1932

Abstract

Plant pathogens have played an important role in weed biological control since the 1970s. So far, 36 fungal pathogens have been authorized for introduction across 18 countries for the classical biological control of weeds. Their safety record has been excellent, but questions continue to be asked about the risk that they could transfer to other plants. Quantitative data documenting their impact on the weed populations are still limited. Of the 15 bioherbicides based on living microorganisms that have ever been registered, only two were commercially available at the time of this review. The development and commercialization of bioherbicides in affluent countries are still plagued by technological hurdles and limited market potential. Not-for-profit small-scale production and distribution systems for bioherbicides in low-income countries may have potential as an inexpensive approach to controlling pervasive weeds. The types of research underpinning biological control approaches and challenges encountered are highlighted using specific examples.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-010820-012823
2020-08-25
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/phyto/58/1/annurev-phyto-010820-012823.html?itemId=/content/journals/10.1146/annurev-phyto-010820-012823&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams EB, Line RF. 1984. Biology of Puccinia chondrillina in Washington. Phytopathology 74:742–45
    [Google Scholar]
  2. 2.
    Anderson FE, Diaz ML, Barton J, Flemmer AC, Hansen PV, McLaren DA 2011. Exploring the life cycles of three South American rusts that have potential as biocontrol agents of the stipoid grass Nassella neesiana in Australasia. Fungal Biol 115:370–80
    [Google Scholar]
  3. 3.
    Anderson FE, Gallego L, Sanchez RM, Flemmer AC, Hansen PV et al. 2017. Plant/pathogen interactions observed during host range testing of the rust fungus Uromyces pencanus, a classical biological control agent for Chilean needle grass (Nassella neesiana) in Australia and New Zealand. Biocontrol Sci. Technol. 27:1096–117
    [Google Scholar]
  4. 4.
    Arnason R. 2018. Bio-herbicide hammers broadleaf weeds. The Western Producer March 15. https://www.producer.com/2018/03/bio-herbicide-hammers-broadleaf-weeds/
    [Google Scholar]
  5. 5.
    Ash GJ. 2010. The science, art and business of successful bioherbicides. Biol. Control 52:230–40
    [Google Scholar]
  6. 6.
    Auld BA, Hetherington SD, Smith HE 2003. Advances in bioherbicide formulation. Weed Biol. Manag. 3:61–67
    [Google Scholar]
  7. 7.
    Auld BA, Morin L. 1995. Constraints in the development of bioherbicides. Weed Technol 9:638–52
    [Google Scholar]
  8. 8.
    Aust. Pestic. Vet. Med. Auth 2018. Guideline for the Regulation of Biological Agricultural Products. Version 2. Australian Pesticides and Veterinary Medicines Authority https://apvma.gov.au/node/11196
    [Google Scholar]
  9. 9.
    Aust. Pestic. Vet. Med. Auth 2019. Commonwealth of Australia Gazette No. APVMA 1 Canberra, Aust: Aust. Gov https://apvma.gov.au/sites/default/files/gazette_15022019.pdf
  10. 10.
    Avedi EK, Ochieno DMW, Ajanga S, Wanyama C, Wainwright H et al. 2014. Fusarium oxysporum f. sp. strigae strain Foxy 2 did not achieve biological control of Striga hermonthica parasitizing maize in Western Kenya. Biol. Control 77:7–14
    [Google Scholar]
  11. 11.
    Ayliffe M, Sørensen CK. 2019. Plant nonhost resistance: paradigms and new environments. Curr. Opin. Plant Biol. 50:104–13
    [Google Scholar]
  12. 12.
    Bailey KL. 2014. The bioherbicide approach to weed control using plant pathogens. Integrated Pest Management: Current Concepts and Ecological Perspective DP Abrol 245–66 San Diego, CA: Academic
    [Google Scholar]
  13. 13.
    Bailey KL, Boyetchko SM, Langle T 2010. Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol. Control 52:221–29
    [Google Scholar]
  14. 14.
    Bailey KL, Falk S. 2011. Turning research on microbial bioherbicides into commercial products: a Phoma story. Pest Technol 5:73–79
    [Google Scholar]
  15. 15.
    Barreto RW, Ellison CA, Seier MK, Evans HC 2012. Biological control of weeds with plant pathogens: four decades on. Integrated Pest Management: Principles and Practice DP Abrol, U Shankar 299–350 Wallingford, UK: CABI
    [Google Scholar]
  16. 16.
    Barrett LG, Heil M. 2012. Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends Plant Sci 17:282–92
    [Google Scholar]
  17. 17.
    Barton J. 2012. Predictability of pathogen host range in classical biological control of weeds: an update. Biocontrol 57:289–305
    [Google Scholar]
  18. 18.
    Barton J, Fowler SV, Gianotti AF, Winks CJ, de Beurs M et al. 2007. Successful biological control of mist flower (Ageratina riparia) in New Zealand: agent establishment, impact and benefits to the native flora. Biol. Control 40:370–85
    [Google Scholar]
  19. 19.
    Baudoin ABAM, Abad RG, Kok LT, Bruckart WL 1993. Field evaluation of Puccinia carduorum for biological control of musk thistle. Biol. Control 3:53–60
    [Google Scholar]
  20. 20.
    Berger S, Sinha AK, Roitsch T 2007. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J. Exp. Bot. 58:4019–26
    [Google Scholar]
  21. 21.
    Berner DK, Bruckart WL. 2005. A decision tree for evaluation of exotic plant pathogens for classical biological control of introduced invasive weeds. Biol. Control 34:222–32
    [Google Scholar]
  22. 22.
    Bettgenhaeuser J, Gilbert B, Ayliffe M, Moscou MJ 2014. Nonhost resistance to rust pathogens: a continuation of continua. Front. Plant Sci. 5:664
    [Google Scholar]
  23. 23.
    Bewick TA, Porter JC, Ostrowski RC 2000. Smolder™: a bioherbicide for suppression of dodder (Cuscuta spp.). Proceedings of the 53rd Annual Meeting of the Southern Weed Science Society 152 Abstr Tulsa, OK: South.Weed Sci. Soc.
    [Google Scholar]
  24. 24.
    Bowers RC. 1986. Commercialization of Collego™: an industrialist's view. Weed Sci 34:24–25
    [Google Scholar]
  25. 25.
    Boyetchko SM, Bailey KL, Hynes RK, Peng G 2007. Development of the mycoherbicide, BioMal. Biological Control: A Global Perspective C Vincent, MS Goettel, G Lazarovits 274–83 Wallingford, UK: CABI
    [Google Scholar]
  26. 26.
    Briese DT. 2003. The centrifugal phylogenetic method used to select plants for host‐specificity testing of weed biological control agents: Can and should it be modernised?. Improving the Selection, Testing and Evaluation of Weed Biological Control Agents HS Jacob, DT Briese 11–23 Glen Osmond, Aust: CRC Aust. Weed Manag.
    [Google Scholar]
  27. 27.
    Briese DT. 2004. Weed biological control: applying science to solve seemingly intractable problems. Aust. J. Entomol. 43:304–17
    [Google Scholar]
  28. 28.
    Briese DT. 2005. Translating host-specificity test results into the real world: the need to harmonize the yin and yang of current testing procedures. Biol. Control 35:208–14
    [Google Scholar]
  29. 29.
    Bruckart WL. 2006. Supplemental risk evaluations of Puccinia jaceae var. solstitialis for biological control of yellow starthistle. Biol. Control 37:359–66
    [Google Scholar]
  30. 30.
    Bruckart WL, Politis DJ, Sutker EM 1985. Susceptibility of Cynara scolymus (artichoke) to Puccinia carduorum observed under greenhouse conditions. Proceedings of the VI International Symposium on Biological Control of Weeds ES Delfosse 603–7 Ottawa: Agric. Canada
    [Google Scholar]
  31. 31.
    Bruzzese E, Hasan S. 1983. A whole leaf clearing and staining technique for host specificity studies of rust fungi. Plant Pathol 32:335–38
    [Google Scholar]
  32. 32.
    Bruzzese E, Hasan S. 1986. Infection of Australian and New Zealand Rubus subgenera Dalibarda and Lampobatus by the European blackberry rust fungus Phragmidium violaceum. . Plant Pathol 35:413–16
    [Google Scholar]
  33. 33.
    Buccellato L, Byrne MJ, Witkowski ETF 2012. Interactions between a stem gall fly and a leaf-spot pathogen in the biological control of Ageratina adenophora. Biol. . Control 61:222–29
    [Google Scholar]
  34. 34.
    Burdon JJ, Laine A-L. 2019. Environment as a determinant of pathogen incidence, abundance and evolution. Evolutionary Dynamics of Plant-Pathogen Interactions29–47 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  35. 35.
    Casonato SG, Lawrie AC, McLaren DA 1999. Biological control of Hypericum androsaemum with Melampsora hypericorum. Proceedings of the 12th Australian Weeds Conference AC Bishop, M Boersma, CD Barnes 339–42 Hobart, Aust: Tasman. Weed Soc.
    [Google Scholar]
  36. 36.
    Charudattan R. 1991. The mycoherbicide approach with plant pathogens. Microbial Control of Weeds DO TeBeest 24–57 London: Chapman Hall
    [Google Scholar]
  37. 37.
    Charudattan R. 2001. Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–60
    [Google Scholar]
  38. 38.
    Charudattan R. 2005. Ecological, practical, and political inputs into selection of weed targets: What makes a good biological control target. Biol. Control 35:183–96
    [Google Scholar]
  39. 39.
    Charudattan R. 2010. A reflection on my research in weed biological control: using what we have learned for future applications. Weed Technol 24:208–17
    [Google Scholar]
  40. 40.
    Charudattan R, Hiebert E. 2007. A plant virus as a bioherbicide for tropical soda apple. Solanum viarum. Outlooks Pest Manag. 18:167–71
    [Google Scholar]
  41. 41.
    Charudattan R, Hiebert E. 2015. New bioherbicide composed of a plant virus. Int. Pest Control 57:85–87
    [Google Scholar]
  42. 42.
    Cullen JM. 2012. Chondrilla juncea L.: skeleton weed. Biological Control of Weeds in Australia MH Julien, REC McFadyen, JM Cullen 150–61 Collingwood, Aust: CSIRO Publ.
    [Google Scholar]
  43. 43.
    Cullen JM, Kable PF, Catt M 1973. Epidemic spread of a rust imported for biological control. Nature 244:463–64
    [Google Scholar]
  44. 44.
    Culliney TW. 2005. Benefits of classical biological control for managing invasive plants. Crit. Rev. Plant Sci. 24:131–50
    [Google Scholar]
  45. 45.
    Currie AF, Gange AC, Ab Razak N, Ellison CA, Maczey N, Wood SV 2020. Endophytic fungi in the invasive weed Impatiens glandulifera: a barrier to classical biological control. Weed Res 60:50–59
    [Google Scholar]
  46. 46.
    Day MD, Kawi AP, Ellison CA 2013. Assessing the potential of the rust fungus Puccinia spegazzinii as a classical biological control agent for the invasive weed Mikania micrantha in Papua New Guinea. Biol. Control 67:253–61
    [Google Scholar]
  47. 47.
    Day MD, Kawi AP, Fidelis J, Tunabuna A, Orapa W et al. 2013. Biology, field release and monitoring of the rust fungus Puccinia spegazzinii (Pucciniales: Pucciniaceae), a biological control agent of Mikania micrantha (Asteraceae) in Papua New Guinea and Fiji. Proceedings of the XIII International Symposium on Biological Control of Weeds Y Wu, T Johnson, S Sing, S Raghu, G Wheeler et al.211–17 Waikoloa, HI: For. Health Technol. Enterp. Team
    [Google Scholar]
  48. 48.
    de Jong MD. 2000. The BioChon story: deployment of Chondrostereum purpureum to suppress stump sprouting in hardwoods. Mycologist 14:58–62
    [Google Scholar]
  49. 49.
    Denoth M, Frid L, Myers JH 2002. Multiple agents in biological control: improving the odds. Biol. Control 24:20–30
    [Google Scholar]
  50. 50.
    Duke SO, Owens DK, Dayan FE 2014. The growing need for biochemical bioherbicides. Biopesticides: State of the Art and Future Opportunities AD Gross, JR Coats, SO Duke 31–43 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  51. 51.
    Ellison CA, Evans HC, Ineson J 2004. The significance of intraspecies pathogenicity in the selection of a rust pathotype for the classical biological control of Mikania micrantha (mile-a-minute weed) in Southeast Asia. Proceedings of the XI International Symposium on Biological Control of Weeds JM Cullen, DT Briese, DJ Kriticos, WM Lonsdale, L Morin, JK Scott 102–7 Canberra, Aust: CSIRO Entomol.
    [Google Scholar]
  52. 52.
    Ellison CA, Pereira JM, Thomas SE, Barreto RW, Evans HC 2006. Studies on the rust Prospodium tuberculatum, a new classical biological control agent released against the invasive alien weed Lantana camara in Australia. 1. Life-cycle and infection parameters. Australas. Plant Pathol. 35:309–19
    [Google Scholar]
  53. 53.
    Ellison CA, Pollard KM, Varia S 2020. Potential of a coevolved rust fungus for the management of Himalayan balsam in the British Isles: first field releases. Weed Res 60:37–49
    [Google Scholar]
  54. 54.
    EPA 2018. Biopesticides. United States Environmental Protection Agency https://www.epa.gov/pesticides/biopesticides
    [Google Scholar]
  55. 55.
    EPA 2020. Pesticide product and label system. United States Environmental Protection Agency https://iaspub.epa.gov/apex/pesticides/f?p=PPLS:1
    [Google Scholar]
  56. 56.
    Evans HC. 1987. Life-cycle of Puccinia abrupta var. partheniicola, a potential biological control agent of Parthenium hysterophorus. . Trans. Br. Mycol. Soc 88:105–11
    [Google Scholar]
  57. 57.
    Evans HC. 1993. Studies on the rust Maravalia cryptostegiae, a potential biological control agent of rubbervine weed (Cryptostegia grandiflora, Asclepiadaceae, Periplocoideae) in Australia, I: Life-cycle. Mycopathologia 124:163–74
    [Google Scholar]
  58. 58.
    Evans HC. 2000. Evaluating plant pathogens for biological control of weeds: an alternative view of pest risk assessment. Australas. Plant Pathol. 29:1–14
    [Google Scholar]
  59. 59.
    Evans HC, Ellison CA. 1990. Classical biological control of weeds with micro-organisms: past, present, prospects. Aspects Appl. Biol. 24:39–49
    [Google Scholar]
  60. 60.
    Evans HC, Tomley AJ. 1996. Greenhouse and field evaluations of the rubber vine rust, Maravalia cryptostegiae, on Madagascan and Australian Asclepiadaceae. Proceedings of the IX International Symposium on Biological Control of Weeds VC Moran, JH Hoffmann 165–69 Cape Town: Univ. Cape Town
    [Google Scholar]
  61. 61.
    Evans KJ, Symon DE, Whalen MA, Hosking JR, Barker RM, Oliver JA 2007. Systematics of the Rubus fruticosus aggregate (Rosaceae) and other exotic Rubus taxa in Australia. Aust. Syst. Bot. 20:187–251
    [Google Scholar]
  62. 62.
    Galea V, Goulter K. 2013. Field evaluation of a bioherbicide for control of parkinsonia (Parkinsonia aculeata) in Australia. Proceedings of the 19th Australasian Plant Pathology Conference 43 (Abstr.) Auckland: Australas. Plant Pathol. Soc.
    [Google Scholar]
  63. 63.
    Garbelotto M, Lowell N, Chen IY, Osmundson TW 2019. Evidence for inhibition of a fungal biocontrol agent by a plant microbiome. J. Plant Pathol. 101:457–66
    [Google Scholar]
  64. 64.
    Gaskin JF, Bon MC, Cock MJW, Cristofaro M, De Biase A et al. 2011. Applying molecular-based approaches to classical biological control of weeds. Biol. Control 58:1–21
    [Google Scholar]
  65. 65.
    Gaskin JF, Wheeler GS, Purcell MF, Taylor GS 2009. Molecular evidence of hybridization in Florida's sheoak (Casuarina spp.) invasion. Mol. Ecol. 18:3216–26
    [Google Scholar]
  66. 66.
    Gilbert GS, Briggs HM, Magarey R 2015. The impact of plant enemies shows a phylogenetic signal. PLOS ONE 10:e0123758
    [Google Scholar]
  67. 67.
    Gilbert GS, Webb CO. 2007. Phylogenetic signal in plant pathogen-host range. PNAS 104:4979–83
    [Google Scholar]
  68. 68.
    Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N et al. 2012. Have biopesticides come of age. Trends Biotechnol 30:250–58
    [Google Scholar]
  69. 69.
    Goulter KC, Galea VJ, Riikonen P 2019. Control of problem trees: the InJecta® system for application of Di-Bak® Parkinsonia and Di-Bak herbicide capsules. Proceedings of the 1st Queensland Pest Animal and Weed Symposium T Sydes, p. 129 (Abstr.) Brisbane, Aust: Weed Soc. Qld.
    [Google Scholar]
  70. 70.
    Gourlay H, Rendell E, Olsen E, Groenteman R, Probst C et al. 2014. The results of surveys and DNA analysis of tutsan (Hypericum androsaemum) and tutsan rust (Melampsora hypericorum) in New Zealand and Europe. Proceedings of the XIV International Symposium on Biological Control of Weeds FAC Impson, CA Kleinjan, JH Hoffmann 89–92 Cape Town: Univ. Cape Town
    [Google Scholar]
  71. 71.
    Hallett SG. 2005. Where are the bioherbicides. Weed Sci 53:404–15
    [Google Scholar]
  72. 72.
    Hasan S, Chaboudez P, Espiau C 1995. Isozyme patterns and susceptibility of North American forms of Chondrilla junceae to European strains of the rust fungus Puccinia chondrillina. Proceedings of the VIII International Symposium on Biological Control of Weeds ES Delfosse, RR Scott 367–73 Melbourne, Aust: DSIR/CSIRO
    [Google Scholar]
  73. 73.
    Health Can 2017. Pesticide product information database. Government of Canada https://pesticide-registry.canada.ca/en/index.html
    [Google Scholar]
  74. 74.
    Hintz W. 2007. Development of Chondrostereum purpureum as a mycoherbicide for deciduous brush control. Biological Control: A Global Perspective C Vincent, MS Goettel, G Lazarovits 284–90 Wallingford, UK: CABI
    [Google Scholar]
  75. 75.
    Hinz HL, Winston RL, Schwarzländer M 2019. How safe is weed biological control? A global review of direct nontarget attack. Q. Rev. Biol. 94:1–27
    [Google Scholar]
  76. 76.
    Hynes RK. 2018. Phoma macrostoma: as a broad spectrum bioherbicide for turf grass and agricultural applications. CAB Rev 13:1–9
    [Google Scholar]
  77. 77.
    Imaizumi S, Honda M, Fujimori T 1999. Effect of temperature on the control of annual bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biol. Control 16:13–17
    [Google Scholar]
  78. 78.
    Ireland KB, Hunter GC, Wood A, Delaisse C, Morin L 2019. Evaluation of the rust fungus Puccinia rapipes for biological control of Lycium ferocissimum (African boxthorn) in Australia: life cycle, taxonomy and pathogenicity. Fungal Biol 123:811–23
    [Google Scholar]
  79. 79.
    Ireland KB, Rafter M, Kumaran N, Raghu S, Morin L 2019. Stakeholder survey reveals priorities for African boxthorn biocontrol research in Australia. Biocontrol Sci. Technol. 29:1123–28
    [Google Scholar]
  80. 80.
    ISSG 2018. Invasive alien species: the application of biological control for the management of established invasive alien species causing environmental impacts Paper presented at the 14th Conference of the Parties to the Convention on Biological Diversity, Sharm El-Sheikh, Egypt, Novemb 17–28 https://www.cbd.int/doc/c/0c6f/7a35/eb8815eff54c3bc4a02139fd/cop-14-inf-09-en.pdf
    [Google Scholar]
  81. 81.
    Keane RM, Crawley MJ. 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164–70
    [Google Scholar]
  82. 82.
    Kenney DS. 1986. Devine®—the way it was developed—an industrialist's view. Weed Sci 34:15–16
    [Google Scholar]
  83. 83.
    Kleinjan CA, Morin L, Edwards PB, Wood AR 2004. Distribution, host range and phenology of the rust fungus Puccinia myrsiphylli in South Africa. Australas. Plant Pathol. 33:263–71
    [Google Scholar]
  84. 84.
    Kropp BR, Hansen DR, Thomson SV 2002. Establishment and dispersal of Puccinia thlaspeos in field populations of dyer's woad. Plant Dis 86:241–46
    [Google Scholar]
  85. 85.
    Kück U, Bloemendal S, Teichert I 2014. Putting fungi to work: harvesting a cornucopia of drugs, toxins, and antibiotics. PLOS Pathog 10:e1003950
    [Google Scholar]
  86. 86.
    Kumar PS, Rabindra RJ, Ellison CA 2008. Expanding classical biological control of weeds with pathogens in India: the way forward. Proceedings of the XII International Symposium on Biological Control of Weeds MH Julien, R Sforza, MC Bon, HC Evans, PE Hatcher et al.165–72 Wallingford, UK: CABI
    [Google Scholar]
  87. 87.
    Lake EC, Minteer CR. 2018. A review of the integration of classical biological control with other techniques to manage invasive weeds in natural areas and rangelands. Biocontrol 63:71–86
    [Google Scholar]
  88. 88.
    Lazzaro L, Essl F, Luglie A, Padedda BM, Pysek P, Brundu G 2018. Invasive alien plant impacts on human health and well-being. Invasive Species and Human Health G Mazza, E Tricarico 16–33 Wallingford, UK: CABI
    [Google Scholar]
  89. 89.
    Macedo DM, Pereira OL, Hora BT, Weir BS, Barreto RW 2016. Mycobiota of the weed Tradescantia fluminensis in its native range in Brazil with particular reference to classical biological control. Australas. Plant Pathol. 45:45–56
    [Google Scholar]
  90. 90.
    Marrone PG. 2019. Pesticidal natural products: status and future potential. Pest Manag. Sci. 75:2325–40
    [Google Scholar]
  91. 91.
    McEvoy PB. 1996. Host specificity and biological pest control: How well is research on host specificity addressing the potential risks of biological control. Bioscience 46:401–5
    [Google Scholar]
  92. 92.
    McFadyen REC. 1998. Biological control of weeds. Annu. Rev. Entomol. 43:369–93
    [Google Scholar]
  93. 93.
    McKenzie EHC. 1998. Rust fungi of New Zealand: an introduction, and list of recorded species. N. Z. J. Bot. 36:233–71
    [Google Scholar]
  94. 94.
    McTaggart AR, Shivas RG, van der Nest MA, Roux J, Wingfield BD, Wingfield MJ 2016. Host jumps shaped the diversity of extant rust fungi (Pucciniales). New Phytol 209:1149–58
    [Google Scholar]
  95. 95.
    Morin L, Adair R, Aveyard R, Evans K, Gomez D et al. 2008. National blackberry biological control program in partnership with the community. Proceedings of the 16th Australian Weeds Conference RD van Klinken, VA Osten, FD Panetta, JC Scanlan 344–46 Brisbane, Aust: Qld. Weed Soc.
    [Google Scholar]
  96. 96.
    Morin L, Edwards PB. 2006. Selection of biological control agents for bridal creeper: a retrospective review. Aust. J. Entomol. 45:287–91
    [Google Scholar]
  97. 97.
    Morin L, Evans KJ, Jourdan M, Gomez DR, Scott JK 2011. Use of a trap garden to find additional genetically distinct isolates of the rust fungus Phragmidium violaceum to enhance biological control of European blackberry in Australia. Eur. J. Plant Pathol. 131:289–303
    [Google Scholar]
  98. 98.
    Morin L, Evans KJ, Sheppard AW 2006. Selection of pathogen agents in weed biological control: critical issues and peculiarities in relation to arthropod agents. Aust. J. Entomol. 45:349–65
    [Google Scholar]
  99. 99.
    Morin L, Jourdan M, Paynter Q 2000. The gloomy future of the broom rust as a biocontrol agent. Proceedings of the X International Symposium on Biological Control of Weeds NR Spencer 633–38 Bozeman, MT: Mont. State Univ.
    [Google Scholar]
  100. 100.
    Morin L, Neave M, Batchelor K, Reid A 2006. Biological control: a promising tool for managing bridal creeper, Asparagus asparagoides (L.) Druce, in Australia. Plant Prot. Q. 21:69–77
    [Google Scholar]
  101. 101.
    Morin L, Reid AM, Sims-Chilton NM, Buckley YM, Dhileepan K et al. 2009. Review of approaches to evaluate the effectiveness of weed biological control agents. Biol. Control 51:1–15
    [Google Scholar]
  102. 102.
    Morin L, Scott JK. 2012. Asparagus asparagoides (L.) Druce: bridal creeper. Biological Control of Weeds in Australia MH Julien, REC McFadyen, JM Cullen 73–82 Collingwood, Aust: CSIRO Publ.
    [Google Scholar]
  103. 103.
    Morris CE, Moury B. 2019. Revisiting the concept of host range of plant pathogens. Annu. Rev. Phytopathol. 57:63–90
    [Google Scholar]
  104. 104.
    Morris MJ. 1991. The use of plant pathogens for biological weed control in South Africa. Agric. Ecosyst. Environ. 37:239–55
    [Google Scholar]
  105. 105.
    Morris MJ. 1999. The contribution of the gall-forming rust fungus Uromycladium tepperianum (Sacc.) McAlp. to the biological control of Acacia saligna (Labill.) Wendl. (Fabaceae) in South Africa. Afr. Entomol. 1999:125–28
    [Google Scholar]
  106. 106.
    Morris MJ, Wood AR, den Breeÿen A 1999. Plant pathogens and biological control of weeds in South Africa: a review of projects and progress during the last decade. Afr. Entomol. Mem. 1999:129–37
    [Google Scholar]
  107. 107.
    Müller-Schärer H, Frantzen J. 1996. An emerging system management approach for biological weed control in crops: Senecio vulgaris as a research model. Weed Res 36:483–91
    [Google Scholar]
  108. 108.
    Nagy AM, Korpelainen H. 2015. Population genetics of Himalayan balsam (Impatiens glandulifera): comparison of native and introduced populations. Plant Ecol. Divers. 8:317–21
    [Google Scholar]
  109. 109.
    Nzioki HS, Oyosi F, Morris CE, Kaya E, Pilgeram AL et al. 2016. Striga biocontrol on a toothpick: a readily deployable and inexpensive method for smallholder farmers. Front. Plant Sci. 7:1121
    [Google Scholar]
  110. 110.
    Oerke EC. 2006. Crop losses to pests. J. Agric. Sci. 144:31–43
    [Google Scholar]
  111. 111.
    Paynter Q, Bellgard S. 2011. Understanding dispersal rates of invading weed biocontrol agents. J. Appl. Ecol. 48:407–14
    [Google Scholar]
  112. 112.
    Paynter Q, Overton JM, Hill RL, Bellgard SE, Dawson MI 2012. Plant traits predict the success of weed biocontrol. J. Appl. Ecol. 49:1140–48
    [Google Scholar]
  113. 113.
    Phatak SC, Sumner DR, Wells HD, Bell DK, Glaze NC 1983. Biological control of yellow nutsedge with the indigenous rust fungus Puccinia canaliculata. . Science 219:1446–47
    [Google Scholar]
  114. 114.
    Rafter MA, Wilson AJ, Senaratne KADW, Dhileepan K 2008. Climatic-requirements models of cat's claw creeper Macfadyena unguis-cati (Bignoniaceae) to prioritise areas for exploration and release of biological control agents. Biol. Control 44:169–79
    [Google Scholar]
  115. 115.
    Rayamajhi MB, Pratt PD, Center TD, Van TK 2010. Insects and a pathogen suppress Melaleuca quinquenervia cut-stump regrowth in Florida. Biol. Control 53:1–8
    [Google Scholar]
  116. 116.
    Reid AM, Morin L, Downey PO, French K, Virtue JG 2009. Does invasive plant management aid the restoration of natural ecosystems. Biol. Conserv. 142:2342–49
    [Google Scholar]
  117. 117.
    Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6:93–107
    [Google Scholar]
  118. 118.
    Roy V, Dubeau D, Auger I 2010. Biological control of intolerant hardwood competition: silvicultural efficacy of Chondrostereum purpureum and worker productivity in conifer plantations. Forest Ecol. Manag. 259:1571–79
    [Google Scholar]
  119. 119.
    Schwarzländer M, Hinz HL, Winston RL, Day MD 2018. Biological control of weeds: an analysis of introductions, rates of establishment and estimates of success, worldwide. Biocontrol 63:319–31
    [Google Scholar]
  120. 120.
    Setterfield SA, Rossiter-Rachor NA, Hutley LB, Douglas MM, Williams RJ 2010. Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16:854–61
    [Google Scholar]
  121. 121.
    Sheppard AW. 2003. Prioritising agents based on predicted efficacy: beyond the lottery approach. Improving the Selection, Testing and Evaluation of Weed Biological Control Agents HS Jacob, DT Briese 11–21 Glen Osmond, Aust: CRC Aust. Weed Manag.
    [Google Scholar]
  122. 122.
    Sheppard AW, Warner KD. 2016. Societal values expressed through policy and regulations concerning biological control releases. Integrating Biological Control into Conservation Practice RG Van Driesche, D Simberloff, B Blossey, C Causton, MS Hoddle et al.247–63 Chichester, UK: Wiley
    [Google Scholar]
  123. 123.
    Smith D, Hinz H, Mulema J, Weyl P, Ryan MJ 2018. Biological control and the Nagoya Protocol on access and benefit sharing: a case of effective due diligence. Biocontrol Sci. Technol. 28:914–26
    [Google Scholar]
  124. 124.
    Strange RN, Scott PR. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43:83–116
    [Google Scholar]
  125. 125.
    Stubbs TL, Kennedy AC. 2012. Microbial weed control and microbial herbicides. Herbicides: Environmental Impact Studies and Management Approaches R Alvarez-Fernandez 135–66 London: InTech
    [Google Scholar]
  126. 126.
    Sun Y, Bronnimann O, Roderick GK, Poltavsky A, Lommen STE, Müller-Schärer H 2017. Climatic suitability ranking of biological control candidates: a biogeographic approach for ragweed management in Europe. Ecosphere 8:e01731
    [Google Scholar]
  127. 127.
    Tanner RA, Pollard KM, Varia S, Evans HC, Ellison CA 2015. First release of a fungal classical biocontrol agent against an invasive alien weed in Europe: biology of the rust, Puccinia komarovii var. glanduliferae. Plant Pathol. 64:1130–39
    [Google Scholar]
  128. 128.
    TeBeest DO, Yang XB, Cisar CR 1992. The status of biological control of weeds with fungal pathogens. Annu. Rev. Phytopathol. 30:637–57
    [Google Scholar]
  129. 129.
    Thines M. 2019. An evolutionary framework for host shifts: jumping ships for survival. New Phytol 224:605–17
    [Google Scholar]
  130. 130.
    Thomas MB, Reid AM. 2007. Are exotic natural enemies an effective way of controlling invasive plants. Trends Ecol. Evol. 22:447–53
    [Google Scholar]
  131. 131.
    Turner PJ, Morin L, Williams DG, Kriticos DJ 2010. Interactions between a leafhopper and rust fungus on the invasive plant Asparagus asparagoides in Australia: a case of two agents being better than one for biological control. Biol. Control 54:322–30
    [Google Scholar]
  132. 132.
    Turner PJ, Scott JK, Spafford H 2008. Implications of successful biological control of bridal creeper (Asparagus asparagoides (L.) Druce) in south-west Australia. Proceedings of the 16th Australian Weeds Conference RD van Klinken, VA Osten, FD Panetta, JC Scanlan 390–92 Brisbane, Aust: Qld. Weed Soc.
    [Google Scholar]
  133. 133.
    Van Driesche RG, Carruthers RI, Center T, Hoddle MS, Hough-Goldstein J et al. 2010. Classical biological control for the protection of natural ecosystems. Biol. Control 54:S2–33
    [Google Scholar]
  134. 134.
    van Klinken RD, Morin L, Sheppard A, Raghu S 2016. Experts know more than just facts: eliciting functional understanding to help prioritise weed biological control targets. Biol. Invasions 18:2853–70
    [Google Scholar]
  135. 135.
    van Klinken RD, Raghu S 2006. A scientific approach to agent selection. Aust. J. Entomol. 45:253–58
    [Google Scholar]
  136. 136.
    van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities. Biocontrol 63:39–59
    [Google Scholar]
  137. 137.
    Venne J, Beed F, Avocanh A, Watson A 2009. Integrating Fusarium oxysporum f. sp. strigae into cereal cropping systems in Africa. Pest Manag. Sci. 65:572–80
    [Google Scholar]
  138. 138.
    Vilà M, Espinar JL, Hejda M, Hulme PE, Jarosik V et al. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14:702–8
    [Google Scholar]
  139. 139.
    Vilà M, Williamson M, Lonsdale M 2004. Competition experiments on alien weeds with crops: lessons for measuring plant invasion impact. Biol. Invasions 6:59–69
    [Google Scholar]
  140. 140.
    Vogler W, Lindsay A. 2002. The impact of the rust fungus Maravalia cryptostegiae on three rubber vine (Cryptostegia grandiflora) populations in tropical Queensland. Proceedings of the 13th Australian Weeds Conference HS Jacob, J Dodd, JH Moore 180–82 Meredith, Aust: Plant Prot. Soc. West Aust .
    [Google Scholar]
  141. 141.
    Wang R. 1990. Biological control of weeds in China: a status report. Proceedings of the VII International Symposium on Biological Control of Weeds ES Delfosse 689–93 Rome: Ist. Sper. Patol. Veg. Minist. Agric. For.
    [Google Scholar]
  142. 142.
    Wapshere AJ. 1974. A strategy for evaluating the safety of organisms for biological weed control. Ann. Appl. Biol. 77:201–11
    [Google Scholar]
  143. 143.
    Watson AK. 1991. The classical approach with plant pathogens. Microbial Control of Weeds DO TeBeest 3–23 London: Chapman Hall
    [Google Scholar]
  144. 144.
    Watson AK. 2013. Biocontrol. Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies DM Joel, J Gressel, LJ Musselman 469–98 Heidelberg: Springer
    [Google Scholar]
  145. 145.
    Watson AK, Bailey KL. 2013. Taraxacum officinale (Weber), dandelion (Asteraceae). Biological Control Programmes in Canada, 2001–2012 PG Mason, DR Gillespie 383–91 Wallingford, UK: CABI
    [Google Scholar]
  146. 146.
    Weidemann GJ, TeBeest DO. 1990. Biology of host range testing for biocontrol of weeds. Weed Technol 4:465–70
    [Google Scholar]
  147. 147.
    Weir BS, Johnston PR, Damm U 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73:1115–80
    [Google Scholar]
  148. 148.
    Westwood JH, Charudattan R, Duke SO, Fennimore SA, Marrone P et al. 2018. Weed management in 2050: perspectives on the future of weed science. Weed Sci 66:275–85
    [Google Scholar]
  149. 149.
    Winston RL, Schwarzländer M, Hinz HL, Day MD, Cock MJW, Julien MH 2014. Biological Control of Weeds: A World Catalogue of Agents and their Target Weeds Morgantown, WV: USDA For. Serv. For. Health Technol. Enterp. Team. , 5th ed.. https://www.ibiocontrol.org/catalog/index.cfm
    [Google Scholar]
  150. 150.
    Wood AR. 2006. Preliminary host specificity testing of Endophyllum osteospermi (Uredinales, Pucciniaceae), a biological control agent against Chrysanthemoides monilifera ssp. monilifera. Biocontrol Sci. Technol. 16:495–507
    [Google Scholar]
  151. 151.
    Wood AR. 2012. Uromycladium tepperianum (a gall-forming rust fungus) causes a sustained epidemic on the weed Acacia saligna in South Africa. Australas. Plant Pathol. 41:255–61
    [Google Scholar]
  152. 152.
    Wood AR, Morris MJ. 2007. Impact of the gall-forming rust fungus Uromycladium tepperianum on the invasive tree Acacia saligna in South Africa: 15 years of monitoring. Biol. Control 41:68–77
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-010820-012823
Loading
/content/journals/10.1146/annurev-phyto-010820-012823
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error