Since its discovery nearly 30 years ago, the Hedgehog (Hh) signaling pathway has been shown to be pivotal in many developmental and pathophysiological processes in several steroidogenic tissues, including the testis, ovary, adrenal cortex, and placenta. New evidence links the evolutionarily conserved Hh pathway to the steroidogenic organs, demonstrating how Hh signaling can influence their development and homeostasis and can act in concert with steroids to mediate physiological functions. In this review, we highlight the role of the components of the Hh signaling pathway in steroidogenesis of endocrine tissues.

Keyword(s): adrenalovaryplacentaSf1steroidstestis

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Nusslein-Volhard C, Wieschaus E. 1.  1980. Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801 [Google Scholar]
  2. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J. 2.  et al. 1993. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–30 [Google Scholar]
  3. Krauss S, Concordet JP, Ingham PW. 3.  1993. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–44 [Google Scholar]
  4. Riddle RD, Johnson RL, Laufer E, Tabin C. 4.  1993. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401–16 [Google Scholar]
  5. Chang DT, Lopez A, von Kessler DP, Chiang C, Simandl BK. 5.  et al. 1994. Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development 120:3339–53 [Google Scholar]
  6. Cohen MM Jr. 6.  2003. The hedgehog signaling network. Am. J. Med. Genet. A 123A:5–28 [Google Scholar]
  7. Pathi S, Pagan-Westphal S, Baker DP, Garber EA, Rayhorn P. 7.  et al. 2001. Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech. Dev. 106:107–17 [Google Scholar]
  8. Ingham PW, McMahon AP. 8.  2001. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15:3059–87 [Google Scholar]
  9. Varjosalo M, Taipale J. 9.  2008. Hedgehog: functions and mechanisms. Genes Dev. 22:2454–72 [Google Scholar]
  10. McMahon AP, Ingham PW, Tabin CJ. 10.  2003. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53:1–114 [Google Scholar]
  11. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL. 11.  et al. 1996. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–13 [Google Scholar]
  12. Litingtung Y, Lei L, Westphal H, Chiang C. 12.  1998. Sonic hedgehog is essential to foregut development. Nat. Genet. 20:58–61 [Google Scholar]
  13. Sicklick JK, Li YX, Jayaraman A, Kannangai R, Qi Y. 13.  et al. 2006. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 27:748–57 [Google Scholar]
  14. Chan IS, Guy CD, Machado MV, Wank A, Kadiyala V. 14.  et al. 2014. Alcohol activates the hedgehog pathway and induces related procarcinogenic processes in the alcohol-preferring rat model of hepatocarcinogenesis. Alcohol Clin. Exp. Res. 38:3787–800 [Google Scholar]
  15. Lee JJ, Perera RM, Wang H, Wu DC, Liu XS. 15.  et al. 2014. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. PNAS 111:30E3091–100 [Google Scholar]
  16. Dosch JS, Pasca di Magliano M, Simeone DM. 16.  2010. Pancreatic cancer and hedgehog pathway signaling: new insights. Pancreatology 10:2–3151–57 [Google Scholar]
  17. Santini R, Vinci MC, Pandolfi S, Penachioni JY, Montagnani V. 17.  et al. 2012. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells 30:91808–18 [Google Scholar]
  18. Hadden MK. 18.  2013. Hedgehog pathway inhibitors: a patent review (2009–present). Expert Opin. Ther. Pat. 23:345–61 [Google Scholar]
  19. Burglin TR. 19.  2008. The Hedgehog protein family. Genome Biol. 9:241 [Google Scholar]
  20. Ulloa F, Briscoe J. 20.  2007. Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle 6:2640–49 [Google Scholar]
  21. Guerrero I, Chiang C. 21.  2007. A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol. 17:1–5 [Google Scholar]
  22. Zeng X, Goetz JA, Suber LM, Scott WJ Jr, Schreiner CM, Robbins DJ. 22.  2001. A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411:716–20 [Google Scholar]
  23. Chen Y, Jiang J. 23.  2013. Decoding the phosphorylation code in Hedgehog signal transduction. Cell Res. 23:186–200 [Google Scholar]
  24. Creanga A, Glenn TD, Mann RK, Saunders AM, Talbot WS, Beachy PA. 24.  2012. Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev. 26:1312–25 [Google Scholar]
  25. Yan D, Lin X. 25.  2009. Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. 1:a002493 [Google Scholar]
  26. Li Y, Zhang H, Litingtung Y, Chiang C. 26.  2006. Cholesterol modification restricts the spread of Shh gradient in the limb bud. PNAS 103:6548–53 [Google Scholar]
  27. Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF. 27.  et al. 2001. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105:599–612 [Google Scholar]
  28. Burke R, Nellen D, Bellotto M, Hafen E, Senti KA. 28.  et al. 1999. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99:803–15 [Google Scholar]
  29. Porter JA, Young KE, Beachy PA. 29.  1996. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–59 [Google Scholar]
  30. Mann RK, Beachy PA. 30.  2004. Novel lipid modifications of secreted protein signals. Annu. Rev. Biochem. 73:891–923 [Google Scholar]
  31. Therond PP. 31.  2012. Release and transportation of Hedgehog molecules. Curr. Opin. Cell Biol. 24:2173–80 [Google Scholar]
  32. Allen BL, Tenzen T, McMahon AP. 32.  2007. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev. 21:1244–57 [Google Scholar]
  33. Izzi L, Levesque M, Morin S, Laniel D, Wilkes BC. 33.  et al. 2011. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev. Cell 20:788–801 [Google Scholar]
  34. Allen BL, Song JY, Izzi L, Althaus IW, Kang JS. 34.  et al. 2011. Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function. Dev. Cell 20:775–87 [Google Scholar]
  35. Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL. 35.  2002. Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–61 [Google Scholar]
  36. Ahn S, Joyner AL. 36.  2004. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118:505–16 [Google Scholar]
  37. Yang C, Chen W, Chen Y, Jiang J. 37.  2012. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2. Cell Res. 22:1593–604 [Google Scholar]
  38. Hu J, Zhang Z, Shen WJ, Azhar S. 38.  2010. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr. Metab. 7:47 [Google Scholar]
  39. Radhakrishnan A, Sun LP, Kwon HJ, Brown MS, Goldstein JL. 39.  2004. Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol. Cell 15:259–68 [Google Scholar]
  40. Ikonen E. 40.  2006. Mechanisms for cellular cholesterol transport: defects and human disease. Physiol. Rev. 86:1237–61 [Google Scholar]
  41. Sever N, Yang T, Brown MS, Goldstein JL, DeBose-Boyd RA. 41.  2003. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell 11:25–33 [Google Scholar]
  42. Jira PE, Waterham HR, Wanders RJ, Smeitink JA, Sengers RC, Wevers RA. 42.  2003. Smith-Lemli-Opitz syndrome and the DHCR7 gene. Ann. Hum. Genet. 67:269–80 [Google Scholar]
  43. Miller WL, Bose HS. 43.  2011. Early steps in steroidogenesis: intracellular cholesterol trafficking. J. Lipid Res. 52:2111–35 [Google Scholar]
  44. Horton JD, Goldstein JL, Brown MS. 44.  2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 109:1125–31 [Google Scholar]
  45. Goldstein JL, DeBose-Boyd RA, Brown MS. 45.  2006. Protein sensors for membrane sterols. Cell 124:35–46 [Google Scholar]
  46. Brown MS, Kovanen PT, Goldstein JL. 46.  1979. Receptor-mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog. Horm. Res. 35:215–57 [Google Scholar]
  47. Soccio RE, Breslow JL. 47.  2003. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J. Biol. Chem. 278:22183–86 [Google Scholar]
  48. Riegelhaupt JJ, Waase MP, Garbarino J, Cruz DE, Breslow JL. 48.  2010. Targeted disruption of steroidogenic acute regulatory protein D4 leads to modest weight reduction and minor alterations in lipid metabolism. J. Lipid Res. 51:1134–43 [Google Scholar]
  49. Miller WL, Auchus RJ. 49.  2011. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32:81–151 [Google Scholar]
  50. Fardella CE, Rodriguez H, Hum DW, Mellon SH, Miller WL. 50.  1995. Artificial mutations in P450c11AS (aldosterone synthase) can increase enzymatic activity: a model for low-renin hypertension?. J. Clin. Endocrinol. Metab. 80:1040–43 [Google Scholar]
  51. Nishimoto K, Nakagawa K, Li D, Kosaka T, Oya M. 51.  et al. 2010. Adrenocortical zonation in humans under normal and pathological conditions. J. Clin. Endocrinol. Metab. 95:2296–305 [Google Scholar]
  52. Mellon SH, Bair SR, Monis H. 52.  1995. P450c11B3 mRNA, transcribed from a third P450c11 gene, is expressed in a tissue-specific, developmentally, and hormonally regulated fashion in the rodent adrenal and encodes a protein with both 11-hydroxylase and 18-hydroxylase activities. J. Biol. Chem. 270:1643–49 [Google Scholar]
  53. Mornet E, Dupont J, Vitek A, White PC. 53.  1989. Characterization of two genes encoding human steroid 11 β-hydroxylase (P-45011β). J. Biol. Chem. 264:20961–67 [Google Scholar]
  54. Li D, Urs AN, Allegood J, Leon A, Merrill AH Jr, Sewer MB. 54.  2007. Cyclic AMP–stimulated interaction between steroidogenic factor 1 and diacylglycerol kinase θ facilitates induction of CYP17. Mol. Cell. Biol. 27:6669–85 [Google Scholar]
  55. Sewer MB, Nguyen VQ, Huang CJ, Tucker PW, Kagawa N, Waterman MR. 55.  2002. Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54nrb/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription. Endocrinology 143:1280–90 [Google Scholar]
  56. Simpson ER, Clyne C, Rubin G, Boon WC, Robertson K. 56.  et al. 2002. Aromatase—a brief overview. Annu. Rev. Physiol. 64:93–127 [Google Scholar]
  57. Ozisik G, Achermann JC, Meeks JJ, Jameson JL. 57.  2003. SF1 in the development of the adrenal gland and gonads. Horm. Res. 59:Suppl. 194–98 [Google Scholar]
  58. Hatano O, Takakusu A, Nomura M, Morohashi K. 58.  1996. Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells 1:663–71 [Google Scholar]
  59. Ikeda Y, Shen WH, Ingraham HA, Parker KL. 59.  1994. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol. Endocrinol. 8:654–62 [Google Scholar]
  60. Morohashi K, Honda S, Inomata Y, Handa H, Omura T. 60.  1992. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J. Biol. Chem. 267:17913–19 [Google Scholar]
  61. Lala DS, Rice DA, Parker KL. 61.  1992. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol. Endocrinol. 6:1249–58 [Google Scholar]
  62. Taketo M, Parker KL, Howard TA, Tsukiyama T, Wong M. 62.  et al. 1995. Homologs of Drosophila fushi-tarazu factor 1 map to mouse chromosome 2 and human chromosome 9q33. Genomics 25:565–67 [Google Scholar]
  63. Mader S, Kumar V, de Verneuil H, Chambon P. 63.  1989. Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 338:271–74 [Google Scholar]
  64. Umesono K, Evans RM. 64.  1989. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–46 [Google Scholar]
  65. Val P, Lefrançois-Martinez AM, Veyssière G, Martinez A. 65.  2003. SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl. Recept. 1:8 [Google Scholar]
  66. Wilson TE, Paulsen RE, Padgett KA, Milbrandt J. 66.  1992. Participation of non–zinc finger residues in DNA binding by two nuclear orphan receptors. Science 256:107–10 [Google Scholar]
  67. Wong M, Ramayya MS, Chrousos GP, Driggers PH, Parker KL. 67.  1996. Cloning and sequence analysis of the human gene encoding steroidogenic factor 1. J. Mol. Endocrinol. 17:139–47 [Google Scholar]
  68. Ueda H, Sun GC, Murata T, Hirose S. 68.  1992. A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol. Cell. Biol. 12:5667–72 [Google Scholar]
  69. Li LA, Chiang EF, Chen JC, Hsu NC, Chen YJ, Chung BC. 69.  1999. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol. Endocrinol. 13:1588–98 [Google Scholar]
  70. Achermann JC, Ozisik G, Ito M, Orun UA, Harmanci K. 70.  et al. 2002. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose-dependent manner. J. Clin. Endocrinol. Metab. 87:1829–33 [Google Scholar]
  71. Sekido R, Lovell-Badge R. 71.  2008. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–34 [Google Scholar]
  72. Wang CY, Chen WY, Lai PY, Chung BC. 72.  2013. Distinct functions of steroidogenic factor-1 (NR5A1) in the nucleus and the centrosome. Mol. Cell. Endocrinol. 371:148–53 [Google Scholar]
  73. Schimmer BP, White PC. 73.  2010. Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol. Endocrinol. 24:1322–37 [Google Scholar]
  74. Moore CC, Miller WL. 74.  1991. The role of transcriptional regulation in steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol. 40:517–25 [Google Scholar]
  75. Payne AH, Youngblood GL. 75.  1995. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol. Reprod. 52:217–25 [Google Scholar]
  76. Hammer GD, Krylova I, Zhang Y, Darimont BD, Simpson K. 76.  et al. 1999. Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol. Cell 3:521–26 [Google Scholar]
  77. Lewis AE, Rusten M, Hoivik EA, Vikse EL, Hansson ML. 77.  et al. 2008. Phosphorylation of steroidogenic factor 1 is mediated by cyclin-dependent kinase 7. Mol. Endocrinol. 22:91–104 [Google Scholar]
  78. Chen WY, Juan LJ, Chung BC. 78.  2005. SF-1 (nuclear receptor 5A1) activity is activated by cyclic AMP via p300-mediated recruitment to active foci, acetylation, and increased DNA binding. Mol. Cell. Biol. 25:10442–53 [Google Scholar]
  79. Chen WY, Weng JH, Huang CC, Chung BC. 79.  2007. Histone deacetylase inhibitors reduce steroido-genesis through SCF-mediated ubiquitination and degradation of steroidogenic factor 1 (NR5A1). Mol. Cell. Biol. 27:7284–90 [Google Scholar]
  80. Chen WY, Lee WC, Hsu NC, Huang F, Chung BC. 80.  2004. SUMO modification of repression domains modulates function of nuclear receptor 5A1 (steroidogenic factor-1). J. Biol. Chem. 279:3738730–35 [Google Scholar]
  81. Komatsu T, Mizusaki H, Mukai T, Ogawa H, Baba D. 81.  et al. 2004. Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) regulates synergistic transcription between Ad4BP/SF-1 and Sox9. Mol. Endocrinol. 18:102451–62 [Google Scholar]
  82. Lee MB, Lebedeva LA, Suzawa M, Wadekar SA, Desclozeaux M, Ingraham HA. 82.  2005. The DEAD-box protein DP103 (Ddx20 or Gemin-3) represses orphan nuclear receptor activity via SUMO modification. Mol. Cell. Biol. 25:51879–90 [Google Scholar]
  83. 83.  Deleted in proof
  84. 84.  Deleted in proof
  85. Campbell LA, Faivre EJ, Show MD, Ingraham JG, Flinders J. 85.  et al. 2008. Decreased recognition of SUMO-sensitive target genes following modification of SF-1 (NR5A1). Mol. Cell. Biol. 28:7476–86 [Google Scholar]
  86. Yang WH, Heaton JH, Brevig H, Mukherjee S, Iniguez-Lluhi JA, Hammer GD. 86.  2009. SUMOylation inhibits SF-1 activity by reducing CDK7-mediated serine 203 phosphorylation. Mol. Cell. Biol. 29:613–25 [Google Scholar]
  87. Ikeda Y, Swain A, Weber TJ, Hentges KE, Zanaria E. 87.  et al. 1996. Steroidogenic factor 1 and Dax-1 colocalize in multiple cell lineages: potential links in endocrine development. Mol. Endocrinol. 10:1261–72 [Google Scholar]
  88. Babu PS, Bavers DL, Beuschlein F, Shah S, Jeffs B. 88.  et al. 2002. Interaction between Dax-1 and steroidogenic factor-1 in vivo: increased adrenal responsiveness to ACTH in the absence of Dax-1. Endocrinology 143:665–73 [Google Scholar]
  89. Lalli E, Melner MH, Stocco DM, Sassone-Corsi P. 89.  1998. DAX-1 blocks steroid production at multiple levels. Endocrinology 139:4237–43 [Google Scholar]
  90. Luo X, Ikeda Y, Parker KL. 90.  1994. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–90 [Google Scholar]
  91. Bland ML, Jamieson CA, Akana SF, Bornstein SR, Eisenhofer G. 91.  et al. 2000. Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response. PNAS 97:14488–93 [Google Scholar]
  92. Zubair M, Oka S, Parker KL, Morohashi K. 92.  2009. Transgenic expression of Ad4BP/SF-1 in fetal adrenal progenitor cells leads to ectopic adrenal formation. Mol. Endocrinol. 23:1657–67 [Google Scholar]
  93. Doghman M, Karpova T, Rodrigues GA, Arhatte M, De Moura J. 93.  et al. 2007. Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol. Endocrinol. 21:2968–87 [Google Scholar]
  94. Bashamboo A, McElreavey K. 94.  2013. Gene mutations associated with anomalies of human gonad formation. Sex. Dev. 7:126–46 [Google Scholar]
  95. Röpke A, Tewes AC, Gromoll J, Kliesch S, Wieacker P, Tüttelmann F. 95.  2013. Comprehensive sequence analysis of the NR5A1 gene encoding steroidogenic factor 1 in a large group of infertile males. Eur. J. Hum. Genet. 21:1012–15 [Google Scholar]
  96. Köhler B, Achermann JC. 96.  2010. Update—steroidogenic factor 1 (SF-1, NR5A1). Minerva Endocrinol. 35:273–86 [Google Scholar]
  97. Lourenco D, Brauner R, Lin L, De Perdigo A, Weryha G. 97.  et al. 2009. Mutations in NR5A1 associated with ovarian insufficiency. N. Engl. J. Med. 360:1200–10 [Google Scholar]
  98. Philibert P, Paris F, Lakhal B, Audran F, Gaspari L. 98.  et al. 2012. NR5A1 (SF-1) gene variants in a group of 26 young women with XX primary ovarian insufficiency. Fertil. Steril. 99:2484–89 [Google Scholar]
  99. Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL. 99.  1999. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 22:125–26 [Google Scholar]
  100. Malikova J, Camats N, Fernández-Cancio M, Heath K, González I. 100.  et al. 2014. Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis. PLOS ONE 9:8e104838 [Google Scholar]
  101. Buaas FW, Gardiner JR, Clayton S, Val P, Swain A. 101.  2012. In vivo evidence for the crucial role of SF1 in steroid-producing cells of the testis, ovary and adrenal gland. Development 139:4561–70 [Google Scholar]
  102. Zubair M, Parker KL, Morohashi K. 102.  2008. Developmental links between the fetal and adult zones of the adrenal cortex revealed by lineage tracing. Mol. Cell. Biol. 28:7030–40 [Google Scholar]
  103. Zubair M, Ishihara S, Oka S, Okumura K, Morohashi K. 103.  2006. Two-step regulation of Ad4BP/SF-1 gene transcription during fetal adrenal development: initiation by a Hox-Pbx1-Prep1 complex and maintenance via autoregulation by Ad4BP/SF-1. Mol. Cell. Biol. 26:4111–21 [Google Scholar]
  104. Wood MA, Hammer GD. 104.  2011. Adrenocortical stem and progenitor cells: unifying model of two proposed origins. Mol. Cell. Endocrinol. 336:206–12 [Google Scholar]
  105. Mitani F, Suzuki H, Hata J, Ogishima T, Shimada H, Ishimura Y. 105.  1994. A novel cell layer without corticosteroid-synthesizing enzymes in rat adrenal cortex: histochemical detection and possible physiological role. Endocrinology 135:431–38 [Google Scholar]
  106. Mitani F, Mukai K, Miyamoto H, Suematsu M, Ishimura Y. 106.  2003. The undifferentiated cell zone is a stem cell zone in adult rat adrenal cortex. Biochim. Biophys. Acta 1619:317–24 [Google Scholar]
  107. Huang CC, Miyagawa S, Matsumaru D, Parker KL, Yao HH. 107.  2010. Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog. Endocrinology 151:1119–28 [Google Scholar]
  108. Ching S, Vilain E. 108.  2009. Targeted disruption of Sonic Hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. Genesis 47:628–37 [Google Scholar]
  109. King P, Paul A, Laufer E. 109.  2009. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. PNAS 106:21185–90 [Google Scholar]
  110. Guasti L, Paul A, Laufer E, King P. 110.  2011. Localization of Sonic hedgehog secreting and receiving cells in the developing and adult rat adrenal cortex. Mol. Cell. Endocrinol. 336:117–22 [Google Scholar]
  111. Paul A, Laufer E. 111.  2011. Endogenous biotin as a marker of adrenocortical cells with steroidogenic potential. Mol. Cell. Endocrinol. 336:133–40 [Google Scholar]
  112. Laufer E, Kesper D, Vortkamp A, King P. 112.  2012. Sonic hedgehog signaling during adrenal development. Mol. Cell. Endocrinol. 351:19–27 [Google Scholar]
  113. Werminghaus P, Haase M, Hornsby PJ, Schinner S, Schott M. 113.  et al. 2014. Hedgehog-signaling is upregulated in non-producing human adrenal adenomas and antagonism of hedgehog-signaling inhibits proliferation of NCI-H295R cells and an immortalized primary human adrenal cell line. J. Steroid Biochem. Mol. Biol. 139:7–15 [Google Scholar]
  114. Wood MA, Acharya A, Finco I, Swonger JM, Elston MJ. 114.  et al. 2013. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development 140:4522–32 [Google Scholar]
  115. Walczak EM, Kuick R, Finco I, Bohin N, Hrycaj SM. 115.  et al. 2014. Wnt-signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms. Mol. Endocrinol. 28:91471–86 [Google Scholar]
  116. Lee FY, Faivre EJ, Suzawa M, Lontok E, Ebert D. 116.  et al. 2011. Eliminating SF-1 (NR5A1) sumoylation in vivo results in ectopic hedgehog signaling and disruption of endocrine development. Dev. Cell 21:315–27 [Google Scholar]
  117. Guasti L, Cavlan D, Cogger K, Banu Z, Shakur A. 117.  et al. 2013. Dlk1 up-regulates Gli1 expression in male rat adrenal capsule cells through the activation of β1 integrin and ERK1/2. Endocrinology 154:4675–84 [Google Scholar]
  118. Freedman BD, Kempna PB, Carlone DL, Shah MS, Guagliardo NA. 118.  et al. 2013. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 26:666–73 [Google Scholar]
  119. Gondos B, Rao A, Ramachandran J. 119.  1980. Effects of antiserum to luteinizing hormone on the structure and function of rat Leydig cells. J. Endocrinol. 87:265–70 [Google Scholar]
  120. Bitgood MJ, Shen L, McMahon AP. 120.  1996. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr. Biol. 6:298–304 [Google Scholar]
  121. Huang CC, Yao HH. 121.  2010. Diverse functions of Hedgehog signaling in formation and physiology of steroidogenic organs. Mol. Reprod. Dev. 77:489–96 [Google Scholar]
  122. Clark AM, Garland KK, Russell LD. 122.  2000. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol. Reprod. 63:1825–38 [Google Scholar]
  123. Barsoum I, Yao HH. 123.  2011. Redundant and differential roles of transcription factors Gli1 and Gli2 in the development of mouse fetal Leydig cells. Biol. Reprod. 84:894–99 [Google Scholar]
  124. Szczepny A, Hime GR, Loveland KL. 124.  2006. Expression of hedgehog signalling components in adult mouse testis. Dev. Dyn. 235:3063–70 [Google Scholar]
  125. Yao HH, Capel B. 125.  2002. Disruption of testis cords by cyclopamine or forskolin reveals independent cellular pathways in testis organogenesis. Dev. Biol. 246:356–65 [Google Scholar]
  126. Umehara F, Tate G, Itoh K, Yamaguchi N, Douchi T. 126.  et al. 2000. A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am. J. Hum. Genet. 67:1302–5 [Google Scholar]
  127. Umehara F, Mishima K, Egashira N, Ogata A, Iwasaki K, Fujiwara M. 127.  2006. Elevated anxiety-like and depressive behavior in Desert hedgehog knockout male mice. Behav. Brain Res. 174:167–73 [Google Scholar]
  128. Jameson JL. 128.  2004. Of mice and men: the tale of steroidogenic factor-1. J. Clin. Endocrinol. Metab. 89:5927–29 [Google Scholar]
  129. Mallet D, Bretones P, Michel-Calemard L, Dijoud F, David M, Morel Y. 129.  2004. Gonadal dysgenesis without adrenal insufficiency in a 46,XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploinsufficiency. J. Clin. Endocrinol. Metab. 89:4829–32 [Google Scholar]
  130. Park SY, Meeks JJ, Raverot G, Pfaff LE, Weiss J. 130.  et al. 2005. Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development 132:2415–23 [Google Scholar]
  131. Barsoum IB, Bingham NC, Parker KL, Jorgensen JS, Yao HH. 131.  2009. Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Dev. Biol. 329:96–103 [Google Scholar]
  132. Forbes AJ, Spradling AC, Ingham PW, Lin H. 132.  1996. The role of segment polarity genes during early oogenesis in Drosophila. Development 122:3283–94 [Google Scholar]
  133. Zhang Y, Kalderon D. 133.  2000. Regulation of cell proliferation and patterning in Drosophila oogenesis by Hedgehog signaling. Development 127:2165–76 [Google Scholar]
  134. O'Hara WA, Azar WJ, Behringer RR, Renfree MB, Pask AJ. 134.  2011. Desert hedgehog is a mammal-specific gene expressed during testicular and ovarian development in a marsupial. BMC Dev. Biol. 11:72 [Google Scholar]
  135. Ren Y, Cowan RG, Harman RM, Quirk SM. 135.  2009. Dominant activation of the hedgehog signaling pathway in the ovary alters theca development and prevents ovulation. Mol. Endocrinol. 23:711–23 [Google Scholar]
  136. Ren Y, Cowan RG, Migone FF, Quirk SM. 136.  2012. Overactivation of hedgehog signaling alters development of the ovarian vasculature in mice. Biol. Reprod. 86:174 [Google Scholar]
  137. Russell MC, Cowan RG, Harman RM, Walker AL, Quirk SM. 137.  2007. The hedgehog signaling pathway in the mouse ovary. Biol. Reprod. 77:226–36 [Google Scholar]
  138. Wijgerde M, Ooms M, Hoogerbrugge JW, Grootegoed JA. 138.  2005. Hedgehog signaling in mouse ovary: Indian hedgehog and desert hedgehog from granulosa cells induce target gene expression in developing theca cells. Endocrinology 146:3558–66 [Google Scholar]
  139. Young JM, McNeilly AS. 139.  2010. Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489–504 [Google Scholar]
  140. Spicer LJ, Sudo S, Aad PY, Wang LS, Chun SY. 140.  et al. 2009. The hedgehog-patched signaling pathway and function in the mammalian ovary: a novel role for hedgehog proteins in stimulating proliferation and steroidogenesis of theca cells. Reproduction 138:329–39 [Google Scholar]
  141. Sugawara T, Holt JA, Driscoll D, Strauss JF 3rd, Lin D. 141.  et al. 1995. Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. PNAS 92:4778–82 [Google Scholar]
  142. Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA. 142.  et al. 1995. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. PNAS 92:10939–43 [Google Scholar]
  143. Ben-Zimra M, Koler M, Orly J. 143.  2002. Transcription of cholesterol side-chain cleavage cytochrome P450 in the placenta: Activating protein-2 assumes the role of steroidogenic factor-1 by binding to an overlapping promoter element. Mol. Endocrinol. 16:1864–80 [Google Scholar]
  144. Huang N, Miller WL. 144.  2000. Cloning of factors related to HIV-inducible LBP proteins that regulate steroidogenic factor-1–independent human placental transcription of the cholesterol side-chain cleavage enzyme, P450scc. J. Biol. Chem. 275:2852–58 [Google Scholar]
  145. Matsumoto H, Zhao X, Das SK, Hogan BL, Dey SK. 145.  2002. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Dev. Biol. 245:280–90 [Google Scholar]
  146. Takamoto N, Zhao B, Tsai SY, DeMayo FJ. 146.  2002. Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Mol. Endocrinol. 16:2338–48 [Google Scholar]
  147. Lee K, Jeong J, Kwak I, Yu CT, Lanske B. 147.  et al. 2006. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat. Genet. 38:1204–9 [Google Scholar]
  148. Franco HL, Lee KY, Rubel CA, Creighton CJ, White LD. 148.  et al. 2010. Constitutive activation of smoothened leads to female infertility and altered uterine differentiation in the mouse. Biol. Reprod. 82:991–99 [Google Scholar]
  149. Kelley RL, Roessler E, Hennekam RC, Feldman GL, Kosaki K. 149.  et al. 1996. Holoprosencephaly in RSH/Smith-Lemli-Opitz syndrome: Does abnormal cholesterol metabolism affect the function of Sonic Hedgehog. Am. J. Med. Genet. 66:478–84 [Google Scholar]
  150. Roessler E, Belloni E, Gaudenz K, Jay P, Berta P. 150.  et al. 1996. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet. 14:357–60 [Google Scholar]
  151. Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R. 151.  et al. 2003. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat. Genet. 33:508–13 [Google Scholar]
  152. Koide T, Hayata T, Cho KW. 152.  2006. Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase. Development 133:2395–405 [Google Scholar]
  153. Porter FD, Herman GE. 153.  2011. Malformation syndromes caused by disorders of cholesterol synthesis. J. Lipid Res. 52:6–34 [Google Scholar]
  154. Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP. 154.  2006. Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLOS Biol. 4:e232 [Google Scholar]
  155. Kang S, Graham JM Jr, Olney AH, Biesecker LG. 155.  1997. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat. Genet. 15:266–68 [Google Scholar]
  156. Karpac J, Ostwald D, Bui S, Hunnewell P, Shankar M, Hochgeschwender U. 156.  2005. Development, maintenance, and function of the adrenal gland in early postnatal proopiomelanocortin-null mutant mice. Endocrinology 146:2555–62 [Google Scholar]
  157. Böse J, Grotewold L, Ruther U. 157.  2002. Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum. Mol. Genet. 11:1129–35 [Google Scholar]
  158. Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. 158.  2005. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLOS Genet. 1:e53 [Google Scholar]
  159. Szkandera J, Kiesslich T, Haybaeck J, Gerger A, Pichler M. 159.  2013. Hedgehog signaling pathway in ovarian cancer. Int. J. Mol. Sci. 14:1179–96 [Google Scholar]
  160. Giordano TJ, Thomas DG, Kuick R, Lizyness M, Misek DE. 160.  et al. 2003. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am. J. Pathol. 162:521–31 [Google Scholar]
  161. Giordano TJ, Kuick R, Else T, Gauger PG, Vinco M. 161.  et al. 2009. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin. Cancer Res. 15:668–76 [Google Scholar]
  162. Ragazzon B, Libe R, Gaujoux S, Assie G, Fratticci A. 162.  et al. 2010. Transcriptome analysis reveals that p53 and β-catenin alterations occur in a group of aggressive adrenocortical cancers. Cancer Res. 70:8276–81 [Google Scholar]
  163. Assie G, Letouze E, Fassnacht M, Jouinot A, Luscap W. 163.  et al. 2014. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46:607–12 [Google Scholar]
  164. Liao X, Siu MK, Au CW, Wong ES, Chan HY. 164.  et al. 2009. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 30:131–40 [Google Scholar]
  165. Kaye SB, Fehrenbacher L, Holloway R, Amit A, Karlan B. 165.  et al. 2012. A phase II, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission. Clin. Cancer Res. 18:6509–18 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error