van Raamsdonk JM. 2021. Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front. Cell Dev. Biol. 9:628157
    [Google Scholar]
  56. 56.
    Weisiger RA, Fridovich I. 1973. Mitochondrial superoxide dismutase: site of synthesis and intramitochondrial localization. J. Biol. Chem. 248:4793–96
    [Google Scholar]
  57. 57.
    Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL. 2012. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes 61:2074–83
    [Google Scholar]
  58. 58.
    Galvan DL, Mise K, Danesh FR. 2021. Mitochondrial regulation of diabetic kidney disease. Front. Med. 8:745279
    [Google Scholar]
  59. 59.
    Tilokani L, Nagashima S, Paupe V, Prudent J. 2018. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 62:341–60
    [Google Scholar]
  60. 60.
    Detmer SA, Chan DC. 2007. Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8:870–79
    [Google Scholar]
  61. 61.
    Nunnari J, Marshall WF, Straight A, Murray A, Sedat J, Walter P. 1997. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. 8:1233–42
    [Google Scholar]
  62. 62.
    Mishra P, Chan DC. 2016. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212:379–87
    [Google Scholar]
  63. 63.
    Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J. 2009. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. PNAS 106:11960–65
    [Google Scholar]
  64. 64.
    Ni HM, Williams JA, Ding WX. 2015. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 4:6–13
    [Google Scholar]
  65. 65.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–39
    [Google Scholar]
  66. 66.
    Cleveland KH, Brosius FC 3rd, Schnellmann RG. 2020. Regulation of mitochondrial dynamics and energetics in the diabetic renal proximal tubule by the β2-adrenergic receptor agonist formoterol. Am. J. Physiol. Ren. Physiol. 319:F773–79
    [Google Scholar]
  67. 67.
    Andreux PA, Houtkooper RH, Auwerx J. 2013. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 12:465–83
    [Google Scholar]
  68. 68.
    Gilbert K, Nian H, Yu C, Luther JM, Brown NJ. 2013. Fenofibrate lowers blood pressure in salt-sensitive but not salt-resistant hypertension. J. Hypertens. 31:820–29
    [Google Scholar]
  69. 69.
    Giles TD, Sander GE. 2007. Effects of thiazolidinediones on blood pressure. Curr. Hypertens. Rep. 9:332–37
    [Google Scholar]
  70. 70.
    Liu Y, Ma W, Zhang P, He S, Huang D. 2015. Effect of resveratrol on blood pressure: a meta-analysis of randomized controlled trials. Clin. Nutr. 34:27–34
    [Google Scholar]
  71. 71.
    Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–65
    [Google Scholar]
  72. 72.
    Taanman JW. 1999. The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta Bioenerg. 1410:103–23
    [Google Scholar]
  73. 73.
    Brecht M, Richardson M, Taranath A, Grist S, Thorburn D, Bratkovic D. 2015. Leigh syndrome caused by the MT-ND5 m.13513G>A mutation: a case presenting with WPW-like conduction defect, cardiomyopathy, hypertension and hyponatraemia. JIMD Rep. 19:95–100
    [Google Scholar]
  74. 74.
    Swiderska N, Appleton R, Morris A, Isherwood D, Selby A. 2010. A novel presentation of inappropriate antidiuretic hormone secretion in Leigh syndrome with the myoclonic epilepsy and ragged red fibers, mitochondrial DNA 8344A>G mutation. J. Child Neurol. 25:782–85
    [Google Scholar]
  75. 75.
    Shoffner JM, Voljavec AS, Dixon J, Kaufman A, Wallace DC, Mitch WE. 1995. Renal amino acid transport in adults with oxidative phosphorylation diseases. Kidney Int. 47:1101–7
    [Google Scholar]
  76. 76.
    Yu XL, Yan CZ, Ji KQ, Lin PF, Xu XB et al. 2018. Clinical, neuroimaging, and pathological analyses of 13 Chinese Leigh syndrome patients with mitochondrial DNA mutations. Chin. Med. J. 131:2705–12
    [Google Scholar]
  77. 77.
    Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF et al. 2004. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 306:1190–94
    [Google Scholar]
  78. 78.
    Konrad M, Schlingmann KP, Gudermann T. 2004. Insights into the molecular nature of magnesium homeostasis. Am. J. Physiol. Ren. Physiol. 286:F599–605
    [Google Scholar]
  79. 79.
    Smits P, Mattijssen S, Morava E, van den Brand M, van den Brandt F et al. 2010. Functional consequences of mitochondrial tRNA Trp and tRNA Arg mutations causing combined OXPHOS defects. Eur. J. Hum. Genet. 18:324–29
    [Google Scholar]
  80. 80.
    Morgan-Hughes JA, Sweeney MG, Cooper JM, Hammans SR, Brockington M et al. 1995. Mitochondrial-DNA (mtDNA) diseases: correlation of genotype to phenotype. Biochim. Biophys. Acta Mol. Basis Dis. 1271:135–40
    [Google Scholar]
  81. 81.
    Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. 2003. Mitochondrial threshold effects. Biochem. J. 370:751–62
    [Google Scholar]
  82. 82.
    Imasawa T, Hirano D, Nozu K, Kitamura H, Hattori M et al. 2022. Clinicopathologic features of mitochondrial nephropathy. Kidney Int. Rep. 7:580–90Nationwide survey in Japan describing the clinicopathologic features and prognosis of mitochondrial nephropathy.
    [Google Scholar]
  83. 83.
    Govers LP, Toka HR, Hariri A, Walsh SB, Bockenhauer D. 2021. Mitochondrial DNA mutations in renal disease: an overview. Pediatr. Nephrol. 36:9–17
    [Google Scholar]
  84. 84.
    Connor TM, Hoer S, Mallett A, Gale DP, Gomez-Duran A et al. 2017. Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLOS Genet. 13:e1006620
    [Google Scholar]
  85. 85.
    Ali AT, Boehme L, Carbajosa G, Seitan VC, Small KS, Hodgkinson A. 2019. Nuclear genetic regulation of the human mitochondrial transcriptome. eLife 8:e41927
    [Google Scholar]
  86. 86.
    Ames BN. 2006. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. PNAS 103:17589–94
    [Google Scholar]
  87. 87.
    Killilea DW, Killilea AN. 2022. Mineral requirements for mitochondrial function: a connection to redox balance and cellular differentiation. Free Radic. Biol. Med. 182:182–91
    [Google Scholar]
  88. 88.
    Hagen TM, Liu J, Lykkesfeldt J, Wehr CM, Ingersoll RT et al. 2002. Feeding acetyl-l-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. PNAS 99:1870–75
    [Google Scholar]
  89. 89.
    Wesselink E, Koekkoek WAC, Grefte S, Witkamp R, van Zanten AHR. 2019. Feeding mitochondria: potential role of nutritional components to improve critical illness convalescence. Clin. Nutr. 38:982–95
    [Google Scholar]
  90. 90.
    McCormick SP, Moore MJ, Lindahl PA. 2015. Detection of labile low-molecular-mass transition metal complexes in mitochondria. Biochemistry 54:3442–53
    [Google Scholar]
  91. 91.
    Lindahl PA, Moore MJ. 2016. Labile low-molecular-mass metal complexes in mitochondria: trials and tribulations of a burgeoning field. Biochemistry 55:4140–53
    [Google Scholar]
  92. 92.
    Atkinson A, Winge DR. 2009. Metal acquisition and availability in the mitochondria. Chem. Rev. 109:4708–21
    [Google Scholar]
  93. 93.
    Murphy E, Eisner DA. 2009. Regulation of intracellular and mitochondrial sodium in health and disease. Circ. Res. 104:292–303
    [Google Scholar]
  94. 94.
    Sedova M, Blatter LA. 2000. Intracellular sodium modulates mitochondrial calcium signaling in vascular endothelial cells. J. Biol. Chem. 275:35402–7
    [Google Scholar]
  95. 95.
    Laskowski M, Augustynek B, Kulawiak B, Koprowski P, Bednarczyk P et al. 2016. What do we not know about mitochondrial potassium channels?. Biochim. Biophys. Acta Bioenerg. 1857:1247–57
    [Google Scholar]
  96. 96.
    Paggio A, Checchetto V, Campo A, Menabò R, Di Marco G et al. 2019. Identification of an ATP-sensitive potassium channel in mitochondria. Nature 572:609–13
    [Google Scholar]
  97. 97.
    Garlid KD. 1996. Cation transport in mitochondria—the potassium cycle. Biochim. Biophys. Acta Bioenerg. 1275:123–26
    [Google Scholar]
  98. 98.
    Larsen TM, Laughlin LT, Holden HM, Rayment I, Reed GH. 1994. Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate. Biochemistry 33:6301–9
    [Google Scholar]
  99. 99.
    Denton RM. 2009. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta Bioenerg. 1787:1309–16
    [Google Scholar]
  100. 100.
    Territo PR, Mootha VK, French SA, Balaban RS. 2000. Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the F0/F1-ATPase. Am. J. Physiol. Cell Physiol. 278:C423–35
    [Google Scholar]
  101. 101.
    Ohshima Y, Takata N, Suzuki-Karasaki M, Yoshida Y, Tokuhashi Y, Suzuki-Karasaki Y. 2017. Disrupting mitochondrial Ca2+ homeostasis causes tumor-selective TRAIL sensitization through mitochondrial network abnormalities. Int. J. Oncol. 51:1146–58
    [Google Scholar]
  102. 102.
    Killilea DW, Ames BN. 2008. Magnesium deficiency accelerates cellular senescence in cultured human fibroblasts. PNAS 105:5768–73
    [Google Scholar]
  103. 103.
    Dickens B, Weglicki W, Li Y-S, Mak I. 1992. Magnesium deficiency in vitro enhances free radical-induced intracellular oxidation and cytotoxicity in endothelial cells. FEBS Lett. 311:187–91
    [Google Scholar]
  104. 104.
    Layton AT, Vallon V, Edwards A. 2016. A computational model for simulating solute transport and oxygen consumption along the nephrons. Am. J. Physiol. Ren. Physiol. 311:F1378–90
    [Google Scholar]
  105. 105.
    Hansen J, Sealfon R, Menon R, Eadon MT, Lake BB et al. 2022. A reference tissue atlas for the human kidney. Sci. Adv. 8:eabn4965Combines single-cell omics data sets to establish aerobic and anaerobic energy metabolism along the nephron.
    [Google Scholar]
  106. 106.
    Uchida S, Endou H. 1988. Substrate specificity to maintain cellular ATP along the mouse nephron. Am. J. Physiol. 255:F977–83
    [Google Scholar]
  107. 107.
    Guder WG, Wagner S, Wirthensohn G. 1986. Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int. 29:41–45
    [Google Scholar]
  108. 108.
    Le Hir M, Dubach UC 1982. Peroxisomal and mitochondrial beta-oxidation in the rat kidney: distribution of fatty acyl-coenzyme A oxidase and 3-hydroxyacyl-coenzyme A dehydrogenase activities along the nephron. J. Histochem. Cytochem. 30:441–44
    [Google Scholar]
  109. 109.
    Vasko R. 2016. Peroxisomes and kidney injury. Antioxid. Redox Signal. 25:217–31
    [Google Scholar]
  110. 110.
    Legouis D, Faivre A, Cippà PE, de Seigneux S. 2022. Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. Nephrol. Dial. Transplant. 37:1417–25
    [Google Scholar]
  111. 111.
    Lee HW, Osis G, Handlogten ME, Lamers WH, Chaudhry FA et al. 2016. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism. Am. J. Physiol. Ren. Physiol. 310:F1229–42
    [Google Scholar]
  112. 112.
    Conjard A, Martin M, Guitton J, Baverel G, Ferrier B. 2001. Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline. Biochem. J. 360:371–77
    [Google Scholar]
  113. 113.
    Saudubray JM, Martin D, de Lonlay P, Touati G, Poggi-Travert F et al. 1999. Recognition and management of fatty acid oxidation defects: a series of 107 patients. J. Inherit. Metab. Dis. 22:488–502
    [Google Scholar]
  114. 114.
    Atale A, Bonneau-Amati P, Rotig A, Fischer A, Perez-Martin S et al. 2009. Tubulopathy and pancytopaenia with normal pancreatic function: a variant of Pearson syndrome. Eur. J. Med. Genet. 52:23–26
    [Google Scholar]
  115. 115.
    Chae JH, Lim BC, Cheong HI, Hwang YS, Kim KJ, Hwang H. 2010. A single large-scale deletion of mtDNA in a child with recurrent encephalopathy and tubulopathy. J. Neurol. Sci. 292:104–6
    [Google Scholar]
  116. 116.
    Ho J, Pacaud D, Rakic M, Khan A. 2014. Diabetes in pediatric patients with Kearns-Sayre syndrome: clinical presentation of 2 cases and a review of pathophysiology. Can. J. Diabetes 38:225–28
    [Google Scholar]
  117. 117.
    Morikawa Y, Matsuura N, Kakudo K, Higuchi R, Koike M, Kobayashi Y. 1993. Pearson's marrow/pancreas syndrome: a histological and genetic study. Virchows Arch. A Pathol. Anat. Histopathol. 423:227–31
    [Google Scholar]
  118. 118.
    Topaloglu R, Lebre AS, Demirkaya E, Kuskonmaz B, Coskun T et al. 2008. Two new cases with Pearson syndrome and review of Hacettepe experience. Turk J. Pediatr. 50:572–76
    [Google Scholar]
  119. 119.
    Duncan AJ, Bitner-Glindzicz M, Meunier B, Costello H, Hargreaves IP et al. 2009. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am. J. Hum. Genet. 84:558–66
    [Google Scholar]
  120. 120.
    Fellman V. 2002. The GRACILE syndrome, a neonatal lethal metabolic disorder with iron overload. Blood Cells Mol. Dis. 29:444–50
    [Google Scholar]
  121. 121.
    Jackson CB, Bauer MF, Schaller A, Kotzaeridou U, Ferrarini A et al. 2016. A novel mutation in BCS1L associated with deafness, tubulopathy, growth retardation and microcephaly. Eur. J. Pediatr. 175:517–25
    [Google Scholar]
  122. 122.
    Prasad C, Melancon SB, Rupar CA, Prasad AN, Nunez LD et al. 2013. Exome sequencing reveals a homozygous mutation in TWINKLE as the cause of multisystemic failure including renal tubulopathy in three siblings. Mol. Genet. Metab. 108:190–94
    [Google Scholar]
  123. 123.
    Bourdon A, Minai L, Serre V, Jais JP, Sarzi E et al. 2007. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 39:776–80
    [Google Scholar]
  124. 124.
    Carrozzo R, Dionisi-Vici C, Steuerwald U, Lucioli S, Deodato F et al. 2007. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130:862–74
    [Google Scholar]
  125. 125.
    Hoefs SJ, Dieteren CE, Rodenburg RJ, Naess K, Bruhn H et al. 2009. Baculovirus complementation restores a novel NDUFAF2 mutation causing complex I deficiency. Hum. Mutat. 30:E728–36
    [Google Scholar]
  126. 126.
    Honzik T, Tesarova M, Mayr JA, Hansikova H, Jesina P et al. 2010. Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation. Arch. Dis. Child 95:296–301
    [Google Scholar]
  127. 127.
    Kose M, Canda E, Kagnici M, Aykut A, Adebali O et al. 2020. SURF1 related Leigh syndrome: clinical and molecular findings of 16 patients from Turkey. Mol. Genet. Metab. Rep. 25:100657
    [Google Scholar]
  128. 128.
    Tucker EJ, Wanschers BF, Szklarczyk R, Mountford HS, Wijeyeratne XW et al. 2013. Mutations in the UQCC1-interacting protein, UQCC2, cause human complex III deficiency associated with perturbed cytochrome b protein expression. PLOS Genet. 9:e1004034
    [Google Scholar]
  129. 129.
    Choe Y, Park E, Hyun HS, Ko JM, Kang HG et al. 2017. A 7-year-old girl presenting with a Bartter-like phenotype: answers. Pediatr. Nephrol. 32:983–85
    [Google Scholar]
  130. 130.
    Town M, Jean G, Cherqui S, Attard M, Forestier L et al. 1998. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat. Genet. 18:319–24
    [Google Scholar]
  131. 131.
    David D, Princiero Berlingerio S, Elmonem MA, Oliveira Arcolino F, Soliman N et al. 2019. Molecular basis of cystinosis: geographic distribution, functional consequences of mutations in the CTNS gene, and potential for repair. Nephron 141:133–46
    [Google Scholar]
  132. 132.
    Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B et al. 1996. A common molecular basis for three inherited kidney stone diseases. Nature 379:445–49
    [Google Scholar]
  133. 133.
    Pusch M, Zifarelli G. 2015. ClC-5: physiological role and biophysical mechanisms. Cell Calcium 58:57–66
    [Google Scholar]
  134. 134.
    Duan N, Huang C, Pang L, Jiang S, Yang W, Li H. 2021. Clinical manifestation and genetic findings in three boys with low molecular weight proteinuria—three case reports for exploring Dent disease and Fanconi syndrome. BMC Nephrol. 22:24
    [Google Scholar]
  135. 135.
    Sansanwal P, Yen B, Gahl WA, Ma Y, Ying L et al. 2010. Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J. Am. Soc. Nephrol. 21:272–83Demonstrates that abnormal mitophagy contributes to renal Fanconi syndrome in nephropathic cystinosis.
    [Google Scholar]
  136. 136.
    Festa BP, Chen Z, Berquez M, Debaix H, Tokonami N et al. 2018. Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat. Commun. 9:161
    [Google Scholar]
  137. 137.
    Galarreta CI, Forbes MS, Thornhill BA, Antignac C, Gubler MC et al. 2015. The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis. Am. J. Physiol. Ren. Physiol. 308:F1155–66
    [Google Scholar]
  138. 138.
    Bellomo F, Signorile A, Tamma G, Ranieri M, Emma F, De Rasmo D. 2018. Impact of atypical mitochondrial cyclic-AMP level in nephropathic cystinosis. Cell Mol. Life Sci. 75:3411–22
    [Google Scholar]
  139. 139.
    Levtchenko EN, Wilmer MJ, Janssen AJ, Koenderink JB, Visch HJ et al. 2006. Decreased intracellular ATP content and intact mitochondrial energy generating capacity in human cystinotic fibroblasts. Pediatr. Res. 59:287–92
    [Google Scholar]
  140. 140.
    De Rasmo D, Signorile A, De Leo E, Polishchuk EV, Ferretta A et al. 2019. Mitochondrial dynamics of proximal tubular epithelial cells in nephropathic cystinosis. Int. J. Mol. Sci. 21:192
    [Google Scholar]
  141. 141.
    Jamalpoor A, van Gelder CA, Yousef Yengej FA, Zaal EA, Berlingerio SP et al. 2021. Cysteamine-bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis. EMBO Mol. Med. 13:e13067
    [Google Scholar]
  142. 142.
    Gailly P, Jouret F, Martin D, Debaix H, Parreira KS et al. 2008. A novel renal carbonic anhydrase type III plays a role in proximal tubule dysfunction. Kidney Int. 74:52–61
    [Google Scholar]
  143. 143.
    Devuyst O, Luciani A. 2015. Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule. J. Physiol. 593:4151–64
    [Google Scholar]
  144. 144.
    Mount DB. 2014. Thick ascending limb of the loop of Henle. Clin. J. Am. Soc. Nephrol. 9:1974–86
    [Google Scholar]
  145. 145.
    Bagnasco S, Good D, Balaban R, Burg M. 1985. Lactate production in isolated segments of the rat nephron. Am. J. Physiol. 248:F522–26
    [Google Scholar]
  146. 146.
    Menegon LF, Amaral TN, Gontijo JA. 2004. Renal sodium handling study in an atypical case of Bartter's syndrome associated with mitochondriopathy and sensorineural blindness. Ren. Fail. 26:195–97
    [Google Scholar]
  147. 147.
    Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E et al. 1997. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat. Genet. 17:171–78
    [Google Scholar]
  148. 148.
    Schlingmann KP, Jouret F, Shen K, Nigam A, Arjona FJ et al. 2021. mTOR-activating mutations in RRAGD are causative for kidney tubulopathy and cardiomyopathy. J. Am. Soc. Nephrol. 32:2885–99
    [Google Scholar]
  149. 149.
    Zhang Y, Sun Y, Ding G, Huang S, Zhang A, Jia Z. 2015. Inhibition of mitochondrial complex-1 prevents the downregulation of NKCC2 and ENaCα in obstructive kidney disease. Sci. Rep. 5:12480
    [Google Scholar]
  150. 150.
    Piechotta K, Lu J, Delpire E. 2002. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J. Biol. Chem. 277:50812–19
    [Google Scholar]
  151. 151.
    Lin SH, Yu IS, Jiang ST, Lin SW, Chu P et al. 2011. Impaired phosphorylation of Na+-K+-2Cl cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. PNAS 108:17538–43
    [Google Scholar]
  152. 152.
    Kemter E, Frohlich T, Arnold GJ, Wolf E, Wanke R. 2017. Mitochondrial dysregulation secondary to endoplasmic reticulum stress in autosomal dominant tubulointerstitial kidney disease–UMOD (ADTKD-UMOD). Sci. Rep. 7:42970
    [Google Scholar]
  153. 153.
    Hierholzer K, Wiederholt M. 1976. Some aspects of distal tubular solute and water transport. Kidney Int. 9:198–213
    [Google Scholar]
  154. 154.
    Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH et al. 1999. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 274:8375–78
    [Google Scholar]
  155. 155.
    Franken GAC, Adella A, Bindels RJM, de Baaij JHF 2021. Mechanisms coupling sodium and magnesium reabsorption in the distal convoluted tubule of the kidney. Acta Physiol. 231:e13528
    [Google Scholar]
  156. 156.
    Katz A, Doucet A, Morel F. 1979. Na-K-ATPase activity along the rabbit, rat, and mouse nephron. Am. J. Physiol. Ren. Physiol. 237:F114–20
    [Google Scholar]
  157. 157.
    Dørup J. 1985. Ultrastructure of distal nephron cells in rat renal cortex. J. Ultrastruct. Res. 92:101–18
    [Google Scholar]
  158. 158.
    Schmid H, Mall A, Scholz M, Schmidt U. 1980. Unchanged glycolytic capacity in rat kidney under conditions of stimulated gluconeogenesis. Determination of phosphofructokinase and pyruvate kinase in microdissected nephron segments of fasted and acidotic animals. Hoppe Seylers Z. Physiol. Chem. 361:819–28
    [Google Scholar]
  159. 159.
    Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE et al. 1996. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat. Genet. 12:24–30
    [Google Scholar]
  160. 160.
    Ellison DH, Welling P. 2021. Insights into salt handling and blood pressure. N. Engl. J. Med. 385:1981–93
    [Google Scholar]
  161. 161.
    Grimm PR, Coleman R, Delpire E, Welling PA. 2017. Constitutively active SPAK causes hyperkalemia by activating NCC and remodeling distal tubules. J. Am. Soc. Nephrol. 28:2597–606
    [Google Scholar]
  162. 162.
    Palmer LG, Schnermann J. 2015. Integrated control of Na transport along the nephron. Clin. J. Am. Soc. Nephrol. 10:676–87
    [Google Scholar]
  163. 163.
    Dikalov SI, Nazarewicz RR. 2013. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid. Redox Signal. 19:1085–94
    [Google Scholar]
  164. 164.
    de Baaij JHF. 2023. Magnesium reabsorption in the kidney. Am. J. Physiol. Ren. Physiol. 324:F227–44
    [Google Scholar]
  165. 165.
    Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G et al. 2004. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279:19–25
    [Google Scholar]
  166. 166.
    Blanchard MG, Kittikulsuth W, Nair AV, de Baaij JH, Latta F et al. 2016. Regulation of Mg2+ reabsorption and transient receptor potential melastatin type 6 activity by cAMP signaling. J. Am. Soc. Nephrol. 27:804–13
    [Google Scholar]
  167. 167.
    Nair AV, Hocher B, Verkaart S, van Zeeland F, Pfab T et al. 2012. Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. PNAS 109:11324–29
    [Google Scholar]
  168. 168.
    Groenestege WM, Thebault S, van der Wijst J, van den Berg D, Janssen R et al. 2007. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J. Clin. Investig. 117:2260–67
    [Google Scholar]
  169. 169.
    Franken GAC, Seker M, Bos C, Siemons LAH, van der Eerden BCJ et al. 2021. Cyclin M2 (CNNM2) knockout mice show mild hypomagnesaemia and developmental defects. Sci. Rep. 11:8217
    [Google Scholar]
  170. 170.
    de Baaij JHF, Arjona FJ, van den Brand M, Lavrijsen M, Lameris AL et al. 2016. Identification of SLC41A3 as a novel player in magnesium homeostasis. Sci. Rep. 6:28565
    [Google Scholar]
  171. 171.
    Hirota C, Takashina Y, Yoshino Y, Hasegawa H, Okamoto E et al. 2021. Reactive oxygen species downregulate transient receptor potential melastatin 6 expression mediated by the elevation of miR-24-3p in renal tubular epithelial cells. Cells 10:1893
    [Google Scholar]
  172. 172.
    Cao G, Lee KP, van der Wijst J, de Graaf M, van der Kemp A et al. 2010. Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress. J. Biol. Chem. 285:26081–87
    [Google Scholar]
  173. 173.
    Kurstjens S, de Baaij JH, Bouras H, Bindels RJ, Tack CJ, Hoenderop JG. 2017. Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 176:11–19
    [Google Scholar]
  174. 174.
    Oost LJ, van Heck JIP, Tack CJ, de Baaij JHF. 2022. The association between hypomagnesemia and poor glycaemic control in type 1 diabetes is limited to insulin resistant individuals. Sci. Rep. 12:6433
    [Google Scholar]
  175. 175.
    Kurstjens S, Smeets B, Overmars-Bos C, Dijkman HB, den Braanker DJW et al. 2019. Renal phospholipidosis and impaired magnesium handling in high-fat-diet-fed mice. FASEB J. 33:7192–201
    [Google Scholar]
  176. 176.
    Kurstjens S, van Diepen JA, Overmars-Bos C, Alkema W, Bindels RJM et al. 2018. Magnesium deficiency prevents high-fat-diet-induced obesity in mice. Diabetologia 61:2030–42
    [Google Scholar]
  177. 177.
    Dewhurst AG, Hall D, Schwartz MS, McKeran RO. 1986. Kearns-Sayre syndrome, hypoparathyroidism, and basal ganglia calcification. J. Neurol. Neurosurg. Psychiatry 49:1323–24
    [Google Scholar]
  178. 178.
    Simopoulos AP, Delea CS, Bartter FC. 1971. Neurodegenerative disorders and hyperaldosteronism. J. Pediatr. 79:633–41
    [Google Scholar]
  179. 179.
    Rheuban KS, Ayres NA, Sellers TD, Dimarco JP. 1983. Near-fatal Kearns-Sayre syndrome—a case-report and review of clinical manifestations. Clin. Pediatr. 22:822–25
    [Google Scholar]
  180. 180.
    Jia Z, Zhuang Y, Hu C, Zhang X, Ding G et al. 2016. Albuminuria enhances NHE3 and NCC via stimulation of mitochondrial oxidative stress/angiotensin II axis. Oncotarget 7:47134–44
    [Google Scholar]
  181. 181.
    Goto Y, Itami N, Kajii N, Tochimaru H, Endo M, Horai S. 1990. Renal tubular involvement mimicking Bartter syndrome in a patient with Kearns-Sayre syndrome. J. Pediatr. 116:904–10
    [Google Scholar]
  182. 182.
    Emma F, Pizzini C, Tessa A, Di Giandomenico S, Onetti-Muda A et al. 2006. Bartter-like” phenotype in Kearns-Sayre syndrome. Pediatr. Nephrol. 21:355–60
    [Google Scholar]
  183. 183.
    Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S et al. 2011. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am. J. Hum. Genet. 88:193–200
    [Google Scholar]
  184. 184.
    Kari JA, Alshaya HO, Al-Agah A, Jan MM 2006. Mitochondrial cytopathy presenting with features of Gitelman's syndrome. Neurosciences 11:117–18
    [Google Scholar]
  185. 185.
    Emma F, Bertini E, Salviati L, Montini G. 2012. Renal involvement in mitochondrial cytopathies. Pediatr. Nephrol. 27:539–50
    [Google Scholar]
  186. 186.
    Harvey JN, Barnett D. 1992. Endocrine dysfunction in Kearns-Sayre syndrome. Clin. Endocrinol. 37:97–103
    [Google Scholar]
  187. 187.
    Pellock JM, Behrens M, Lewis L, Holub D, Carter S, Rowland LP. 1978. Kearns-Sayre syndrome and hypoparathyroidism. Ann. Neurol. 3:455–58
    [Google Scholar]
  188. 188.
    Katsanos KH, Elisaf M, Bairaktari E, Tsianos EV. 2001. Severe hypomagnesemia and hypoparathyroidism in Kearns-Sayre syndrome. Am. J. Nephrol. 21:150–53
    [Google Scholar]
  189. 189.
    Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM et al. 1998. Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl cotransporter of the distal convoluted tubule. J. Biol. Chem. 273:29150–55
    [Google Scholar]
  190. 190.
    Kaissling B, Stanton BA. 1988. Adaptation of distal tubule and collecting duct to increased sodium delivery. I. Ultrastructure. Am. J. Physiol. 255:F1256–68
    [Google Scholar]
  191. 191.
    Ellison DH, Velazquez H, Wright FS. 1989. Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J. Clin. Investig. 83:113–26
    [Google Scholar]
  192. 192.
    Sawa H, Weinman EJ, Hyde SE 3rd, Eknoyan G. 1976. Renal and hepatic mitochondrial effects of diuretics in the rat. Biochem. Pharmacol. 25:2649–55
    [Google Scholar]
  193. 193.
    Adalat S, Woolf AS, Johnstone KA, Wirsing A, Harries LW et al. 2009. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J. Am. Soc. Nephrol. 20:1123–31
    [Google Scholar]
  194. 194.
    Stiles CE, Thuraisingham R, Bockenhauer D, Platts L, Kumar AV, Korbonits M. 2018. De novo HNF1 homeobox B mutation as a cause for chronic, treatment-resistant hypomagnesaemia. Endocrinol. Diabetes Metab. Case Rep. 2018:17–21
    [Google Scholar]
  195. 195.
    Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E et al. 2011. Spectrum of mutations in Gitelman syndrome. J. Am. Soc. Nephrol. 22:693–703
    [Google Scholar]
  196. 196.
    Schlingmann KP, Bandulik S, Mammen C, Tarailo-Graovac M, Holm R et al. 2018. Germline de novo mutations in ATP1A1 cause renal hypomagnesemia, refractory seizures, and intellectual disability. Am. J. Hum. Genet. 103:808–16
    [Google Scholar]
  197. 197.
    de Baaij JHF, Dorresteijn EM, Hennekam EAM, Kamsteeg E-J, Meijer R et al. 2015. Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia. Nephrol. Dial. Transplant. 30:952–57
    [Google Scholar]
  198. 198.
    Zhang C, Wang L, Zhang J, Su X-T, Lin D-H et al. 2014. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). PNAS 111:11864–69
    [Google Scholar]
  199. 199.
    Paulais M, Bloch-Faure M, Picard N, Jacques T, Ramakrishnan SK et al. 2011. Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome. PNAS 108:10361–66
    [Google Scholar]
  200. 200.
    Schlingmann KP, Renigunta A, Hoorn EJ, Forst A-L, Renigunta V et al. 2021. Defects in KCNJ16 cause a novel tubulopathy with hypokalemia, salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. J. Am. Soc. Nephrol. 32:1498–512
    [Google Scholar]
  201. 201.
    Ferrè S, de Baaij JHF, Ferreira P, Germann R, de Klerk JBC et al. 2014. Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting. J. Am. Soc. Nephrol. 25:574–86
    [Google Scholar]
  202. 202.
    Walsh SB, Unwin RJ. 2012. Renal tubular disorders. Clin. Med. 12:476–79
    [Google Scholar]
  203. 203.
    Wall SM, Lazo-Fernandez Y. 2015. The role of pendrin in renal physiology. Annu. Rev. Physiol. 77:363–78
    [Google Scholar]
  204. 204.
    Chambrey R, Kurth I, Peti-Peterdi J, Houillier P, Purkerson JM et al. 2013. Renal intercalated cells are rather energized by a proton than a sodium pump. PNAS 110:7928–33
    [Google Scholar]
  205. 205.
    Hering-Smith KS, Hamm LL. 1998. Metabolic support of collecting duct transport. Kidney Int. 53:408–15
    [Google Scholar]
  206. 206.
    Christensen EI, Wagner CA, Kaissling B. 2012. Uriniferous tubule: structural and functional organization. Compr. Physiol. 2:805–61
    [Google Scholar]
  207. 207.
    Kaissling B. 1982. Structural aspects of adaptive changes in renal electrolyte excretion. Am. J. Physiol. Ren. Physiol. 243:F211–26
    [Google Scholar]
  208. 208.
    Kaissling B. 1985. Cellular heterogeneity of the distal nephron and its relation to function. Klin. Wochenschr. 63:868–76
    [Google Scholar]
  209. 209.
    Da Silva N, Pisitkun T, Belleannée C, Miller LR, Nelson R et al. 2010. Proteomic analysis of V-ATPase-rich cells harvested from the kidney and epididymis by fluorescence-activated cell sorting. Am. J. Physiol. Cell Physiol. 298:C1326–42
    [Google Scholar]
  210. 210.
    Park J, Shrestha R, Qiu C, Kondo A, Huang S et al. 2018. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:758–63
    [Google Scholar]
  211. 211.
    Ghazi S, Bourgeois S, Gomariz A, Bugarski M, Haenni D et al. 2020. Multiparametric imaging reveals that mitochondria-rich intercalated cells in the kidney collecting duct have a very high glycolytic capacity. FASEB J. 34:8510–25
    [Google Scholar]
  212. 212.
    Parra KJ, Kane PM. 1998. Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol. Cell. Biol. 18:7064–74
    [Google Scholar]
  213. 213.
    Lu M, Holliday LS, Zhang L, Dunn WA, Gluck SL. 2001. Interaction between aldolase and vacuolar H+-ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. J. Biol. Chem. 276:30407–13
    [Google Scholar]
  214. 214.
    Thorens B, Lodish HF, Brown D. 1990. Differential localization of two glucose transporter isoforms in rat kidney. Am. J. Physiol. Cell Physiol. 259:C286–94
    [Google Scholar]
  215. 215.
    Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV et al. 1999. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J. 18:4999–5008
    [Google Scholar]
  216. 216.
    Thai TL, Yu L, Galarza-Paez L, Wu MM, Lam HY et al. 2015. The polarized effect of intracellular calcium on the renal epithelial sodium channel occurs as a result of subcellular calcium signaling domains maintained by mitochondria. J. Biol. Chem. 290:28805–11
    [Google Scholar]
  217. 217.
    Lu X, Wang F, Liu M, Yang KT, Nau A et al. 2016. Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: involvement of Nox4-derived hydrogen peroxide. Am. J. Physiol. Ren. Physiol. 310:F1243–50
    [Google Scholar]
  218. 218.
    Ren Y, Janic B, Kutskill K, Peterson EL, Carretero OA. 2016. Mechanisms of connecting tubule glomerular feedback enhancement by aldosterone. Am. J. Physiol. Ren. Physiol. 311:F1182–88
    [Google Scholar]
  219. 219.
    Suarez PE, Rodriguez EG, Soundararajan R, Mérillat A-M, Stehle J-C et al. 2012. The glucocorticoid-induced leucine zipper (Gilz/Tsc22d3-2) gene locus plays a crucial role in male fertility. Mol. Endocrinol. 26:1000–13
    [Google Scholar]
  220. 220.
    Tanaka K, Ueno T, Yoshida M, Shimizu Y, Ogawa T et al. 2021. Chronic kidney disease caused by maternally inherited diabetes and deafness: a case report. CEN Case Rep. 10:220–25
    [Google Scholar]
  221. 221.
    Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. 1995. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. PNAS 92:1013–17
    [Google Scholar]
  222. 222.
    Milano S, Carmosino M, Gerbino A, Svelto M, Procino G. 2017. Hereditary nephrogenic diabetes insipidus: pathophysiology and possible treatment. An update. Int. J. Mol. Sci. 18:2385
    [Google Scholar]
  223. 223.
    Babey M, Kopp P, Robertson GL. 2011. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat. Rev. Endocrinol. 7:701–14
    [Google Scholar]
  224. 224.
    Abelson H. 1968. Nephrogenic diabetes insipidus: a study of the fine structure of the kidney in a seven-month-old male. Pediatr. Res. 2:271–82
    [Google Scholar]
  225. 225.
    Khositseth S, Uawithya P, Somparn P, Charngkaew K, Thippamom N et al. 2015. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus. Sci. Rep. 5:18311
    [Google Scholar]
  226. 226.
    Khositseth S, Charngkaew K, Boonkrai C, Somparn P, Uawithya P et al. 2017. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus. Kidney Int. 91:1070–87
    [Google Scholar]
  227. 227.
    Enslow BT, Stockand JD, Berman JM. 2019. Liddle's syndrome mechanisms, diagnosis and management. Integr. Blood Press Control 12:13–22
    [Google Scholar]
  228. 228.
    Martin-Hernandez E, Garcia-Silva MT, Vara J, Campos Y, Cabello A et al. 2005. Renal pathology in children with mitochondrial diseases. Pediatr. Nephrol. 20:1299–305
    [Google Scholar]
  229. 229.
    Niaudet P, Rotig A. 1996. Renal involvement in mitochondrial cytopathies. Pediatr. Nephrol. 10:368–73
    [Google Scholar]
  230. 230.
    Wirthensohn G, Guder WG. 1986. Renal substrate metabolism. Physiol. Rev. 66:469–97
    [Google Scholar]
  231. 231.
    Hall AM, Unwin RJ, Hanna MG, Duchen MR. 2008. Renal function and mitochondrial cytopathy (MC): more questions than answers?. QJM 101:755–66
    [Google Scholar]
  232. 232.
    Thirumurugan A, Thewles A, Gilbert RD, Hulton SA, Milford DV et al. 2004. Urinary l-lactate excretion is increased in renal Fanconi syndrome. Nephrol. Dial. Transplant. 19:1767–73
    [Google Scholar]
  233. 233.
    Srivastava S, Ramsbottom SA, Molinari E, Alkanderi S, Filby A et al. 2017. A human patient-derived cellular model of Joubert syndrome reveals ciliary defects which can be rescued with targeted therapies. Hum. Mol. Genet. 26:4657–67
    [Google Scholar]
  234. 234.
    Buglioni A, Hasadsri L, Nasr SH, Hogan MC, Moyer AM et al. 2021. Mitochondriopathy manifesting as inherited tubulointerstitial nephropathy without symptomatic other organ involvement. Kidney Int. Rep. 6:2514–18
    [Google Scholar]
  235. 235.
    Panetta J, Gibson K, Kirby DM, Thorburn DR, Boneh A. 2005. The importance of liver biopsy in the investigation of possible mitochondrial respiratory chain disease. Neuropediatrics 36:256–59
    [Google Scholar]
  236. 236.
    Southgate HJ, Penney MD. 2000. Severe recurrent renal salt wasting in a boy with a mitochondrial oxidative phosphorylation defect. Ann. Clin. Biochem. 37:Pt 6805–8
    [Google Scholar]
  237. 237.
    Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R et al. 2003. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum. Mol. Genet. 12:2693–702
    [Google Scholar]
  238. 238.
    Valnot I, von Kleist-Retzow JC, Barrientos A, Gorbatyuk M, Taanman JW et al. 2000. A mutation in the human heme A:farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency. Hum. Mol. Genet. 9:1245–49
    [Google Scholar]
  239. 239.
    Saada A, Shaag A, Arnon S, Dolfin T, Miller C et al. 2007. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J. Med. Genet. 44:784–86
    [Google Scholar]
  240. 240.
    Gao X, Xin G, Tu Y, Liang X, Yang H et al. 2022. TARS2 variants causes combination oxidative phosphorylation deficiency-21: a case report and literature review. Neuropediatrics https://doi.org/10.1055/a-1949-9310
    [Google Scholar]
  241. 241.
    Van Hove JL, Saenz MS, Thomas JA, Gallagher RC, Lovell MA et al. 2010. Succinyl-CoA ligase deficiency: a mitochondrial hepatoencephalomyopathy. Pediatr. Res. 68:159–64
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042222-025000
Loading
/content/journals/10.1146/annurev-physiol-042222-025000
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error