1932

Abstract

In this review, I recount my personal history. My drive to study host-pathogen interactions was to find alternatives for agrochemicals, which was triggered after reading the book “Silent Spring” by Rachel Carson. I reflect on my research at the Laboratory of Phytopathology at Wageningen University, where I have worked for my entire career on the interaction between and tomato, and related gene-for-gene pathosystems. I describe different methods used to identify and sequence avirulence () genes from the pathogen and resistance () genes from the host. The major genes involved in classical gene-for-gene interactions have now been identified, and breeders can produce plants with multiple genes providing durable and environmentally safe protection against pathogens. In some cases, this might require the use of genetically modified plants when genes cannot be introduced by classical breeding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-011516-040249
2016-08-04
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-011516-040249.html?itemId=/content/journals/10.1146/annurev-phyto-011516-040249&mimeType=html&fmt=ahah

Literature Cited

  1. Angelin-Duclos C, Calame K. 1.  1998. Evidence that immunoglobulin VH-DJ recombination does not require germ line transcription of the recombining variable gene segment. Mol. Cell. Biol. 18:6253–64 [Google Scholar]
  2. Bolton MD, van Esse HP, Vossen JH, De Jonge R, Stergiopoulos I. 2.  et al. 2008. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol. Microbiol. 69:119–36 [Google Scholar]
  3. Boukema IW. 3.  1977. Breeding for resistance to Cladosporium fulvum in tomato. Acta Bot. Neerl. 26:425–26 [Google Scholar]
  4. Bradshaw RE, Slot JC, Moore GG, Chettri P, de Wit PJGM. 4.  et al. 2013. Fragmentation of an aflatoxin-like gene cluster in a forest pathogen. New Phytol. 198:525–35 [Google Scholar]
  5. Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M. 5.  et al. 2010. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J. 64:433–45 [Google Scholar]
  6. Brunner S, Stirnweis D, Quijano CD, Buesing G, Herren G. 6.  et al. 2012. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field. Plant Biotechnol. J. 10:398–409 [Google Scholar]
  7. Butler EJ, Jones SG. 7.  1949. Tomato leaf mould, Cladosporium fulvum Cooke. Plant Pathology, ed. EJ Buttler, SG Jones672–78 London: MacMillan [Google Scholar]
  8. Carson R. 8.  1962. Silent Spring Boston, MA: Houghton Mifflin
  9. Chettri P, Ehrlich KC, Cary JW, Collemare J, Cox MP. 9.  et al. 2013. Dothistromin genes at multiple separate loci are regulated by AflR. Fungal Genet. Biol. 51:12–20 [Google Scholar]
  10. Collemare J, Beenen HG, Crous PW, de Wit PGM, van der Burgt A. 10.  2015. Novel introner-like elements in fungia are involved in parallel gains of spliceosomal introns. PLOS ONE 10:e0129302 [Google Scholar]
  11. Collemare J, Griffiths S, Iida Y, Jashni MK, Battaglia E. 11.  et al. 2014. Secondary metabolism and biotrophic lifestyle in the tomato pathogen. Cladosporium fulvum PLOS ONE 9:e85877 [Google Scholar]
  12. Cruickshank IAM, Perrin DR. 12.  1960. Isolation of a phytoalexin from Pisum sativum. Nature 187:799–800 [Google Scholar]
  13. Danhash N, Wagemakers CAM, van Kan JAL, de Wit PJGM. 13.  1993. Molecular characterization of 4 chitinase cDNAs obtained from Cladosporium fulvum–infected tomato. Plant Mol. Biol. 22:1017–29 [Google Scholar]
  14. Day PR. 14.  1974. Genetics of Host-Parasite Interaction San Francisco: W.H. Freeman
  15. de Jong CF, Laxalt AM, Bargmann BOR, de Wit PJGM, Joosten MHAJ, Munnik T. 15.  2004. Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12 [Google Scholar]
  16. de Jonge R, Thomma BPHJ. 16.  2009. Fungal LysM effectors: extinguishers of host immunity?. Trends Microbiol. 17:151–57 [Google Scholar]
  17. de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y. 17.  et al. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–55 [Google Scholar]
  18. de Kock MJD, Brandwagt BF, Bonnema G, de Wit PJGM, Lindhout P. 18.  2005. The tomato Orion locus comprises a unique class of Hcr9 genes. Mol. Breed. 15:409–22 [Google Scholar]
  19. de Wit PJGM. 19.  1977. A light and scanning-electron microscopic study of the infection of tomato plants by virulent and avirulent races of Cladosporium fulvum. Neth. J. Plant Pathol 83:109–22 [Google Scholar]
  20. de Wit PJGM. 20.  1990. Method for the protection of plants against pathogens. US Patent No. 5866776A [Google Scholar]
  21. de Wit PJGM. 21.  2014. Fungal plant pathogens and the plant immune system. Farewell address Wageningen University, June 5, 2014 (ISBN 978-94-6173-976-6) [Google Scholar]
  22. de Wit PJGM, van der Burgt A, Ökman B, Stergiopoulos I, Abd-Elsalam KA. 22.  et al. 2012. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLOS Genet. 8:e1005775 [Google Scholar]
  23. de Wit PJGM, Davidse LC. 23.  1980. Initiele interacties tussen plant en parasitaire schimmel; herkenning en eerste afweer. Vakbl. Biol. 60:399–403 [Google Scholar]
  24. de Wit PJGM, Hofman AE, Velthuis GCM, Kuc JA. 24.  1985. Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato. Plant Physiol. 77:642–47 [Google Scholar]
  25. de Wit PJGM, Kodde E. 25.  1981. Further characterization and cultivar-specificity of glycoprotein elicitors from culture filtrates and cell walls of Cladosporium fulvum (syn. Fulvia fulva). Physiol. Plant Pathol. 18:297–314 [Google Scholar]
  26. de Wit PJGM, Kodde E. 26.  1981. Induction of polyacetylenic phytoalexins in Lycopersicon esculentum after inoculation with Cladosporium fulvum (syn. Fulvia fulva). Physiol. Plant Pathol. 18:143–48 [Google Scholar]
  27. de Wit PJGM, Roseboom PHM. 27.  1980. Isolation, partial characterization and specificity of glycoprotein elicitors from culture filtrates, mycelium and cell walls of Cladosporium fulvum (syn. Fulvia fulva). Physiol. Plant Pathol. 16:391–408 [Google Scholar]
  28. de Wit PJGM, Spikman G. 28.  1982. Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato. Physiol. Plant Pathol. 21:1–16 [Google Scholar]
  29. de Wit PJGM, Van der Meer FE. 29.  1986. Accumulation of the pathogenesis-related tomato leaf protein P14 as an early indicator of incompatibility in the interaction between Cladosporium fulvum (syn. Fulvia fulva) and tomato. Physiol. Mol. Plant Pathol. 28:203–14 [Google Scholar]
  30. de Wit PJGM. 30.  1981. Physiological studies on cultivar-specific resistance of tomato plants to Cladosporium fulvum PhD Thesis, Wageningen Univ. Wageningen, Neth:128 [Google Scholar]
  31. Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JDG. 31.  1998. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10:1915–25 [Google Scholar]
  32. Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG. 32.  1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–59 [Google Scholar]
  33. Dodds PN, Rathjen JP. 33.  2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539–48 [Google Scholar]
  34. Doke N, Garas NA, Kuc J. 34.  1980. Effect of host hypersensitivity of suppressors released during the germination of Phytophthora infestans cystospores. Phytopathology 70:35–39 [Google Scholar]
  35. Dow JM, Callow JA. 35.  1979. Leakage of electrolytes from isolated leaf mesophyll cells of tomato induced by glycopeptides from culture filtrates of Fulvia fulva (Cooke) Ciferri (syn. Cladosporium fulvum). Physiol. Plant Pathol. 15:27–34 [Google Scholar]
  36. Dow JM, Callow JA. 36.  1979. Partial characterization of glycopeptides from culture filtrates of Fulvia fulva (Cooke) Ciferri (syn. Cladosporium fulvum), the tomato leaf mold pathogen. J. Gen. Microbiol. 113:57–66 [Google Scholar]
  37. Etalo DW, Stulemeijer IJE, van Esse HP, de Vos RCH, Bouwmeester HJ, Joosten MHAJ. 37.  2013. System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato. Plant Physiol. 162:1599–617 [Google Scholar]
  38. Flor HH. 38.  1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–69 [Google Scholar]
  39. Gabriels SHEJ, Vossen JH, Ekengren SK, van Ooijen G, Abd-El-Haliem AM. 39.  et al. 2007. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant J. 50:14–28 [Google Scholar]
  40. Griffiths S, Mesarich CH, Saccomanno B, Vaisberg A, Cox R. 39a.  et al. 2016. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization. PNAS. In press [Google Scholar]
  41. Higgins VJ, de Wit PJGM. 40.  1985. Use of race-specific and cultivar-specific elicitors from intercellular fluids for characterizing races of Cladosporium fulvum and resistant tomato cultivars. Phytopathology 75:695–99 [Google Scholar]
  42. Honée G, Buitink J, Jabs T, De Kloe J, Sijbolts F. 41.  et al. 1998. Induction of defense-related responses in Cf9 tomato cells by the AVR9 elicitor peptide of Cladosporium fulvum is developmentally regulated. Plant Physiol. 117:809–20 [Google Scholar]
  43. Hubbeling N. 42.  1971. Determination trouble with new races of Cladosporium fulvum. Meded. Fac. Landbouwwet. Gent. 36:300–5 [Google Scholar]
  44. Jashni MK, Dols IHM, Iida Y, Boeren S, Beenen HG. 43.  et al. 2015. Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence. Mol. Plant-Microbe Interact. 28:996–1008 [Google Scholar]
  45. Jashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJGM. 44.  2015. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front. Plant Sci. 6:584 [Google Scholar]
  46. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG. 45.  1994. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–93 [Google Scholar]
  47. Jones JDG. 46.  2002. From physics and chemistry to plant biology. Plant Physiol. 128:332–33 [Google Scholar]
  48. Jones JDG, Dangl JL. 47.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  49. Joosten MHAJ, Cozijnsen TJ, de Wit PJGM. 48.  1994. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367:384–86 [Google Scholar]
  50. Joosten MHAJ, de Wit PJGM. 49.  1989. Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-β-glucanases and chitinases. Plant Physiol. 89:945–51 [Google Scholar]
  51. Joosten MHAJ, Vogelsang R, Cozijnsen TJ, Verberne MC, de Wit PJGM. 50.  1997. The biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing unstable Avr4 elicitors. Plant Cell 9:367–79 [Google Scholar]
  52. Keen NT. 51.  1975. Specific elicitors of plant phytoalexin production: determinants of race-specificity in pathogens. Science 187:74–75 [Google Scholar]
  53. Kooman-Gersmann M, Honée G, Bonnema G, de Wit PJGM. 52.  1996. A high-affinity binding site for the Avr9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants. Plant Cell 8:929–38 [Google Scholar]
  54. Kooman-Gersmann M, Vogelsang R, Hoogendijk ECM, de Wit PJGM. 53.  1997. Assignment of amino acid residues of the Avr9 peptide of Cladosporium fulvum that determine elicitor activity. Mol. Plant-Microbe Interact. 10:821–29 [Google Scholar]
  55. Kruijt M, Brandwagt BF, de Wit PJGM. 54.  2004. Rearrangements in the Cf-9 disease resistance gene cluster of wild tomato have resulted in three genes that mediate Avr9 responsiveness. Genetics 168:1655–63 [Google Scholar]
  56. Laugé R, Goodwin PH, de Wit PJGM, Joosten MHAJ. 55.  2000. Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. Plant J. 23:735–45 [Google Scholar]
  57. Laugé R, Joosten MHAJ, Haanstra JPW, Goodwin PH, Lindhout P, de Wit PJGM. 56.  1998. Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. PNAS 95:9014–18 [Google Scholar]
  58. Lazarovits G, Bhullar BS, Sugiyama HJ, Higgins VJ. 57.  1979. Purification and partial characterization of a glycoprotein toxin produced by Cladosporium fulvum. Phytopathology 69:1062–68 [Google Scholar]
  59. Lazarovits G, Higgins VJ. 58.  1976. Histological comparison of Cladosporium fulvum race 1 on immune, resistant and susceptible tomato varieties. Can. J. Bot. 54:224–34 [Google Scholar]
  60. Lazarovits G, Higgins VJ. 59.  1976. Ultrastucture of susceptible, resistant and immune reactions of tomato to races of Cladosporium fulvum. Can. J. Bot. 54:235–49 [Google Scholar]
  61. Lazarovits G, Higgins VJ. 60.  1979. Biological activity and specificity of a toxin produced by Cladosporium fulvum. Phytopathology 69:1056–61 [Google Scholar]
  62. Liebrand TWH, van den Berg GCM, Zhang Z, Smit P, Cordewener JHG. 61.  et al. 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. PNAS 110:10010–15 [Google Scholar]
  63. Lozano-Torres JL, Wilbers RHP, Gawronski P, Boshoven JC, Finkers-Tomczak A. 62.  et al. 2012. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. PNAS 109:10119–24 [Google Scholar]
  64. Luderer R, Rivas S, Nurnberger T, Mattei B, van den Hooven HW. 63.  et al. 2001. No evidence for binding between resistance gene product Cf-9 of tomato and avirulence gene product AVR9 of Cladosporium fulvum. Mol. Plant-Microbe Interact 14:867–76 [Google Scholar]
  65. Luderer R, Takken FLW, de Wit PJGM, Joosten MHAJ. 64.  2002. Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated Avr2 elicitor proteins. Mol. Microbiol 45:875–84 [Google Scholar]
  66. Marmeisse R, Van den Ackerveken GFJM, Goosen T, de Wit PJGM, Van den Broek HWJ. 65.  1993. Disruption of the avirulence gene Avr9 in 2 races of the tomato pathogen Cladosporium fulvum causes virulence on tomato genotypes with the complementary resistance gene Cf-9. Mol. Plant-Microbe Interact 6:412–17 [Google Scholar]
  67. Mesarich CH, Griffiths SA, van der Burgt A, Okmen B, Beenen HG. 66.  et al. 2014. Transcriptome sequencing uncovers the Avr5 avirulence gene of the tomato leaf mold pathogen Cladosporium fulvum. Mol. Plant-Microbe Interact 27:846–57 [Google Scholar]
  68. Müller KO. 67.  1958. Relationship between phytoalexin output and the number of infections involved. Nature 182:167–68 [Google Scholar]
  69. Nekrasov V, Ludwig AA, Jones JDG. 68.  2006. CITRX thioredoxin is a putative adaptor protein connecting Cf-9 and the ACIK1 protein kinase during the Cf-9/Avr9-induced defence response. FEBS Lett 580:4236–41 [Google Scholar]
  70. Ökmen B, Collemare J, Griffiths S, van der Burgt A, Cox R, de Wit PJGM. 69.  2014. Functional analysis of the conserved transcriptional regulator CfWor1 in Cladosporium fulvum reveals diverse roles in the virulence of plant pathogenic fungi. Mol. Microbiol 92:10–27 [Google Scholar]
  71. Ökmen B, Etalo DW, Joosten MHAJ, Bouwmeester HJ, de Vos RCH. 70.  et al. 2013. Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. New Phytol 198:1203–14 [Google Scholar]
  72. Oliver RP, Roberts IN, Harling R, Kenyon L, Punt PJ. 71.  et al. 1987. Transformation of Fulvia fulva, a fungal pathogen of tomato, to hygrymine-B resistance. Curr. Genet 12:231–33 [Google Scholar]
  73. Oort AJP. 72.  1944. Onderzoekingen over stuifbrand. II. Overgevoeligheid van tarwe voor stuifbrand (Ustilago tritici). With a summary: hypersensitiviness of wheat to loose smut. Tijdschr. Plantenziekten 50:73–106 [Google Scholar]
  74. Perez-Garcia A, Snoeijers SS, Joosten MHAJ, Goosen T, de Wit PJGM. 73.  2001. Expression of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1. Mol. Plant-Microbe Interact 14:316–25 [Google Scholar]
  75. Postma J, Liebrand TWH, Bi G, Evrard A, Bye RR. 74.  et al. 2016. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity. New Phytol 210:627–42 [Google Scholar]
  76. Raa J. 75.  1968. Natural resistance of apple plants to Venturia inaequalis; a biochemical study of its mechanism PhD Thesis, Utrecht Univ. Utrecht, Neth.: [Google Scholar]
  77. Rivas S, Rougon-Cardoso A, Smoker M, Schauser L, Yoshioka H, Jones JDG. 76.  2004. CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence. EMBO J 23:2156–65 [Google Scholar]
  78. Rooney HCE, Van ‘t Klooster JW, Van der Hoorn RAL, Joosten MHAJ, Jones JDG, de Wit PJGM. 77.  2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783–86 [Google Scholar]
  79. Sanchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg DJ. 78.  et al. 2013. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife 2:e00790 [Google Scholar]
  80. Scholtens-Toma IMJ, de Wit PJGM. 79.  1988. Purification and primary structure of a necrosis-inducing peptide from apoplastic fluids of tomato infected by Cladosporium fulvum (syn. Fulvia fulva). Physiol. Mol. Plant Pathol 33:59–67 [Google Scholar]
  81. Stergiopoulos I, de Wit PJGM. 80.  2009. Fungal effector proteins. Annu. Rev. Phytopathol 47:233–63 [Google Scholar]
  82. Stergiopoulos I, van den Burg HA, Okmen B, Beenen HG, van Liere S. 81.  et al. 2010. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. PNAS 107:7610–15 [Google Scholar]
  83. Stotz HU, Mitrousia GK, de Wit PJGM, Fitt BDL. 82.  2014. Effector-triggered defence against apoplastic fungal pathogens. Trends Plant Sci 19:491–500 [Google Scholar]
  84. Stuiver MH, Custers JHHV. 83.  2001. Engineering disease resistance in plants. Nature 411:865–68 [Google Scholar]
  85. Stulemeijer IJE, Stratmann JW, Joosten MHAJ. 84.  2007. Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiol 144:1481–94 [Google Scholar]
  86. Sueldo DJ, Shimels M, Spiridon LN, Caldararu O, Petrescu AJ. 85.  et al. 2015. Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR required for hypersensitive response-associated cell death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket. New Phytol 208:210–23 [Google Scholar]
  87. Takken FLW, Thomas CM, Joosten MHAJ, Golstein C, Westerink N. 86.  et al. 1999. A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant J 20:279–88 [Google Scholar]
  88. Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ. 87.  et al. 1997. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209–24 [Google Scholar]
  89. Thomma BPHJ, Nürnberger T, Joosten MHAJ. 88.  2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15 [Google Scholar]
  90. Torto TA, Li SA, Styer A, Huitema E, Testa A. 89.  et al. 2003. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13:1675–85 [Google Scholar]
  91. van den Ackerveken GFJM, Dunn RM, Cozijnsen AJ, Vossen JPMJ, Van Den Broek HWJ, de Wit PJGM. 90.  1994. Nitrogen limitation induces expression of the avirulence gene Avr9 in the tomato pathogen Cladosporium fulvum. Mol. Gen. Genet 243:277–85 [Google Scholar]
  92. van den Ackerveken GFJM, van Kan JAL, de Wit PJGM. 91.  1992. Molecular analysis of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J. 2:359–66 [Google Scholar]
  93. van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM. 92.  2006. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol. Plant-Microbe Interact 19:1420–30 [Google Scholar]
  94. van den Burg HA, Spronk CAEM, Boeren S, Kennedy MA, Vissers JPC. 93.  et al. 2004. Binding of the Avr4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein-protein interactions: The chitin-binding site of Avr4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain. J. Biol. Chem 279:16786–96 [Google Scholar]
  95. van den Burg HA, Tsitsigiannis DI, Rowland O, Lo J, Rallapalli G. 94.  et al. 2008. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 20:697–719 [Google Scholar]
  96. van den Burg HA, Westerink N, Francoijs KJ, Roth R, Woestenenk E. 95.  et al. 2003. Natural disulfide bond–disrupted mutants of Avr4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. J. Biol. Chem 278:27340–46 [Google Scholar]
  97. van den Hooven HW, Appelman AWJ, Zey T, de Wit PJGM, Vervoort J. 96.  1999. Folding and conformational analysis of Avr peptide elicitors of the fungal tomato pathogen Cladosporium fulvum. Eur. J. Biochem 264:9–18 [Google Scholar]
  98. van der Biezen EA, Jones JDG. 97.  1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci 23:454–56 [Google Scholar]
  99. van der Burgt A, Severing E, de Wit PJGM, Collemare J. 98.  2012. Birth of new spliceosomal introns in fungi by multiplication of introner-like elements. Curr. Biol 22:1260–65 [Google Scholar]
  100. van der Hoorn RAL, de Wit PJGM, Joosten MHAJ. 99.  2002. Balancing selection favors guarding resistance proteins. Trends Plant Sci 7:67–71 [Google Scholar]
  101. van der Hoorn RAL, Kruijt M, Roth R, Brandwagt BF, Joosten MHAJ, de Wit PJGM. 100.  2001. Intragenic recombination generated two distinct Cf genes that mediate Avr9 recognition in the natural population of Lycopersicon pimpinellifolium. PNAS 98:10493–98 [Google Scholar]
  102. van der Hoorn RAL, Leeuwenburgh MA, Bogyo M, Joosten MHAJ, Peck SC. 101.  2004. Activity profiling of papain-like cysteine proteases in plants. Plant Physiol 135:1170–78 [Google Scholar]
  103. van Dijkman A, Kaars Sijpesteijn A. 102.  1973. Leakage of preabsorbed P32 from tomato leaf disks infiltrated with high molecular weight products from incompatible races of Cladosporium fulvum. Physiol. Plant Pathol 3:57–67 [Google Scholar]
  104. van Esse HP, Bolton MD, Stergiopoulos I, de Wit PJGM, Thomma BPHJ. 103.  2007. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol. Plant-Microbe Interact 20:1092–101 [Google Scholar]
  105. van Esse HP, Van ‘t Klooster JW, Bolton MD, Yadeta KA, Van Baarlen P. 104.  et al. 2008. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20:1948–63 [Google Scholar]
  106. van Kan JAL, Joosten MHAJ, Wagemakers CAM, van den Berg-Velthuis GCM, de Wit PJGM. 105.  1992. Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Mol. Biol 20:513–27 [Google Scholar]
  107. van Kan JAL, Van den Ackerveken GFJM, de Wit PJGM. 106.  1991. Cloning and characterization of cDNA of avirulence gene Avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol. Plant-Microbe Interact 4:52–59 [Google Scholar]
  108. van ‘t Klooster JW, Van der Kamp MW, Vervoort J, Beekwilder J, Boeren S. 107.  et al. 2011. Affinity of Avr2 for tomato cysteine protease Rcr3 correlates with the Avr2-triggered Cf-2-mediated hypersensitive response. Mol. Plant Pathol 12:21–30 [Google Scholar]
  109. Vervoort J, van den Hooven HW, Berg A, Vossen P, Vogelsang R. 108.  et al. 1997. The race-specific elicitor Avr9 of the tomato pathogen Cladosporium fulvum: a cystine knot protein: sequence-specific 1H NMR assignments, secondary structure and global fold of the protein. FEBS Lett 404:153–58 [Google Scholar]
  110. Vossen JH, Abd-El-Haliem A, Fradin EF, van den Berg GCM, Ekengren SK. 109.  et al. 2010. Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62:224–39 [Google Scholar]
  111. Westerink N, Brandwagt BF, de Wit PJGM, Joosten MHAJ. 110.  2004. Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E) by secretion of a stable avr4E isoform. Mol. Microbiol 54:533–45 [Google Scholar]
  112. Wolfe MS. 111.  1985. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol 23:251–73 [Google Scholar]
  113. Wubben JP, Joosten MHAJ, van Kan JAL, de Wit PJGM. 112.  1992. Subcellular localization of plant chitinases and 1,3-β-glucanases in Cladosporium fulvum (syn. Fulvia fulva)-infected tomato leaves. Physiol. Mol. Plant Pathol 41:23–32 [Google Scholar]
  114. Wulff BBH, Kruijt M, Collins PL, Thomas CM, Ludwig AA. 113.  et al. 2004. Gene shuffling-generated and natural variants of the tomato resistance gene Cf-9 exhibit different auto-necrosis-inducing activities in Nicotiana species. Plant J. 40:942–56 [Google Scholar]
  115. Zhu SX, Li Y, Vossen JH, Visser RGF, Jacobsen E. 114.  2012. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res 21:89–99 [Google Scholar]
/content/journals/10.1146/annurev-phyto-011516-040249
Loading
/content/journals/10.1146/annurev-phyto-011516-040249
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error