1932

Abstract

The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042222-025920
2024-02-12
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042222-025920.html?itemId=/content/journals/10.1146/annurev-physiol-042222-025920&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, Beacham RT, Norrell L et al. 2022. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 185:4488–506.e20
    [Google Scholar]
  2. 2.
    Dix JA, Verkman AS. 2008. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys. 37:247–63
    [Google Scholar]
  3. 3.
    Luby-Phelps K. 2000. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192:189–221
    [Google Scholar]
  4. 4.
    Rivas G, Minton AP. 2022. Influence of nonspecific interactions on protein associations: implications for biochemistry in vivo. Annu. Rev. Biochem. 91:321–51
    [Google Scholar]
  5. 5.
    Fulton AB. 1982. How crowded is the cytoplasm?. Cell 30:345–47
    [Google Scholar]
  6. 6.
    Laurent TC, Ogston AG. 1963. The interaction between polysaccharides and other macromolecules. 4. The osmotic pressure of mixtures of serum albumin and hyaluronic acid. Biochem. J. 89:249–53
    [Google Scholar]
  7. 7.
    Minton AP, Wilf J. 1981. Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20:4821–26
    [Google Scholar]
  8. 8.
    Zimmerman SB, Minton AP. 1993. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 22:27–65
    [Google Scholar]
  9. 9.
    Garner MM, Burg MB. 1994. Macromolecular crowding and confinement in cells exposed to hypertonicity. Am. J. Physiol. 266:C877–92
    [Google Scholar]
  10. 10.
    Provance DW Jr., McDowall A, Marko M, Luby-Phelps K. 1993. Cytoarchitecture of size-excluding compartments in living cells. J. Cell Sci. 106:Part 2565–77
    [Google Scholar]
  11. 11.
    Minton AP. 1992. Confinement as a determinant of macromolecular structure and reactivity. Biophys. J. 63:1090–100
    [Google Scholar]
  12. 12.
    Luby-Phelps K. 2013. The physical chemistry of cytoplasm and its influence on cell function: an update. Mol. Biol. Cell 24:2593–96
    [Google Scholar]
  13. 13.
    Marenduzzo D, Finan K, Cook PR. 2006. The depletion attraction: an underappreciated force driving cellular organization. J. Cell Biol. 175:681–86
    [Google Scholar]
  14. 14.
    Tuinier R, Rieger J, de Kruif CG. 2003. Depletion-induced phase separation in colloid-polymer mixtures. Adv. Colloid Interface Sci. 103:1–31
    [Google Scholar]
  15. 15.
    Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382
    [Google Scholar]
  16. 16.
    Chauhan G, Bremer A, Dar F, Mittag T, Pappu RV. 2023. Crowder titrations enable the quantification of driving forces for macromolecular phase separation. BioRxiv 547544. https://doi.org/10.1101/2023.07.03.547544
    [Crossref]
  17. 17.
    Zhou HX, Rivas G, Minton AP. 2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37:375–97
    [Google Scholar]
  18. 18.
    Miermont A, Waharte F, Hu S, McClean MN, Bottani S et al. 2013. Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. PNAS 110:5725–30
    [Google Scholar]
  19. 19.
    Mentre P. 2012. Water in the orchestration of the cell machinery. Some misunderstandings: a short review. J. Biol. Phys. 38:13–26
    [Google Scholar]
  20. 20.
    Ball P. 2008. Water as an active constituent in cell biology. Chem. Rev. 108:74–108
    [Google Scholar]
  21. 21.
    Careri G, Gratton E, Yang PH, Rupley JA. 1980. Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature 284:572–73
    [Google Scholar]
  22. 22.
    Garlid KD. 2000. The state of water in biological systems. Int. Rev. Cytol. 192:281–302
    [Google Scholar]
  23. 23.
    Harada R, Sugita Y, Feig M. 2012. Protein crowding affects hydration structure and dynamics. J. Am. Chem. Soc. 134:4842–49
    [Google Scholar]
  24. 24.
    Ellis RJ. 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26:597–604
    [Google Scholar]
  25. 25.
    Minton AP, Colclasure GC, Parker JC. 1992. Model for the role of macromolecular crowding in regulation of cellular volume. PNAS 89:10504–6
    [Google Scholar]
  26. 26.
    Ross PD, Minton AP. 1977. Hard quasispherical model for the viscosity of hemoglobin solutions. Biochem. Biophys. Res. Commun. 76:971–76
    [Google Scholar]
  27. 27.
    Ross PD, Minton AP. 1977. Analysis of non-ideal behavior in concentrated hemoglobin solutions. J. Mol. Biol. 112:437–52
    [Google Scholar]
  28. 28.
    Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S et al. 2018. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174:338–49.e20
    [Google Scholar]
  29. 29.
    Kraft C, Deplazes A, Sohrmann M, Peter M. 2008. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10:602–10
    [Google Scholar]
  30. 30.
    Nader GPF, Williart A, Piel M. 2021. Nuclear deformations, from signaling to perturbation and damage. Curr. Opin. Cell Biol. 72:137–45
    [Google Scholar]
  31. 31.
    Minton AP. 1983. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol. Cell. Biochem. 55:119–40
    [Google Scholar]
  32. 32.
    Ovadi J, Saks V. 2004. On the origin of intracellular compartmentation and organized metabolic systems. Mol. Cell. Biochem. 256–257:5–12
    [Google Scholar]
  33. 33.
    Gershon ND, Porter KR, Trus BL 1985. The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it. PNAS 82:5030–34
    [Google Scholar]
  34. 34.
    Pareek V, Sha Z, He J, Wingreen NS, Benkovic SJ. 2021. Metabolic channeling: predictions, deductions, and evidence. Mol. Cell 81:3775–85
    [Google Scholar]
  35. 35.
    Alberti S, Gladfelter A, Mittag T. 2019. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–34
    [Google Scholar]
  36. 36.
    Mittag T, Pappu RV. 2022. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82:2201–14
    [Google Scholar]
  37. 37.
    Jawerth L, Fischer-Friedrich E, Saha S, Wang J, Franzmann T et al. 2020. Protein condensates as aging Maxwell fluids. Science 370:1317–23
    [Google Scholar]
  38. 38.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  39. 39.
    Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS et al. 2018. Phase separation of a yeast prion protein promotes cellular fitness. Science 359:eaao5654
    [Google Scholar]
  40. 40.
    Du M, Chen ZJ. 2018. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361:704–09
    [Google Scholar]
  41. 41.
    Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE et al. 2017. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–40.e19
    [Google Scholar]
  42. 42.
    Yoo H, Triandafillou C, Drummond DA. 2019. Cellular sensing by phase separation: using the process, not just the products. J. Biol. Chem. 294:7151–59
    [Google Scholar]
  43. 43.
    Franzmann TM, Alberti S. 2019. Protein phase separation as a stress survival strategy. Cold Spring Harb. Perspect. Biol. 11:a034058
    [Google Scholar]
  44. 44.
    Andre AAM, Spruijt E. 2020. Liquid-liquid phase separation in crowded environments. Int. J. Mol. Sci. 21:5908
    [Google Scholar]
  45. 45.
    Sang D, Shu T, Pantoja CF, Ibanez de Opakua A, Zweckstetter M, Holt LJ 2022. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. Mol. Cell 82:3693–711.e10
    [Google Scholar]
  46. 46.
    Lerman LS. 1971. A transition to a compact form of DNA in polymer solutions. PNAS 68:1886–90
    [Google Scholar]
  47. 47.
    Walter H, Brooks DE. 1995. Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett 361:135–39
    [Google Scholar]
  48. 48.
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32
    [Google Scholar]
  49. 49.
    Banani SF, Rice AM, Peeples WB, Lin Y, Jain S et al. 2016. Compositional control of phase-separated cellular bodies. Cell 166:651–63
    [Google Scholar]
  50. 50.
    Li P, Banjade S, Cheng HC, Kim S, Chen B et al. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–40
    [Google Scholar]
  51. 51.
    Milles S, Mercadante D, Aramburu IV, Jensen MR, Banterle N et al. 2015. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 163:734–45
    [Google Scholar]
  52. 52.
    Ng SC, Biswas A, Huyton T, Schunemann J, Reber S, Gorlich D. 2023. Barrier properties of Nup98 FG phases ruled by FG motif identity and inter-FG spacer length. Nat. Commun. 14:747
    [Google Scholar]
  53. 53.
    Martin EW, Holehouse AS, Peran I, Farag M, Incicco JJ et al. 2020. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367:694–99
    [Google Scholar]
  54. 54.
    Lyons H, Veettil RT, Pradhan P, Fornero C, De La, Cruz N et al. 2023. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 186:327–45.e28
    [Google Scholar]
  55. 55.
    Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X et al. 2018. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174:688–99.e16
    [Google Scholar]
  56. 56.
    Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. 2004. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. PNAS 101:12934–39
    [Google Scholar]
  57. 57.
    Franzmann TM, Alberti S. 2019. Prion-like low-complexity sequences: key regulators of protein solubility and phase behavior. J. Biol. Chem. 294:7128–36
    [Google Scholar]
  58. 58.
    Ginell GM, Holehouse AS. 2023. An introduction to the stickers-and-spacers framework as applied to biomolecular condensates. Methods Mol. Biol. 2563:95–116
    [Google Scholar]
  59. 59.
    Das S, Lin YH, Vernon RM, Forman-Kay JD, Chan HS. 2020. Comparative roles of charge, pi, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. PNAS 117:28795–805
    [Google Scholar]
  60. 60.
    Jalihal AP, Schmidt A, Gao G, Little SR, Pitchiaya S, Walter NG. 2021. Hyperosmotic phase separation: condensates beyond inclusions, granules and organelles. J. Biol. Chem. 296:100044
    [Google Scholar]
  61. 61.
    Jalihal AP, Pitchiaya S, Xiao L, Bawa P, Jiang X et al. 2020. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change. Mol. Cell 79:978–90.e5
    [Google Scholar]
  62. 62.
    Cai D, Feliciano D, Dong P, Flores E, Gruebele M et al. 2019. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21:1578–89
    [Google Scholar]
  63. 63.
    Carrettiero DC, Almeida MC, Longhini AP, Rauch JN, Han D et al. 2022. Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate. Nat. Commun. 13:3074
    [Google Scholar]
  64. 64.
    Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K et al. 2020. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578:296–300
    [Google Scholar]
  65. 65.
    Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J et al. 2019. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J 38:e101379
    [Google Scholar]
  66. 66.
    Watanabe K, Morishita K, Zhou X, Shiizaki S, Uchiyama Y et al. 2021. Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose). Nat. Commun. 12:1353
    [Google Scholar]
  67. 67.
    Peeples W, Rosen MK. 2021. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17:693–702
    [Google Scholar]
  68. 68.
    Murray DT, Kato M, Lin Y, Thurber KR, Hung I et al. 2017. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171:615–27.e16
    [Google Scholar]
  69. 69.
    Leslie M. 2021. Separation anxiety. Science 371:336–38
    [Google Scholar]
  70. 70.
    McSwiggen DT, Mir M, Darzacq X, Tjian R. 2019. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33:1619–34
    [Google Scholar]
  71. 71.
    Musacchio A. 2022. On the role of phase separation in the biogenesis of membraneless compartments. EMBO J 41:e109952
    [Google Scholar]
  72. 72.
    Dolgin E. 2022. The shape-shifting blobs that shook up cell biology. Nature 611:24–27
    [Google Scholar]
  73. 73.
    Boeynaems S, Chong S, Gsponer J, Holt L, Milovanovic D et al. 2023. Phase separation in biology and disease; current perspectives and open questions. J. Mol. Biol. 435:167971
    [Google Scholar]
  74. 74.
    Glauninger H, Wong Hickernell CJ, Bard JAM, Drummond DA 2022. Stressful steps: progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules. Mol. Cell 82:2544–56
    [Google Scholar]
  75. 75.
    Delpire E, Gagnon KB. 2018. Water homeostasis and cell volume maintenance and regulation. Curr. Top. Membr. 81:3–52
    [Google Scholar]
  76. 76.
    Kay AR, Blaustein MP. 2019. Evolution of our understanding of cell volume regulation by the pump-leak mechanism. J. Gen. Physiol. 151:407–16
    [Google Scholar]
  77. 77.
    Tosteson DC, Hoffman JF. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44:169–94
    [Google Scholar]
  78. 78.
    Lang F, Busch GL, Ritter M, Volkl H, Waldegger S et al. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306
    [Google Scholar]
  79. 79.
    Dubois JM, Rouzaire-Dubois B. 2004. The influence of cell volume changes on tumour cell proliferation. Eur. Biophys. J. 33:227–32
    [Google Scholar]
  80. 80.
    Model MA, Hollembeak JE, Kurokawa M. 2021. Macromolecular crowding: a hidden link between cell volume and everything else. Cell Physiol. Biochem. 55:25–40
    [Google Scholar]
  81. 81.
    Hoffmann EK, Lambert IH, Pedersen SF. 2009. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89:193–277
    [Google Scholar]
  82. 82.
    Cossins AR. 1991. Cell physiology. A sense of cell size. Nature 352:667–68
    [Google Scholar]
  83. 83.
    Parker JC. 1993. In defense of cell volume?. Am. J. Physiol. 265:C1191–200
    [Google Scholar]
  84. 84.
    Parker JC, Colclasure GC. 1992. Macromolecular crowding and volume perception in dog red cells. Mol. Cell. Biochem. 114:9–11
    [Google Scholar]
  85. 85.
    Zimmerman SB, Harrison B. 1987. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. PNAS 84:1871–75
    [Google Scholar]
  86. 86.
    de Los Heros P, Pacheco-Alvarez D, Gamba G. 2018. Role of WNK kinases in the modulation of cell volume. Curr. Top. Membr. 81:207–35
    [Google Scholar]
  87. 87.
    Zagorska A, Pozo-Guisado E, Boudeau J, Vitari AC, Rafiqi FH et al. 2007. Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. J. Cell Biol. 176:89–100
    [Google Scholar]
  88. 88.
    de Los Heros P, Alessi DR, Gourlay R, Campbell DG, Deak M et al. 2014. The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl co-transporters. Biochem. J. 458:559–73
    [Google Scholar]
  89. 89.
    Vitari AC, Thastrup J, Rafiqi FH, Deak M, Morrice NA et al. 2006. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem. J. 397:223–31
    [Google Scholar]
  90. 90.
    Friedel P, Kahle KT, Zhang J, Hertz N, Pisella LI et al. 2015. WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons. Sci. Signal. 8:ra65
    [Google Scholar]
  91. 91.
    Roy A, Goodman JH, Begum G, Donnelly BF, Pittman G et al. 2015. Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing. Am. J. Physiol. Ren. Physiol. 308:F366–76
    [Google Scholar]
  92. 92.
    Holt LJ, Denes LT. 2022. Controlling the crowd with a WNK. Cell 185:4465–67
    [Google Scholar]
  93. 93.
    Boyd-Shiwarski CR, Shiwarski DJ, Roy A, Namboodiri HN, Nkashama LJ et al. 2018. Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. Mol. Biol. Cell 29:499–509
    [Google Scholar]
  94. 94.
    Stangherlin A, Watson JL, Wong DCS, Barbiero S, Zeng A et al. 2021. Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology. Nat. Commun. 12:6035
    [Google Scholar]
  95. 95.
    Jin X, Xie J, Yeh CW, Chen JC, Cheng CJ et al. 2023. WNK1 promotes water homeostasis by acting as a central osmolality sensor for arginine vasopressin release. J. Clin. Investig. 133:e164222
    [Google Scholar]
  96. 96.
    Bhuiyan MIH, Song S, Yuan H, Begum G, Kofler J et al. 2017. WNK-Cab39-NKCC1 signaling increases the susceptibility to ischemic brain damage in hypertensive rats. J. Cereb. Blood Flow Metab. 37:2780–94
    [Google Scholar]
  97. 97.
    Wang J, Liu R, Hasan MN, Fischer S, Chen Y et al. 2022. Role of SPAK-NKCC1 signaling cascade in the choroid plexus blood-CSF barrier damage after stroke. J. Neuroinflamm. 19:91
    [Google Scholar]
  98. 98.
    Goldsmith EJ, Rodan AR. 2023. Intracellular ion control of WNK signaling. Annu. Rev. Physiol. 85:383–406
    [Google Scholar]
  99. 99.
    Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. 2014. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci. Signal. 7:ra41
    [Google Scholar]
  100. 100.
    Pleinis JM, Norrell L, Akella R, Humphreys JM, He H et al. 2021. WNKs are potassium-sensitive kinases. Am. J. Physiol. Cell Physiol. 320:C703–21
    [Google Scholar]
  101. 101.
    Akella R, Humphreys JM, Sekulski K, He H, Durbacz M et al. 2021. Osmosensing by WNK kinases. Mol. Biol. Cell 32:1614–23
    [Google Scholar]
  102. 102.
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E et al. 2015. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57:936–47
    [Google Scholar]
  103. 103.
    Rodan AR. 2018. WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium. Am. J. Physiol. Ren. Physiol. 315:F903–7
    [Google Scholar]
  104. 104.
    Subramanya AR, Ellison DH. 2014. Distal convoluted tubule. Clin. J. Am. Soc. Nephrol. 9:2147–63
    [Google Scholar]
  105. 105.
    Boyd-Shiwarski CR, Weaver CJ, Beacham RT, Shiwarski DJ, Connolly KA et al. 2020. Effects of extreme potassium stress on blood pressure and renal tubular sodium transport. Am. J. Physiol. Ren. Physiol. 318:F1341–56
    [Google Scholar]
  106. 106.
    Grimm PR, Taneja TK, Liu J, Coleman R, Chen YY et al. 2012. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner. J. Biol. Chem. 287:37673–90
    [Google Scholar]
  107. 107.
    O'Reilly M, Marshall E, Speirs HJ, Brown RW 2003. WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J. Am. Soc. Nephrol. 14:2447–56
    [Google Scholar]
  108. 108.
    Duhm J, Gobel BO, Beck FX. 1983. Sodium and potassium ion transport accelerations in erythrocytes of DOC, DOC-salt, two-kidney, one clip, and spontaneously hypertensive rats. Role of hypokalemia and cell volume. Hypertension 5:642–52
    [Google Scholar]
  109. 109.
    Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C et al. 2015. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21:39–50
    [Google Scholar]
  110. 110.
    Boyd-Shiwarski CR, Beacham RT, Griffiths SE, Shiwarski DJ, Knoell SA et al. 2021. Kidney-specific WNK1 amplifies NCC responsiveness to potassium imbalance. BioRxiv 435046. https://doi.org/10.1101/2021.03.12.435046
    [Crossref]
  111. 111.
    Thomson MN, Cuevas CA, Bewarder TM, Dittmayer C, Miller LN et al. 2020. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia. Am. J. Physiol. Ren. Physiol. 318:F216–28
    [Google Scholar]
  112. 112.
    Watanabe K, Umeda T, Niwa K, Naguro I, Ichijo H. 2018. A PP6-ASK3 module coordinates the bidirectional cell volume regulation under osmotic stress. Cell Rep 22:2809–17
    [Google Scholar]
  113. 113.
    Naguro I, Umeda T, Kobayashi Y, Maruyama J, Hattori K et al. 2012. ASK3 responds to osmotic stress and regulates blood pressure by suppressing WNK1-SPAK/OSR1 signaling in the kidney. Nat. Commun. 3:1285
    [Google Scholar]
  114. 114.
    Morishita K, Watanabe K, Naguro I, Ichijo H. 2023. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response. Cell Rep 42:112315
    [Google Scholar]
  115. 115.
    Demian WL, Persaud A, Jiang C, Coyaud E, Liu S et al. 2019. The ion transporter NKCC1 links cell volume to cell mass regulation by suppressing mTORC1. Cell Rep 27:1886–96.e6
    [Google Scholar]
  116. 116.
    Arakawa K. 2022. Examples of extreme survival: tardigrade genomics and molecular anhydrobiology. Annu. Rev. Anim. Biosci. 10:17–37
    [Google Scholar]
  117. 117.
    Romero-Perez PS, Dorone Y, Flores E, Sukenik S, Boeynaems S. 2023. When phased without water: biophysics of cellular desiccation, from biomolecules to condensates. Chem. Rev. 123:9010–35
    [Google Scholar]
  118. 118.
    Tanaka A, Nakano T, Watanabe K, Masuda K, Honda G et al. 2022. Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel. PLOS Biol 20:e3001780
    [Google Scholar]
  119. 119.
    Dorone Y, Boeynaems S, Flores E, Jin B, Hateley S et al. 2021. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 184:4284–98.e27
    [Google Scholar]
  120. 120.
    Guo M, Pegoraro AF, Mao A, Zhou EH, Arany PR et al. 2017. Cell volume change through water efflux impacts cell stiffness and stem cell fate. PNAS 114:E8618–27
    [Google Scholar]
  121. 121.
    Venkova L, Vishen AS, Lembo S, Srivastava N, Duchamp B et al. 2022. A mechano-osmotic feedback couples cell volume to the rate of cell deformation. eLife 11:e72381
    [Google Scholar]
  122. 122.
    Wiggins P, Phillips R. 2005. Membrane-protein interactions in mechanosensitive channels. Biophys. J. 88:880–902
    [Google Scholar]
  123. 123.
    Alric B, Formosa-Dague C, Dague E, Holt LJ, Delarue M. 2022. Macromolecular crowding limits growth under pressure. Nat. Phys. 18:411–16
    [Google Scholar]
  124. 124.
    Nader GPF, Aguera-Gonzalez S, Routet F, Gratia M, Maurin M et al. 2021. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 184:5230–46.e22
    [Google Scholar]
  125. 125.
    Srivastava N, Nader GPF, Williart A, Rollin R, Cuvelier D et al. 2021. Nuclear fragility, blaming the blebs. Curr. Opin. Cell Biol. 70:100–8
    [Google Scholar]
  126. 126.
    Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP et al. 2019. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176:1083–97.e18
    [Google Scholar]
  127. 127.
    Feric M, Brangwynne CP. 2013. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat. Cell Biol. 15:1253–59
    [Google Scholar]
  128. 128.
    Popescu G, Park Y. 2015. Quantitative phase imaging in biomedicine. J. Biomed. Opt. 20:111201
    [Google Scholar]
  129. 129.
    Grover WH, Bryan AK, Diez-Silva M, Suresh S, Higgins JM, Manalis SR. 2011. Measuring single-cell density. PNAS 108:10992–96
    [Google Scholar]
  130. 130.
    Cheng JX, Xie XS. 2015. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350:aaa8870
    [Google Scholar]
  131. 131.
    Neurohr GE, Amon A. 2020. Relevance and regulation of cell density. Trends Cell Biol 30:213–25
    [Google Scholar]
  132. 132.
    Boersma AJ, Zuhorn IS, Poolman B. 2015. A sensor for quantification of macromolecular crowding in living cells. Nat. Methods 12:227–29
    [Google Scholar]
  133. 133.
    Wang Y, Sukenik S, Davis CM, Gruebele M. 2018. Cell volume controls protein stability and compactness of the unfolded state. J. Phys. Chem. B 122:11762–70
    [Google Scholar]
  134. 134.
    Watson JL, Seinkmane E, Styles CT, Mihut A, Kruger LK et al. 2023. Macromolecular condensation buffers intracellular water potential. Nature 623:842–52
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042222-025920
Loading
/content/journals/10.1146/annurev-physiol-042222-025920
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error