1932

Abstract

Epigenetic mechanisms play fundamental roles in regulating numerous biological processes in various developmental and environmental contexts. Three highly interconnected epigenetic control mechanisms, including small noncoding RNAs, DNA methylation, and histone modifications, contribute to the establishment of plant epigenetic profiles. During the past decade, a growing body of experimental work has revealed the intricate, diverse, and dynamic roles that epigenetic modifications play in plant–nematode interactions. In this review, I summarize recent progress regarding the functions of small RNAs in mediating plant responses to infection by cyst and root-knot nematodes, with a focus on the functions of microRNAs. I also recapitulate recent advances in genome-wide DNA methylation analysis and discuss how cyst nematodes induce extensive and dynamic changes in the plant methylome that impact the transcriptional activity of genes and transposable elements. Finally, the potential role of nematode effector proteins in triggering such epigenome changes is discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-010820-012805
2020-08-25
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/phyto/58/1/annurev-phyto-010820-012805.html?itemId=/content/journals/10.1146/annurev-phyto-010820-012805&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ait-Si-Ali S, Guasconi V, Fritsch L, Yahi H, Sekhri R et al. 2004. A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J 23:605–15
    [Google Scholar]
  2. 2.
    Baldwin JG, Nadler SA, Adams BJ 2004. Evolution of plant parasitism among nematodes. Annu. Rev. Phytopathol. 42:83–105
    [Google Scholar]
  3. 3.
    Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–97
    [Google Scholar]
  4. 4.
    Bayless AM, Zapotocny RW, Han S, Grunwald DJ, Amundson KK, Bent AF 2019. The rhg1-a (Rhg1 low-copy) nematode resistance source harbors a copia-family retrotransposon within the Rhg1-encoded α-SNAP gene. Plant Dir 3:8e00164
    [Google Scholar]
  5. 5.
    Cabrera J, Barcala M, Garcia A, Rio-Machin A, Medina C et al. 2016. Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs. New Phytol 209:1625–40
    [Google Scholar]
  6. 6.
    Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205
    [Google Scholar]
  7. 7.
    Cao X, Aufsatz W, Zilberman D, Mette MF, Huang MS et al. 2003. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol. 13:2212–17
    [Google Scholar]
  8. 8.
    Cao X, Jacobsen SE. 2002. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. PNAS 99:Suppl. 416491–98
    [Google Scholar]
  9. 9.
    Chan SW, Henderson IR, Jacobsen SE 2005. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. . Genet 6:351–60
    [Google Scholar]
  10. 10.
    Cook DE, Lee TG, Guo XL, Melito S, Wang K et al. 2012. Copy number variation of multiple genes at rhg1 mediates nematode resistance in soybean. Science 338:1206–9
    [Google Scholar]
  11. 11.
    Deleris A, Halter T, Navarro L 2016. DNA methylation and demethylation in plant immunity. Annu. Rev. Phytopathol. 54:579–603
    [Google Scholar]
  12. 12.
    Díaz-Manzano FE, Cabrera J, Ripoll JJ, del Olmo I, Andres MF et al. 2018. A role for the gene regulatory module microRNA172/TARGET OF EARLY ACTIVATION TAGGED 1/FLOWERING LOCUS T (miRNA172/TOE1/FT) in the feeding sites induced by Meloidogyne javanica in Arabidopsis thaliana. . New Phytol 217:813–27
    [Google Scholar]
  13. 13.
    Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM et al. 2012. Widespread dynamic DNA methylation in response to biotic stress. PNAS 109:E2183–91
    [Google Scholar]
  14. 14.
    Dufourcq P, Victor M, Gay F, Calvo D, Hodgkin J, Shi Y 2002. Functional requirement for histone deacetylase 1 in Caenorhabditis elegans gonadogenesis. Mol. Cell Biol. 22:3024–34
    [Google Scholar]
  15. 15.
    Eves-van den Akker S, Laetsch DR, Thorpe P, Lilley CJ, Danchin EGJ et al. 2016. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol 17:124
    [Google Scholar]
  16. 16.
    Fan J, Hu C, Zhang L, Li Z, Zhao F, Wang S 2015. Jasmonic acid mediates tomato's response to root knot nematodes. J. Plant Growth Regul. 34:196–205
    [Google Scholar]
  17. 17.
    Fei Q, Zhang Y, Xia R, Meyers BC 2016. Small RNAs add zing to the zig-zag-zig model of plant defenses. Mol. Plant-Microbe Interact. 29:165–69
    [Google Scholar]
  18. 18.
    Feng G, Leem YE, Levin HL 2013. Transposon integration enhances expression of stress response genes. Nucleic Acids Res 41:775–89
    [Google Scholar]
  19. 19.
    Formosa T, Eriksson P, Wittmeyer J, Ginn J, Yu Y, Stillman DJ 2001. Spt16–Pob3 and the HMG protein Nhp6 combine to form the nucleosome‐binding factor SPN. EMBO J 20:3506–17
    [Google Scholar]
  20. 20.
    Gallusci P, Dai Z, Genard M, Gauffretau A, Leblanc-Fournier N et al. 2017. Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci 22:610–23
    [Google Scholar]
  21. 21.
    Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ et al. 2018. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci. . Rep 8:2505
    [Google Scholar]
  22. 22.
    Goverse A, Smant G. 2014. The activation and suppression of plant innate immunity by parasitic nematodes. Annu. Rev. Phytopathol. 52:243–65
    [Google Scholar]
  23. 23.
    Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS et al. 2010. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. . Nature 466:383–87
    [Google Scholar]
  24. 24.
    Hewezi T. 2015. Cellular signaling pathways and posttranslational modifications mediated by nematode effector proteins. Plant Physiol 169:1018–26
    [Google Scholar]
  25. 25.
    Hewezi T, Baum TJ. 2012. Complex feedback regulations govern the expression of miRNA396 and its GRF target genes. Plant Signal Behav 7:749–51
    [Google Scholar]
  26. 26.
    Hewezi T, Baum TJ. 2013. Manipulation of plant cells by cyst and root-knot nematode effectors. Mol. Plant-Microbe Interact. 26:9–16
    [Google Scholar]
  27. 27.
    Hewezi T, Baum TJ. 2015. Gene silencing in nematode feeding sites. Plant Nematode Interactions: A View on Compatible Interrelationships C Escobar, C Fenoll 221–36Adv. Bot. Res. 73 Cambridge, MA: Academic Press
    [Google Scholar]
  28. 28.
    Hewezi T, Howe P, Maier TR, Baum TJ 2008. Arabidopsis small RNAs and their targets during cyst nematode parasitism. Mol. Plant-Microbe Interact. 21:1622–34
    [Google Scholar]
  29. 29.
    Hewezi T, Lane T, Piya S, Rambani A, Rice JH, Staton M 2017. Cyst nematode parasitism induces dynamic changes in the root epigenome. Plant Physiol 174:405–20
    [Google Scholar]
  30. 30.
    Hewezi T, Maier TR, Nettleton D, Baum TJ 2012. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159:321–35
    [Google Scholar]
  31. 31.
    Hewezi T, Pantalone V, Bennett M, Stewart CN, Burch-Smith TM 2018. Phytopathogen-induced changes to plant methylomes. Plant Cell Rep 37:17–23
    [Google Scholar]
  32. 32.
    Hewezi T, Piya S, Qi M, Balasubramaniam M, Rice JH, Baum TJ 2016. Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility. Plant J 88:179–92
    [Google Scholar]
  33. 33.
    Holbein J, Grundler FM, Siddique S 2016. Plant basal resistance to nematodes: an update. J. Exp. Bot. 67:2049–61
    [Google Scholar]
  34. 34.
    Hossain MS, Kawakatsu T, Kim KD, Zhang N, Nguyen CT et al. 2017. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol 214:808–19
    [Google Scholar]
  35. 35.
    Ikeuchi M, Iwase A, Sugimoto K 2015. Control of plant cell differentiation by histone modification and DNA methylation. Curr. Opin. Plant Biol. 28:60–67
    [Google Scholar]
  36. 36.
    Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J et al. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14:946–61
    [Google Scholar]
  37. 37.
    Jones JT, Kumar A, Pylypenko LA, Thirugnanasambandam A, Castelli L et al. 2009. Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Mol. . Plant Pathol 10:815–28
    [Google Scholar]
  38. 38.
    Kant S, Peng M, Rothstein SJ 2011. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. . PLOS Genet 7:e1002021
    [Google Scholar]
  39. 39.
    Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS et al. 2007. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLOS Biol 5:e57
    [Google Scholar]
  40. 40.
    Kaur P, Shukla N, Joshi G, VijayaKumar C, Jagannath A et al. 2017. Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction. PLOS ONE 12:e0175178
    [Google Scholar]
  41. 41.
    Kim ED, Sung S. 2012. Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17:16–21
    [Google Scholar]
  42. 42.
    Kim KH, An DR, Song J, Yoon JY, Kim HS et al. 2012. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. PNAS 109:7729–34
    [Google Scholar]
  43. 43.
    Kong L, Qiu X, Kang J, Wang Y, Chen H et al. 2017. A Phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection. Curr. Biol. 27:981–91
    [Google Scholar]
  44. 44.
    Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:693–705
    [Google Scholar]
  45. 45.
    Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204–20
    [Google Scholar]
  46. 46.
    Lawrence M, Daujat S, Schneider R 2016. Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32:42–56
    [Google Scholar]
  47. 47.
    Lawrence RJ, Earley K, Pontes O, Silva M, Chen ZJ et al. 2004. A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cell 13:599–609
    [Google Scholar]
  48. 48.
    Le TN, Schumann U, Smith NA, Tiwari S, Au PCK et al. 2014. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. . Genome Biol 15:458
    [Google Scholar]
  49. 49.
    Li H, Luan S. 2010. AtFKBP53 is a histone chaperone required for repression of ribosomal RNA gene expression in Arabidopsis. . Cell Res 20:357–66
    [Google Scholar]
  50. 50.
    Li X, Wang X, Zhang S, Liu D, Duan Y, Dong W 2012. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PLOS ONE 7:e39650
    [Google Scholar]
  51. 51.
    Li XH, Xing XX, Xu SX, Zhang MZ, Wang Y et al. 2018. Genome-wide identification and functional prediction of tobacco lncRNAs responsive to root-knot nematode stress. PLOS ONE 13:11e0204506
    [Google Scholar]
  52. 52.
    Lin W-Y, Huang T-K, Chiou T-J 2013. NITROGEN LIMITATION ADAPTATION, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. . Plant Cell 25:4061–74
    [Google Scholar]
  53. 53.
    Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC et al. 2008. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. . Cell 133:523–36
    [Google Scholar]
  54. 54.
    Liu J, Rice JH, Chen N, Baum TJ, Hewezi T 2014. Synchronization of developmental processes and defense signaling by growth regulating transcription factors. PLOS ONE 9:e98477
    [Google Scholar]
  55. 55.
    Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R et al. 2012. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–60
    [Google Scholar]
  56. 56.
    Liu X, Hao L, Li D, Zhu L, Hu S 2015. Long non-coding RNAs and their biological roles in plants. Genom. Proteom. Bioinform. 13:137–47
    [Google Scholar]
  57. 57.
    Lopez Sanchez A, Stassen JH, Furci L, Smith LM, Ton J 2016. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. . Plant J 88:361–74
    [Google Scholar]
  58. 58.
    Maier TR, Hewezi T, Peng J, Baum TJ 2013. Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification. Mol. Plant-Microbe Interact. 26:31–35
    [Google Scholar]
  59. 59.
    Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN et al. 2015. Transposable elements contribute to activation of maize genes in response to abiotic stress. PLOS Genet 11:e1004915
    [Google Scholar]
  60. 60.
    Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D et al. 2010. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–17
    [Google Scholar]
  61. 61.
    Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15:394–408
    [Google Scholar]
  62. 62.
    Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C et al. 2010. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–57
    [Google Scholar]
  63. 63.
    Medina C, da Rocha M, Magliano M, Raptopoulo A, Marteu N et al. 2018. Characterization of siRNAs clusters in Arabidopsis thaliana galls induced by the root-knot nematode Meloidogyne incognita. . BMC Genom 19:943
    [Google Scholar]
  64. 64.
    Medina C, da Rocha M, Magliano M, Ratpopoulo A, Revel B et al. 2017. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita. . New Phytol 216:882–96
    [Google Scholar]
  65. 65.
    Mirouze M, Paszkowski J. 2011. Epigenetic contribution to stress adaptation in plants. Curr. Opin. Plant Biol. 14:267–74
    [Google Scholar]
  66. 66.
    Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA et al. 2013. Nematode effector proteins: an emerging paradigm of parasitism. New Phytol 199:879–94
    [Google Scholar]
  67. 67.
    Morao AK, Bouyer D, Roudier F 2016. Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining. Curr. Opin. Plant Biol. 34:27–34
    [Google Scholar]
  68. 68.
    Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G 2011. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–16
    [Google Scholar]
  69. 69.
    Nejat N, Mantri N. 2018. Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Crit. Rev. Biotechnol. 38:93–105
    [Google Scholar]
  70. 70.
    Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C et al. 2017. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543:72–77
    [Google Scholar]
  71. 71.
    Noon JB, Baum TJ. 2016. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients. BMC Evol. Biol. 16:74
    [Google Scholar]
  72. 72.
    Noon JB, Hewezi T, Baum TJ 2019. Homeostasis in the soybean miRNA396–GRF network is essential for productive soybean cyst nematode infections. J. Exp. Bot. 70:1653–68
    [Google Scholar]
  73. 73.
    Noon JB, Hewezi T, Maier TR, Simmons C, Wei JZ et al. 2015. Eighteen new candidate effectors of the phytonematode Heterodera glycines produced specifically in the secretory esophageal gland cells during parasitism. Phytopathology 105:1362–72
    [Google Scholar]
  74. 74.
    Park BS, Seo JS, Chua NH 2014. NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis. Plant Cell 26:454–64
    [Google Scholar]
  75. 75.
    Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ 2007. A mutation in NLA, which encodes a RING‐type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J 50:320–37
    [Google Scholar]
  76. 76.
    Piya S, Bennett M, Rambani A, Hewezi T 2017. Transcriptional activity of transposable elements may contribute to gene expression changes in the syncytium formed by cyst nematode in Arabidopsis roots. Plant Signal. Behav. 12:e1362521
    [Google Scholar]
  77. 77.
    Piya S, Kihm C, Rice JH, Baum TJ, Hewezi T 2017. Cooperative regulatory functions of miR858 and MYB83 during cyst nematode parasitism. Plant Physiol 174:1897–912
    [Google Scholar]
  78. 78.
    Piya S, Liu J, Burch-Smith T, Baum TJ, Hewezi T 2020. A role for Arabidopsis growth-regulating factors 1 and 3 in growth-stress antagonism. J. Exp. Bot. 71:41402–17
    [Google Scholar]
  79. 79.
    Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ 2019. Classification and experimental identification of plant long non-coding RNAs. Genomics 111:997–1005
    [Google Scholar]
  80. 80.
    Rambani A, Rice JH, Liu J, Lane T, Ranjan P et al. 2015. The methylome of soybean roots during the compatible interaction with the soybean cyst nematode. Plant Physiol 168:1364–77
    [Google Scholar]
  81. 81.
    Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H 2018. Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci 23:833–44
    [Google Scholar]
  82. 82.
    Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J et al. 2003. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12:1591–98
    [Google Scholar]
  83. 83.
    Ripoll JJ, Bailey LJ, Mai QA, Wu SL, Hon CT et al. 2015. microRNA regulation of fruit growth. Nat. Plants 1:15036
    [Google Scholar]
  84. 84.
    Ruiz-Ferrer V, Cabrera J, Martinez-Argudo I, Artaza H, Fenoll C, Escobar C 2018. Silenced retrotransposons are major rasiRNAs targets in Arabidopsis galls induced by Meloidogyne javanica. Mol. . Plant Pathol 19:2431–45
    [Google Scholar]
  85. 85.
    Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P et al. 2008. Control of jasmonate biosynthesis and senescence by miR319 targets. PLOS Biol 6:e230
    [Google Scholar]
  86. 86.
    Secco D, Wang C, Shou H, Schultz MD, Chiarenza S et al. 2015. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 4:e09343
    [Google Scholar]
  87. 87.
    Seo JK, Wu JG, Lii YF, Li Y, Jin HL 2013. Contribution of small RNA pathway components in plant immunity. Mol. Plant-Microbe Interact. 26:617–25
    [Google Scholar]
  88. 88.
    Simon SA, Meyers BC. 2011. Small RNA-mediated epigenetic modifications in plants. Curr. Opin. Plant Biol. 14:148–55
    [Google Scholar]
  89. 89.
    Stroud H, Do T, Du JM, Zhong XH, Feng SH et al. 2014. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol 21:64–72
    [Google Scholar]
  90. 90.
    Stroud H, Greenberg MVC, Feng SH, Bernatavichute YV, Jacobsen SE 2013. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–64
    [Google Scholar]
  91. 91.
    Tian B, Wang SC, Todd TC, Johnson CD, Tang GL, Trick HN 2017. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing. BMC Genom 18:572
    [Google Scholar]
  92. 92.
    To TK, Kim JM, Matsui A, Kurihara Y, Morosawa T et al. 2011. Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLOS Genet 7:1002055
    [Google Scholar]
  93. 93.
    van den Elsen S, Holovachov O, Karssen G, van Megen H, Helder J et al. 2009. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–50
    [Google Scholar]
  94. 94.
    Vijayapalani P, Hewezi T, Pontvianne F, Baum TJ 2018. An effector from the cyst nematode Heterodera schachtii derepresses host rRNA genes by altering histone acetylation. Plant Cell 30:2795–812
    [Google Scholar]
  95. 95.
    Wang X, Weigel D, Smith LM 2013. Transposon variants and their effects on gene expression in Arabidopsis. . PLOS Genet 9:e1003255
    [Google Scholar]
  96. 96.
    Xiao Y, Bedet C, Robert VJ, Simonet T, Dunkelbarger S et al. 2011. Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. PNAS 108:8305–10
    [Google Scholar]
  97. 97.
    Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD et al. 2004. Genetic and functional diversification of small RNA pathways in plants. PLOS Biol 2:E104
    [Google Scholar]
  98. 98.
    Yan K, Rousseau J, Littlejohn RO, Kiss C, Lehman A et al. 2017. Mutations in the chromatin regulator gene BRPF1 cause syndromic intellectual disability and deficient histone acetylation. Am. J. Hum. Genet. 100:91–104
    [Google Scholar]
  99. 99.
    Yu A, Lepere G, Jay F, Wang J, Bapaume L et al. 2013. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. PNAS 110:2389–94
    [Google Scholar]
  100. 100.
    Zhang B, Wang L, Zeng L, Zhang C, Ma H 2015. Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes Dev 29:975–87
    [Google Scholar]
  101. 101.
    Zhao W, Li Z, Fan J, Hu C, Yang R et al. 2015. Identification of jasmonic acid–associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J. Exp. Bot. 66:4653–67
    [Google Scholar]
  102. 102.
    Zhu JK. 2009. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43:143–66
    [Google Scholar]
  103. 103.
    Zhu QH, Shan WX, Ayliffe MA, Wang MB 2016. Epigenetic mechanisms: an emerging player in plant-microbe interactions. Mol. Plant-Microbe Interact. 29:187–96
    [Google Scholar]
  104. 104.
    Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S 2008. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–29
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-010820-012805
Loading
/content/journals/10.1146/annurev-phyto-010820-012805
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error