Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth–promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including , , , and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ahn I-P, Lee S-W, Suh S-C. 1.  2007. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Mol. Plant-Microbe Interact. 20:759–68 [Google Scholar]
  2. Alabouvette C, Olivain C, Migheli Q, Steinberg C. 2.  2009. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol. 184:529–44 [Google Scholar]
  3. Alfano G, Ivey MLL, Cakir C, Bos JIB, Miller SA. 3.  et al. 2007. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–37 [Google Scholar]
  4. Alizadeh H, Behboudi K, Amadzadeh M, Javan-Nikkhah M, Zamioudis C. 4.  et al. 2013. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol. Control 65:14–23 [Google Scholar]
  5. Alström S. 5.  1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J. Gen. Appl. Microbiol. 37:495–501 [Google Scholar]
  6. Audenaert K, Pattery T, Cornelis P, Höfte M. 6.  2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15:1147–56 [Google Scholar]
  7. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 7.  2006. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 57:233–66 [Google Scholar]
  8. Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ. 8.  2013. The rhizospere revisited: root microbiomics. Front. Plant Sci. 4:165 [Google Scholar]
  9. Bakker PAHM, Ran LX, Mercado-Blanco J. 9.  2014. Rhizobacterial salicylate production provokes headaches!. Plant Soil doi: 10.1007/s11104-014-2102-0
  10. Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC. 10.  2003. Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can. J. Plant Pathol. 25:5–9 [Google Scholar]
  11. Bardoel BW, Van der Ent S, Pel MJC, Tommassen J, Pieterse CMJ. 11.  et al. 2011. Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog. 7:e1002206 [Google Scholar]
  12. Beauregard PB, Chai YR, Vlamakis H, Losick R, Kolter R. 12.  2013. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl. Acad. Sci. USA 110:E1621–30 [Google Scholar]
  13. Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY. 13.  et al. 2009. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–53 [Google Scholar]
  14. Benhamou N, Belanger RR, Paulitz TC. 14.  1996. Pre-inoculation of Ri T-DNA-transformed pea roots with Pseudomonas fluorescens inhibits colonization by Pythium ultimum Trow: an ultrastructural and cytochemical study. Planta 199:105–17 [Google Scholar]
  15. Berendsen RL, Pieterse CMJ, Bakker PAHM. 15.  2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478–86 [Google Scholar]
  16. Boller T, Felix G. 16.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  17. Brotman Y, Landau U, Cuadros-Inostroza A, Takayuki T, Fernie AR. 17.  et al. 2013. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 9:e1003221 [Google Scholar]
  18. Browse J. 18.  2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60:183–205 [Google Scholar]
  19. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N. 19.  et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95 [Google Scholar]
  20. Cameron DD, Neal AL, Van Wees SCM, Ton J. 20.  2013. Mycorrhiza-induced resistance: more than the sum of its parts?. Trends Plant Sci. 18:539–45 [Google Scholar]
  21. Cao H, Bowling SA, Gordon AS, Dong X. 21.  1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–92 [Google Scholar]
  22. Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopka J. 22.  et al. 2008. Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Mol. Plant-Microbe Interact. 21:244–59 [Google Scholar]
  23. Carvalhais L, Dennis P, Badri D, Tyson G, Vivanco J, Schenk P. 23.  2013. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8:e56457 [Google Scholar]
  24. Champigny M, Shearer H, Mohammad A, Haines K, Neumann M. 24.  et al. 2011. Localization of DIR1 at the tissue, cellular and subcellular levels during systemic acquired resistance in Arabidopsis using DIR1:GUS and DIR1:EGFP reporters. BMC Plant Biol. 11:125 [Google Scholar]
  25. Cho I, Blaser MJ. 25.  2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13:260–70 [Google Scholar]
  26. Chung HS, Niu Y, Browse J, Howe GA. 26.  2009. Top hits in contemporary JAZ: an update on jasmonate signaling. Phytochemistry 70:1547–59 [Google Scholar]
  27. Conrath U. 27.  2011. Molecular aspects of defence priming. Trends Plant Sci. 16:524–31 [Google Scholar]
  28. Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G. 28.  et al. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062–71 [Google Scholar]
  29. Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J. 29.  2011. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal. Behav. 6:1554–63 [Google Scholar]
  30. Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J. 30.  2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149:1579–92 [Google Scholar]
  31. De Jonge R, Van Esse HP, Kombrink A, Shinya T, Desaki Y. 31.  et al. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–55 [Google Scholar]
  32. De La Fuente L, Mavrodi D, Landa B, Thomashow L, Weller D. 32.  2006. phlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Microbiol. Ecol. 56:64–78 [Google Scholar]
  33. De Meyer G, Capieau K, Audenaert K, Buchala A, Métraux J-P, Höfte M. 33.  1999. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant-Microbe Interact. 12:450–58 [Google Scholar]
  34. De Mortel JEV, Schat H, Moerland PD, Ver Loren van Themaat E, Van der Ent S. 34.  et al. 2008. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 31:301–24 [Google Scholar]
  35. Dempsey DA, Klessig DF. 35.  2012. SOS: too many signals for systemic acquired resistance?. Trends Plant Sci. 17:538–45 [Google Scholar]
  36. De Vleesschauwer D, Djavaheri M, Bakker PAHM, Höfte M. 36.  2008. Pseudomonas fluorescens WCS374r–induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid–repressible multifaceted defense response. Plant Physiol. 148:1996–2012 [Google Scholar]
  37. De Vleesschauwer D, Höfte M. 37.  2009. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 51:223–81 [Google Scholar]
  38. Dicke M, Baldwin IT. 38.  2010. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help.”. Trends Plant Sci. 15:167–75 [Google Scholar]
  39. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D. 39.  et al. 2008. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–45 [Google Scholar]
  40. Djavaheri M, Mercado-Blanco J, Versluis C, Meyer J-M, Van Loon LC, Bakker PAHM. 40.  2012. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato in Arabidopsis. MicrobiologyOpen 1:311–25 [Google Scholar]
  41. Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM. 41.  2007. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol. 145:875–89 [Google Scholar]
  42. Dodds PN, Rathjen JP. 42.  2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539–48 [Google Scholar]
  43. Dong X. 43.  2004. NPR1, all things considered. Curr. Opin. Plant Biol. 7:547–52 [Google Scholar]
  44. Fan B, Carvalhais L, Becker A, Fedoseyenko D, Von Wiren N, Borriss R. 44.  2012. Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol. 12:116 [Google Scholar]
  45. Flors HH. 45.  1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96 [Google Scholar]
  46. Franken P. 46.  2012. The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl. Microbiol. Biotechnol. 96:1455–64 [Google Scholar]
  47. Frost CJ, Mescher MC, Carlson JE, De Moraes CM. 47.  2008. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol. 146:818–24 [Google Scholar]
  48. Fu ZQ, Yan S, Saleh A, Wang W, Ruble J. 48.  et al. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–32 [Google Scholar]
  49. Green TR, Ryan CA. 49.  1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–77 [Google Scholar]
  50. Haichar F, Marol C, Berge O, Rangel-Castro J, Prosser J. 50.  et al. 2008. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2:1221–30 [Google Scholar]
  51. Hammerschmidt R, Métraux J-P, Van Loon LC. 51.  2001. Inducing resistance: a summary of papers presented at the First International Symposium on Induced Resistance to Plant Diseases, Corfu, May 2000. Eur. J. Plant Pathol. 107:1–6 [Google Scholar]
  52. Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T. 52.  et al. 2008. Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol. 57:870–76 [Google Scholar]
  53. Heil M. 53.  2009. Damaged-self recognition in plant herbivore defence. Trends Plant Sci. 14:356–63 [Google Scholar]
  54. Hoffland E, Pieterse CMJ, Bik L, Van Pelt JA. 54.  1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol. Mol. Plant Pathol. 46:309–20 [Google Scholar]
  55. Hogenhout SA, Bos JIB. 55.  2011. Effector proteins that modulate plant-insect interactions. Curr. Opin. Plant Biol. 14:422–28 [Google Scholar]
  56. Hossain MM, Sultana F, Kubota M, Hyakumachi M. 56.  2008. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304:227–39 [Google Scholar]
  57. Howe GA, Jander G. 57.  2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66 [Google Scholar]
  58. Iavicoli A, Boutet E, Buchala A, Métraux J-P. 58.  2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16:851–58 [Google Scholar]
  59. Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E. 59.  et al. 2011. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol. 156:726–40 [Google Scholar]
  60. Jaskiewicz M, Conrath U, Peterhansel C. 60.  2011. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12:50–55 [Google Scholar]
  61. Jones JDG, Dangl JL. 61.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  62. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. 62.  2012. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38:651–64 [Google Scholar]
  63. Kachroo A, Robin GP. 63.  2013. Systemic signaling during plant defense. Curr. Opin. Plant Biol. 16:527–33 [Google Scholar]
  64. Kloepper JW, Ryu C-M, Zhang SA. 64.  2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–66 [Google Scholar]
  65. Kloppholz S, Kuhn H, Requena N. 65.  2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21:1204–9 [Google Scholar]
  66. Knoester M, Pieterse CMJ, Bol JF, Van Loon LC. 66.  1999. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol. Plant-Microbe Interact. 12:720–27 [Google Scholar]
  67. Korolev N, David DR, Elad Y. 67.  2008. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Biocontrol 53:667–83 [Google Scholar]
  68. Kuć J. 68.  1982. Induced immunity to plant disease. Bioscience 32:854–60 [Google Scholar]
  69. Kumar AS, Lakshmanan V, Caplan JL, Powell D, Czymmek KJ. 69.  et al. 2012. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J. 72:694–706 [Google Scholar]
  70. Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR. 70.  et al. 2013. Host-related metabolic cues affect colonization strategies of a root endophyte. Proc. Natl. Acad. Sci. USA 110:13965–70 [Google Scholar]
  71. Lakshmanan V, Castaneda R, Rudrappa T, Bais HP. 71.  2013. Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta 238:657–68 [Google Scholar]
  72. Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM. 72.  2006. Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. FEMS Microbiol. Ecol. 55:351–68 [Google Scholar]
  73. Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM. 73.  2012. Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE 7:e48744 [Google Scholar]
  74. Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ. 74.  2007. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J. 50:529–44 [Google Scholar]
  75. Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK. 75.  et al. 2012. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 8:e1002784 [Google Scholar]
  76. Lorito M, Woo SL, Harman GE, Monte E. 76.  2010. Translational research on Trichoderma: from 'omics to the field. Annu. Rev. Phytopathol. 48:395–417 [Google Scholar]
  77. Lugtenberg B, Kamilova F. 77.  2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541–56 [Google Scholar]
  78. Luna E, Bruce TJA, Roberts MR, Flors V, Ton J. 78.  2012. Next-generation systemic acquired resistance. Plant Physiol. 158:844–53 [Google Scholar]
  79. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J. 79.  et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90 [Google Scholar]
  80. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. 80.  2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403 [Google Scholar]
  81. Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J. 81.  et al. 2005. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc. Natl. Acad. Sci. USA 102:17454–59 [Google Scholar]
  82. Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ. 82.  2013. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front. Plant Sci. 4:206 [Google Scholar]
  83. Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B. 83.  et al. 2012. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front. Plant Sci. 3:108 [Google Scholar]
  84. Matilla M, Espinosa-Urgel M, Rodriguez-Herva J, Ramos J, Ramos-Gonzalez M. 84.  2007. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol. 8:R179 [Google Scholar]
  85. Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb SD, Défago G. 85.  1998. Salicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–84 [Google Scholar]
  86. Mavrodi DV, Joe A, Mavrodi OV, Hassan KA, Weller DM. 86.  et al. 2011. Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96. J. Bacteriol. 193:177–89 [Google Scholar]
  87. Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM. 87.  2009. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J. 3:977–91 [Google Scholar]
  88. Memelink J. 88.  2009. Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–70 [Google Scholar]
  89. Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van der Voort M. 89.  et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–100 [Google Scholar]
  90. Meziane H, Van der Sluis I, Van Loon LC, Höfte M, Bakker PAHM. 90.  2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6:177–85 [Google Scholar]
  91. Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD. 91.  et al. 2010. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22:973–90 [Google Scholar]
  92. Mishina TE, Zeier J. 92.  2006. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol. 141:1666–75 [Google Scholar]
  93. Mishina TE, Zeier J. 93.  2007. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 50:500–13 [Google Scholar]
  94. Mithöfer A, Boland W. 94.  2008. Recognition of herbivory-associated molecular patterns. Plant Physiol. 146:825–31 [Google Scholar]
  95. Mortier V, Holsters M, Goormachtig S. 95.  2012. Never too many? How legumes control nodule numbers. Plant Cell Environ. 35:245–58 [Google Scholar]
  96. Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE. 96.  2013. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:422–26 [Google Scholar]
  97. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM. 97.  2013. Trichoderma research in the genome era. Annu. Rev. Phytopathol. 51:105–29 [Google Scholar]
  98. Neal AL, Ahmad S, Gordon-Weeks R, Ton J. 98.  2012. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE 7:e35498 [Google Scholar]
  99. Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M. 99.  2013. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat. Commun. 4:2191 [Google Scholar]
  100. Oldroyd GED, Harrison MJ, Paszkowski U. 100.  2009. Reprogramming plant cells for endosymbiosis. Science 324:753–54 [Google Scholar]
  101. Ortiz-Castro R, Diaz-Perez C, Martinez-Trujillo M, del Rio RE, Campos-Garcia J, Lopez-Bucio J. 101.  2011. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc. Natl. Acad. Sci. USA 108:7253–58 [Google Scholar]
  102. Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. 102.  2013. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 18:402–11 [Google Scholar]
  103. Palmer CM, Hindt MN, Schmidt H, Clemens S, Guerinot ML. 103.  2013. MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9:e1003953 [Google Scholar]
  104. Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V. 104.  2013. Primed plants do not forget. Environ. Exp. Bot. 94:46–56 [Google Scholar]
  105. Pauwels L, Goossens A. 105.  2011. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–100 [Google Scholar]
  106. Pearce G, Strydom D, Johnson S, Ryan CA. 106.  1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–97 [Google Scholar]
  107. Pedrotti L, Mueller MJ, Waller F. 107.  2013. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots. PLoS ONE 8:e69352 [Google Scholar]
  108. Peiffer J, Spor A, Koren O, Jin Z, Tringe S. 108.  et al. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 110:6548–53 [Google Scholar]
  109. Pel MJC, Pieterse CMJ. 109.  2013. Microbial recognition and evasion of host immunity. J. Exp. Bot. 64:1237–48 [Google Scholar]
  110. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 110.  2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11:789–99 [Google Scholar]
  111. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. 111.  2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521 [Google Scholar]
  112. Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ. 112.  et al. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57:123–34 [Google Scholar]
  113. Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC. 113.  1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–37 [Google Scholar]
  114. Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R. 114.  et al. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–80 [Google Scholar]
  115. Pineda A, Dicke M, Pieterse CMJ, Pozo MJ. 115.  2013. Beneficial microbes in a changing environment: Are they always helping plants to deal with insects?. Funct. Ecol. 27:574–86 [Google Scholar]
  116. Pineda A, Zheng S-J, Van Loon JJA, Pieterse CMJ, Dicke M. 116.  2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 15:507–14 [Google Scholar]
  117. Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V. 117.  et al. 2011. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr. Biol. 21:1197–203 [Google Scholar]
  118. Pozo MJ, Azcon-Aguilar C. 118.  2007. Unraveling mycorrhiza-induced resistance. Curr. Opion Plant Biol. 10:393–98 [Google Scholar]
  119. Pozo MJ, Van der Ent S, Van Loon LC, Pieterse CMJ. 119.  2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 180:511–23 [Google Scholar]
  120. Press CM, Wilson M, Tuzun S, Kloepper JW. 120.  1997. Salicylic acid produced by Serratia marcescens 91-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 10:761–68 [Google Scholar]
  121. Raaijmakers JM, Leeman M, Van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM. 121.  1995. Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–81 [Google Scholar]
  122. Ramirez V, Van der Ent S, Garcia-Andrade J, Coego A, Pieterse CMJ, Vera P. 122.  2010. OCP3 is an important modulator of NPR1-mediated jasmonic acid–dependent induced defenses in Arabidopsis. BMC Plant Biol. 10:199 [Google Scholar]
  123. Ran LX, Van Loon LC, Bakker PAHM. 123.  2005. No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349–55 [Google Scholar]
  124. Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R. 124.  et al. 2012. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol. 158:854–63 [Google Scholar]
  125. Reinhold-Hurek B, Hurek T. 125.  2011. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14:435–43 [Google Scholar]
  126. Ross AF. 126.  1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–58 [Google Scholar]
  127. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM. 127.  1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA 95:9750–54 [Google Scholar]
  128. Rudrappa T, Czymmek KJ, Paré PW, Bais HP. 128.  2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148:1547–56 [Google Scholar]
  129. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD. 129.  1996. Systemic acquired resistance. Plant Cell 8:1808–19 [Google Scholar]
  130. Ryu C-M, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW. 130.  2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017–26 [Google Scholar]
  131. Ryu C-M, Hu C-H, Reddy MS, Kloepper JW. 131.  2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160:413–20 [Google Scholar]
  132. Ryu C-M, Murphy JF, Mysore KS, Kloepper JW. 132.  2004. Plant growth–promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid–dependent signaling pathway. Plant J. 39:381–92 [Google Scholar]
  133. Segarra G, Van der Ent S, Trillas I, Pieterse CMJ. 133.  2009. MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol. 11:90–96 [Google Scholar]
  134. Shah J, Zeier J. 134.  2013. Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci. 4:30 [Google Scholar]
  135. Shoresh M, Gal-On A, Leibman D, Chet I. 135.  2006. Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma-conferred plant resistance. Plant Physiol. 142:1169–79 [Google Scholar]
  136. Shoresh M, Harman GE, Mastouri F. 136.  2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48:21–43 [Google Scholar]
  137. Shoresh M, Yedidia I, Chet I. 137.  2005. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84 [Google Scholar]
  138. Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B. 138.  2012. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158:835–43 [Google Scholar]
  139. Spoel SH, Dong X. 139.  2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12:89–100 [Google Scholar]
  140. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA. 140.  et al. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–70 [Google Scholar]
  141. Spoel SH, Mou ZL, Tada Y, Spivey NW, Genschik P, Dong X. 141.  2009. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–72 [Google Scholar]
  142. Staehelin C, Xie ZP, Illana A, Vierheilig H. 142.  2011. Long-distance transport of signals during symbiosis: Are nodule formation and mycorrhization autoregulated in a similar way?. Plant Signal. Behav. 6:372–77 [Google Scholar]
  143. Stein E, Molitor A, Kogel KH, Waller F. 143.  2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 49:1747–51 [Google Scholar]
  144. Sun JQ, Jiang HL, Li CY. 144.  2011. Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol. Plant 4:607–15 [Google Scholar]
  145. Thomma BPHJ, Penninckx IAMA, Broekaert WF, Cammue BPA. 145.  2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13:63–68 [Google Scholar]
  146. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A. 146.  et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. USA 110:20117–22 [Google Scholar]
  147. Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P. 147.  2005. Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol. Plant-Microbe Interact. 18:555–61 [Google Scholar]
  148. Ton J, Davison S, Van Wees SCM, Van Loon LC, Pieterse CMJ. 148.  2001. The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125:652–61 [Google Scholar]
  149. Ton J, Jakab G, Toquin V, Flors V, Iavicoli A. 149.  et al. 2005. Dissecting the β-aminobutyric acid–induced priming phenomenon in Arabidopsis. Plant Cell 17:987–99 [Google Scholar]
  150. Ton J, Pieterse CMJ, Van Loon LC. 150.  1999. Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Mol. Plant-Microbe Interact. 12:911–18 [Google Scholar]
  151. Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ. 151.  2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact. 15:27–34 [Google Scholar]
  152. Van de Mortel JE, De Vos RCH, Dekkers E, Pineda A, Guillod L. 152.  et al. 2012. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol. 160:2173–88 [Google Scholar]
  153. Van der Ent S, Van Hulten MHA, Pozo MJ, Czechowski T, Udvardi MK. 153.  et al. 2009. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. New Phytol. 183:419–31 [Google Scholar]
  154. Van der Ent S, Van Wees SCM, Pieterse CMJ. 154.  2009. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–88 [Google Scholar]
  155. Van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG. 155.  et al. 2008. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol. 146:1293–304 [Google Scholar]
  156. Van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J. 156.  2006. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 103:5602–7 [Google Scholar]
  157. Van Loon LC, Bakker PAHM. 157.  2005. Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. PGPR: Biocontrol and Biofertilization ZA Siddiqui 39–66 Dordrecht, Neth: Springer [Google Scholar]
  158. Van Loon LC, Bakker PAHM. 158.  2006. Root-associated bacteria inducing systemic resistance. Plant-Associated Bacteria SS Gnanamanickam 269–316 Dordrecht, Neth.: Springer [Google Scholar]
  159. Van Loon LC, Bakker PAHM, Pieterse CMJ. 159.  1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–83 [Google Scholar]
  160. Van Loon LC, Rep M, Pieterse CMJ. 160.  2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135–62 [Google Scholar]
  161. Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC. 161.  et al. 2008. Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol. Plant-Microbe Interact. 21:919–30 [Google Scholar]
  162. Van Peer R, Niemann GJ, Schippers B. 162.  1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–34 [Google Scholar]
  163. Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ. 163.  2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97:8711–16 [Google Scholar]
  164. Van Wees SCM, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CMJ. 164.  1999. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537–49 [Google Scholar]
  165. Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van 't Westende YAM, Hartog F, Van Loon LC. 165.  1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact. 10:716–24 [Google Scholar]
  166. Van Wees SCM, Van der Ent S, Pieterse CMJ. 166.  2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443–48 [Google Scholar]
  167. Vargas WA, Crutcher FK, Kenerley CM. 167.  2011. Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytol. 189:777–89 [Google Scholar]
  168. Vargas WA, Mandawe JC, Kenerley CM. 168.  2009. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol. 151:792–808 [Google Scholar]
  169. Verhagen BWM, Glazebrook J, Zhu T, Chang H-S, Van Loon LC, Pieterse CMJ. 169.  2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. Plant-Microbe Interact. 17:895–908 [Google Scholar]
  170. Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R. 170.  et al. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6:959–65 [Google Scholar]
  171. Vlot AC, Dempsey DA, Klessig DF. 171.  2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206 [Google Scholar]
  172. Vos IA, Pieterse CMJ, Van Wees SCM. 172.  2013. Costs and benefits of hormone-regulated plant defences. Plant Pathol. 62:43–55 [Google Scholar]
  173. Vos IA, Verhage A, Schuurink RC, Watt LG, Pieterse CMJ, Van Wees SCM. 173.  2013. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Front. Plant Sci. 4:539 [Google Scholar]
  174. Walters DR, Paterson L, Walsh DJ, Havis ND. 174.  2008. Priming for plant defense in barley provides benefits only under high disease pressure. Physiol. Mol. Plant Pathol. 73:95–100 [Google Scholar]
  175. Walters DR, Ratsep J, Havis ND. 175.  2013. Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot. 64:1263–80 [Google Scholar]
  176. Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B. 176.  et al. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22:2242–46 [Google Scholar]
  177. Wang YQ, Ohara Y, Nakayashiki H, Tosa Y, Mayama S. 177.  2005. Microarray analysis of the gene expression profile induced by the endophytic plant growth–promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol. Plant-Microbe Interact. 18:385–96 [Google Scholar]
  178. Wasternack C, Hause B. 178.  2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111:1021–58 [Google Scholar]
  179. Wei G, Kloepper JW, Tuzun S. 179.  1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 81:1508–12 [Google Scholar]
  180. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L. 180.  et al. 2007. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol. 9:4–20 [Google Scholar]
  181. Weller DM, Mavrodi DV, Van Pelt JA, Pieterse CMJ, Van Loon LC, Bakker PAHM. 181.  2012. Induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–12 [Google Scholar]
  182. Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS. 182.  2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309–48 [Google Scholar]
  183. Wu J, Baldwin IT. 183.  2010. New insights into plant responses to the attack from insect herbivores. Annu. Rev. Genet. 44:1–24 [Google Scholar]
  184. Wu Y, Zhang D, Chu JY, Boyle P, Wang Y. 184.  et al. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1:639–47 [Google Scholar]
  185. Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson M, Kloepper JW. 185.  2002. Induced systemic protection against tomato late blight elicited by plant growth–promoting rhizobacteria. Phytopathology 92:1329–33 [Google Scholar]
  186. Yang S, Tang F, Gao MQ, Krishnan HB, Zhu HY. 186.  2010. R gene–controlled host specificity in the legume-rhizobia symbiosis. Proc. Natl. Acad. Sci. USA 107:18735–40 [Google Scholar]
  187. Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ. 187.  2013. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol. 162:304–18 [Google Scholar]
  188. Zamioudis C, Pieterse CMJ. 188.  2012. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 25:139–50 [Google Scholar]
  189. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y. 189.  et al. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–51 [Google Scholar]
  190. Zipfel C. 190.  2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12:414–20 [Google Scholar]
  191. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S. 191.  et al. 2011. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. 7:e1002290 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error