1932

Abstract

Plant-parasitic nematodes spend much of their lives inside or in contact with host tissue, and molecular interactions constantly occur and shape the outcome of parasitism. Eggs of these parasites generally hatch in the soil, and the juveniles must locate and infect an appropriate host before their stored energy is exhausted. Components of host exudate are evaluated by the nematode and direct its migration to its infection site. Host plants recognize approaching nematodes before physical contact through molecules released by the nematodes and launch a defense response. In turn, nematodes deploy numerous mechanisms to counteract plant defenses. This review focuses on these early stages of the interaction between plants and nematodes. We discuss how nematodes perceive and find suitable hosts, how plants perceive and mount a defense response against the approaching parasites, and how nematodes fight back against host defenses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-102355
2022-08-26
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/phyto/60/1/annurev-phyto-020620-102355.html?itemId=/content/journals/10.1146/annurev-phyto-020620-102355&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EGJ et al. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 26:909–15
    [Google Scholar]
  2. 2.
    Ali MA, Azeem F, Li H, Bohlmann H. 2017. Smart parasitic nematodes use multifaceted strategies to parasitize plants. Front. Plant Sci. 8:1699
    [Google Scholar]
  3. 3.
    Ali S, Magne M, Chen S, Obradovic N, Jamshaid L et al. 2015. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses. Front. Plant Sci. 6:623
    [Google Scholar]
  4. 4.
    Bargmann CI. 2006. Chemosensation in C. elegans. WormBook https://doi.org/10.1895/wormbook.1.123.1
    [Crossref] [Google Scholar]
  5. 5.
    Beeman AQ, Njus ZL, Pandey S, Tylka GL. 2016. Chip technologies for screening chemical and biological agents against plant-parasitic nematodes. Phytopathology 106:1563–71
    [Google Scholar]
  6. 6.
    Bell CA, Mobayed W, Lilley CJ, Urwin PE. 2021. Monosaccharide constituents of potato root exudate influence hatching of the white potato cyst nematode. PhytoFrontiers 1:258–66
    [Google Scholar]
  7. 7.
    Bird DM, Jones JT, Opperman CH, Kikuchi T, Danchin EGJ. 2015. Signatures of adaptation to plant parasitism in nematode genomes. Parasitology 142:S71–S84
    [Google Scholar]
  8. 8.
    Bird DM, Williamson VM, Opperman CH. 2015. Exploiting solved genomes of plant-parasitic nematodes to understand parasitism. Adv. Bot. Res. 73:241–58
    [Google Scholar]
  9. 9.
    Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257–86
    [Google Scholar]
  10. 10.
    Cepulyte R, Danquah WB, Bruening G, Williamson VM. 2018. Potent attractant for root-knot nematodes in exudates from seedling root tips of two host species. Sci. Rep. 8:10847
    [Google Scholar]
  11. 11.
    Chen J, Hu L, Sun L, Lin B, Huang K et al. 2018. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism. Mol. Plant Pathol. 19:1942–55
    [Google Scholar]
  12. 12.
    Chen J, Lin B, Huang Q, Hu L, Zhuo K, Liao J. 2017. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLOS Pathog 13:e1006301
    [Google Scholar]
  13. 13.
    Choe A, von Reuss SH, Kogan D, Gasser RB, Platzer EG et al. 2012. Ascaroside signaling is widely conserved among nematodes. Curr. Biol. 22:772–80
    [Google Scholar]
  14. 14.
    Chronis D, Chen SY, Lu SW, Hewezi T, Carpenter SCD et al. 2013. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant J 74:185–96
    [Google Scholar]
  15. 15.
    Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ et al. 2014. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 15:R43
    [Google Scholar]
  16. 16.
    Couto D, Zipfel C. 2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16:537–52
    [Google Scholar]
  17. 17.
    Crisford A, Calahorro F, Ludlow E, Marvin JMC, Hibbard JK et al. 2020. Identification and characterisation of serotonin signalling in the potato cyst nematode Globodera pallida reveals new targets for crop protection. PLOS Pathog 16:e1008884
    [Google Scholar]
  18. 18.
    Curtis RHC. 2008. Plant-nematode interactions: environmental signals detected by the nematode's chemosensory organs control changes in the surface cuticle and behavior. Parasite 15:310–16
    [Google Scholar]
  19. 19.
    Curtis RHC, Robinson AF, Perry RN. 2009. Hatch and host location. Root-Knot Nematodes139–62 Wallingford, UK: CABI
    [Google Scholar]
  20. 20.
    Da Rocha M, Bournaud C, Dazeniere J, Thorpe P, Bailly-Bechet M et al. 2021. Genome expression dynamics reveals parasitism regulatory landscape of the root-knot nematode Meloidogyne incognita and a promoter motif associated with effector genes. Genes 12:771
    [Google Scholar]
  21. 21.
    Dalzell JJ, Kerr R, Corbett MD, Fleming CC, Maule AG. 2011. Novel bioassays to examine the host-finding ability of plant-parasitic nematodes. Nematology 13:211–20
    [Google Scholar]
  22. 22.
    de Boer JM, McDermott JP, Davis EL, Hussey RS, Popeijus H et al. 2002. Cloning of a putative pectate lyase gene expressed in the subventral esophageal glands of Heterodera glycines. J. Nematol. 34:9–11
    [Google Scholar]
  23. 23.
    de Boer JM, Smant G, Goverse A, Davis EL, Overmars HA et al. 1996. Secretory granule proteins from the subventral esophageal glands of the potato cyst nematode identified by monoclonal antibodies to a protein fraction from second-stage juveniles. Mol. Plant-Microbe Interact. 9:39–46
    [Google Scholar]
  24. 24.
    de Boer JM, Yan YT, Wang XH, Smant G, Hussey RS et al. 1999. Developmental expression of secretory beta-1,4-endoglucanases in the subventral esophageal glands of Heterodera glycines. Mol. Plant-Microbe Interact. 12:663–69
    [Google Scholar]
  25. 25.
    De Kesel J, Gomez-Rodriguez R, Bonneure E, Mangelinckx S, Kyndt T. 2020. The use of PTI-marker genes to identify novel compounds that establish induced resistance in rice. Int. J. Mol. Sci. 21:317
    [Google Scholar]
  26. 26.
    Decraemer W, Hunt DJ. 2006. Structure and classification. In Plant Nematology RN Perry, M Moens 3–32 Wallingford, UK: CABI
    [Google Scholar]
  27. 27.
    DeFalco TA, Zipfel C. 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81:3449–67
    [Google Scholar]
  28. 28.
    Dossey AT, Reale V, Chatwin H, Zachariah C, Debono M et al. 2006. NMR analysis of Caenorhabditis elegans FLP-18 neuropeptides: implications for NPR-1 activation. Biochemistry 45:7586–97
    [Google Scholar]
  29. 29.
    Duceppe MO, Lafond-Lapalme J, Palomares-Rius JE, Sabeh M, Blok V et al. 2017. Analysis of survival and hatching transcriptomes from potato cyst nematodes, Globodera rostochiensis and G. pallida. Sci. Rep. 7:3882
    [Google Scholar]
  30. 30.
    Dutta TK, Powers SJ, Gaur HS, Birkett M, Curtis RHC. 2012. Effect of small lipophilic molecules in tomato and rice root exudates on the behaviour of Meloidogyne incognita and M. graminicola. Nematology 14:309–20
    [Google Scholar]
  31. 31.
    Eisenback JD 1985. Detailed morphology and anatomy of second-stage juveniles, males, and females of the genus Meloidogyne (root-knot nematodes). An Advanced Treatise on Meloidogyne, Vol. 1 Biology and Control JN Sasser, CC Carter 47–78 Raleigh: N. C. State Univ. Graphics
    [Google Scholar]
  32. 32.
    Futai K. 2013. Pine wood nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 51:61–83
    [Google Scholar]
  33. 33.
    Gao XQ, Starr J, Gobel C, Engelberth J, Feussner I et al. 2008. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol. Plant-Microbe Interact. 21:98–109
    [Google Scholar]
  34. 34.
    Gardner M, Verma A, Mitchum MG. 2015. Emerging roles of cyst nematode effectors in exploiting plant cellular processes. Adv. Bot. Res. 73:259–91
    [Google Scholar]
  35. 35.
    Goverse A, Smant G. 2014. The activation and suppression of plant innate immunity by parasitic nematodes. Annu. Rev. Phytopathol. 52:243–65
    [Google Scholar]
  36. 36.
    Grossi-de-Sa M, Petitot AS, Xavier DA, MEL, Mezzalira I et al. 2019. Rice susceptibility to root-knot nematodes is enhanced by the Meloidogyne incognita MSP18 effector gene. Planta 250:1215–27
    [Google Scholar]
  37. 37.
    Gust AA, Pruitt R, Nurnberger T. 2017. Sensing danger: key to activating plant immunity. Trends Plant Sci 22:779–91
    [Google Scholar]
  38. 38.
    Hada A, Kumari C, Phani V, Singh D, Chinnusamy V, Rao U. 2020. Host-induced silencing of FMRFamide-like peptide genes, flp-1 and flp-12, in rice impairs reproductive fitness of the root-knot nematode Meloidogyne graminicola. Front. Plant Sci. 11:894
    [Google Scholar]
  39. 39.
    Hamamouch N, Li CY, Hewezi T, Baum TJ, Mitchum MG et al. 2012. The interaction of the novel 30C02 cyst nematode effector protein with a plant beta-1,3-endoglucanase may suppress host defence to promote parasitism. J. Exp. Bot. 63:3683–95
    [Google Scholar]
  40. 40.
    Han Z, Boas S, Schroeder NE. 2017. Serotonin regulates the feeding and reproductive behaviors of Pratylenchus penetrans. Phytopathology 107:872–77
    [Google Scholar]
  41. 41.
    Harris G, Wu TH, Linfield G, Choi MK, Liu H, Zhang Y. 2019. Molecular and cellular modulators for multisensory integration in C. elegans. PLOS Genet 15:e1007706
    [Google Scholar]
  42. 42.
    Hewezi T, Baum TJ. 2013. Manipulation of plant cells by cyst and root-knot nematode effectors. Mol. Plant-Microbe Interact. 26:9–16
    [Google Scholar]
  43. 43.
    Hewezi T, Howe PJ, Maier TR, Hussey RS, Mitchum MG et al. 2010. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiol 152:968–84
    [Google Scholar]
  44. 44.
    Hilger D, Masureel M, Kobilka BK. 2018. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25:4–12
    [Google Scholar]
  45. 45.
    Hillary KK, Lucy KM, John JB, Torto B. 2018. Elicitation of differential responses in the root knot nematode Meloidogyne incognita to tomato root exudate cytokinin, flavonoids, and alkaloids. J. Agric. Food Chem. 66:4311291–300
    [Google Scholar]
  46. 46.
    Hobert O. 2013. The neuronal genome of Caenorhabditis elegans. WormBook https://doi.org/10.1895/wormbook.1.161.1
    [Crossref] [Google Scholar]
  47. 47.
    Holden-Dye L, Walker RJ. 2011. Neurobiology of plant parasitic nematodes. Invert. Neurosci. 11:9–19
    [Google Scholar]
  48. 48.
    Holterman M, Karegar A, Mooijman P, van Megen H, van den Elsen S et al. 2017. Disparate gain and loss of parasitic abilities among nematode lineages. PLOS ONE 12:e0185445
    [Google Scholar]
  49. 49.
    Hu Y, You J, Li C, Pan F, Wang C. 2019. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response. Plant Sci 289:110271
    [Google Scholar]
  50. 50.
    Hu YF, You J, Li CJ, Williamson VM, Wang CL. 2017. Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines. Sci. Rep. 7:41282
    [Google Scholar]
  51. 51.
    Hua C, Li CJ, Jiang Y, Huang MH, Williamson VM, Wang CL. 2020. Response of soybean cyst nematode (Heterodera glycines) and root-knot nematodes (Meloidogyne spp.) to gradients of pH and inorganic salts. Plant Soil 455:305–18
    [Google Scholar]
  52. 52.
    Hubbard JE, Flores-Lara Y, Schmitt M, McClure MA, Stock SP, Hawes MC. 2005. Increased penetration of host roots by nematodes after recovery from quiescence induced by root cap exudate. Nematology 7:321–31
    [Google Scholar]
  53. 53.
    Jaubert S, Laffaire JB, Abad P, Rosso MN. 2002. A polygalacturonase of animal origin isolated from the root-knot nematode Meloidogyne incognita. FEBS Lett 522:109–12
    [Google Scholar]
  54. 54.
    Johnson SN, Nielsen UN. 2012. Foraging in the dark: chemically mediated host plant location by belowground insect herbivores. J. Chem. Ecol. 38:604–14
    [Google Scholar]
  55. 55.
    Jones JDG, Vance RE, Dangl JL. 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:6316aaf6395
    [Google Scholar]
  56. 56.
    Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J et al. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14:946–61
    [Google Scholar]
  57. 57.
    Pogorelko G, Wang J, Juvale PS, Mitchum MG, Baum TJ. 2020. Screening soybean cyst nematode effectors for their ability to suppress plant immunity. Mol. Plant Pathol. 21:1240–47
    [Google Scholar]
  58. 58.
    Kalde M, Nuhse TS, Findlay K, Peck SC. 2007. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. PNAS 104:11850–55
    [Google Scholar]
  59. 59.
    Kammerhofer N, Radakovic Z, Regis JMA, Dobrev P, Vankova R et al. 2015. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytol 207:778–89
    [Google Scholar]
  60. 60.
    Kihika R, Murungi LK, Coyne D, Ng'ang'a M, Hassanali A et al. 2017. Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory. Sci. Rep. 7:2903
    [Google Scholar]
  61. 61.
    Kimber MJ, McKinney S, McMaster S, Day TA, Fleming CC, Maule AG. 2007. flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 21:1233–43
    [Google Scholar]
  62. 62.
    Klessig DF, Manohar M, Baby S, Koch A, Danquah WB et al. 2019. Nematode ascaroside enhances resistance in a broad spectrum of plant-pathogen systems. J. Phytopathol. 167:265–72
    [Google Scholar]
  63. 63.
    Kud J, Wang W, Gross R, Fan Y, Huang L et al. 2019. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLOS Pathog 15:e1007720
    [Google Scholar]
  64. 64.
    Kumari C, Dutta TK, Chaudhary S, Banakar P, Papolu PK, Rao U. 2017. Molecular characterization of FMRFamide-like peptides in Meloidogyne graminicola and analysis of their knockdown effect on nematode infectivity. Gene 619:50–60
    [Google Scholar]
  65. 65.
    Lee MW, Huffaker A, Crippen D, Robbins RT, Goggin FL. 2018. Plant elicitor peptides promote plant defences against nematodes in soybean. Mol. Plant Pathol. 19:858–69
    [Google Scholar]
  66. 66.
    Li C, Kim K. 2008. Neuropeptides. WormBook https://doi.org/10.1895/wormbook.1.142.1
    [Crossref] [Google Scholar]
  67. 67.
    Lin BR, Zhuo K, Chen SY, Hu LL, Sun LH et al. 2016. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New Phytol 209:1159–73
    [Google Scholar]
  68. 68.
    Liu SM, Kandoth PK, Warren SD, Yeckel G, Heinz R et al. 2012. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–60
    [Google Scholar]
  69. 69.
    Lolle S, Stevens D, Coaker G. 2020. Plant NLR-triggered immunity: from receptor activation to downstream signaling. Curr. Opin. Immunol. 62:99–105
    [Google Scholar]
  70. 70.
    Lozano-Torres JL, Wilbers RHP, Warmerdam S, Finkers-Tomczak A, Diaz-Granados A et al. 2014. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors. PLOS Pathog 10:e1004569
    [Google Scholar]
  71. 71.
    Manohar M, Tenjo-Castano F, Chen S, Zhang YK, Kumari A et al. 2020. Plant metabolism of nematode pheromones mediates plant-nematode interactions. Nat. Commun. 11:208
    [Google Scholar]
  72. 72.
    Manosalva P, Manohar M, von Reuss SH, Chen SY, Koch A et al. 2015. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 6:7795
    [Google Scholar]
  73. 73.
    Mantelin S, Thorpe P, Jones JT. 2015. Suppression of plant defences by plant-parasitic nematodes. Adv. Bot. Res. 73:325–37
    [Google Scholar]
  74. 74.
    Masler EP. 2007. Responses of Heterodera glycines and Meloidogyne incognita to exogenously applied neuromodulators. J. Helminthol. 81:421–27
    [Google Scholar]
  75. 75.
    Massalha H, Korenblum E, Tholl D, Aharoni A. 2017. Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807
    [Google Scholar]
  76. 76.
    Mei Y, Wright KM, Haegeman A, Bauters L, Diaz-Granados A et al. 2018. The Globodera pallida SPRYSEC effector GpSPRY-414-2 that suppresses plant defenses targets a regulatory component of the dynamic microtubule network. Front. Plant Sci. 9:1019
    [Google Scholar]
  77. 77.
    Mendy B, Wang'ombe MW, Radakovic ZS, Holbein J, Ilyas M et al. 2017. Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. PLOS Pathog 13:e1006284
    [Google Scholar]
  78. 78.
    Murungi LK, Kirwa H, Coyne D, Teal PEA, Beck JJ, Torto B. 2018. Identification of key root volatiles signaling preference of tomato over spinach by the root-knot nematode Meloidogyne incognita. J. Agric. Food Chem. 66:7328–36
    [Google Scholar]
  79. 79.
    Naalden D, Haegeman A, de Almeida-Engler J, Birhane Eshetu F, Bauters L, Gheysen G 2018. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses. Mol. Plant Pathol. 19:2416–30
    [Google Scholar]
  80. 80.
    Nakhamchik A, Zhao ZY, Provart NJ, Shiu SH, Keatley SK et al. 2004. A comprehensive expression analysis of the Arabidopsis proline-rich extensin-like receptor kinase gene family using bioinformatic and experimental approaches. Plant Cell Physiol 45:1875–81
    [Google Scholar]
  81. 81.
    Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Maafi T 2011. Current nematode threats to world agriculture. Genomics and Molecular Genetics of Plant-Nematode Interactions J Jones, G Gheysen, C Fenoll 21–43 Dordrecht, Neth: Springer
    [Google Scholar]
  82. 82.
    Niu JH, Liu P, Liu Q, Chen CL, Guo QX et al. 2016. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Sci. Rep. 6:19443
    [Google Scholar]
  83. 83.
    Noon JB, Qi MS, Sill DN, Muppirala U, Eves-van den Akker S et al. 2016. A Plasmodium-like virulence effector of the soybean cyst nematode suppresses plant innate immunity. New Phytol 212:444–60
    [Google Scholar]
  84. 84.
    Ochola J, Coyne D, Cortada L, Haukeland S, Ng'ang'a M et al. 2021. Cyst nematode bio-communication with plants: implications for novel management approaches. Pest Manag. Sci. 77:1150–59
    [Google Scholar]
  85. 85.
    Oota M, Tsai AY-L, Aoki D, Favery B, Ishikawa H, Sawa S. 2020. Identification of naturally occurring polyamines as nematode Meloidogyne incognita attractants. Mol. Plant 13:4658–65
    [Google Scholar]
  86. 86.
    Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M et al. 2008. Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. PNAS 105:14802–7
    [Google Scholar]
  87. 87.
    Peng HC, Kaloshian I. 2014. The tomato leucine-rich repeat receptor-like kinases SlSERK3A and SlSERK3B have overlapping functions in bacterial and nematode innate immunity. PLOS ONE 9:0093302
    [Google Scholar]
  88. 88.
    Perry RN. 2005. An evaluation of types of attractants enabling plant-parasitic nematodes to locate host root. Russ. J. Nematol. 13:83–88
    [Google Scholar]
  89. 89.
    Pogorelko G, Wang J, Juvale PS, Mitchum MG, Baum TJ. 2020. Screening soybean cyst nematode effectors for their ability to suppress plant immunity. Mol. Plant Pathol. 21:1240–47
    [Google Scholar]
  90. 90.
    Postma WJ, Slootweg EJ, Rehman S, Finkers-Tomczak A, Tytgat TO et al. 2012. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Plant Physiol 160:944–54
    [Google Scholar]
  91. 91.
    Ragsdale EJ, Ngo PT, Crum J, Ellisman MH, Baldwin JG. 2009. Comparative, three-dimensional anterior sensory reconstruction of Aphelenchus avenae (Nematoda: Tylenchomorpha). J. Comp. Neurol. 517:616–32
    [Google Scholar]
  92. 92.
    Ranf S. 2017. Sensing of molecular patterns through cell surface immune receptors. Curr. Opin. Plant Biol. 38:68–77
    [Google Scholar]
  93. 93.
    Rengarajan S, Hallem EA. 2016. Olfactory circuits and behaviors of nematodes. Curr. Opin. Neurobiol. 41:136–48
    [Google Scholar]
  94. 94.
    Reynolds AM, Dutta TK, Curtis RH, Powers SJ, Gaur HS, Kerry BR. 2011. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. J. R. Soc. Interface 8:568–77
    [Google Scholar]
  95. 95.
    Rosso MN, Favery B, Piotte C, Arthaud L, de Boer JM et al. 1999. Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol. Plant-Microbe Interact. 12:585–91
    [Google Scholar]
  96. 96.
    Shah SJ, Anjam MS, Mendy B, Anwer MA, Habash SS et al. 2017. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. J. Exp. Bot. 68:5949–60
    [Google Scholar]
  97. 97.
    Shi Q, Mao Z, Zhang X, Zhang X, Wang Y et al. 2018. A Meloidogyne incognita effector MiISE5 suppresses programmed cell death to promote parasitism in host plant. Sci. Rep. 8:7256
    [Google Scholar]
  98. 98.
    Shivakumara TN, Dutta TK, Chaudhary S, von Reuss SH, Williamson VM, Rao U. 2019. Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognita. Mol. Plant-Microbe Interact. 32:876–87
    [Google Scholar]
  99. 99.
    Siddique S, Grundler FMW. 2018. Parasitic nematodes manipulate plant development to establish feeding sites. Curr. Opin. Microbiol. 46:102–8
    [Google Scholar]
  100. 100.
    Sikder MM, Vestergard M. 2019. Impacts of root metabolites on soil nematodes. Front. Plant Sci. 10:1792
    [Google Scholar]
  101. 101.
    Smant G, Jones J 2011. Suppression of plant defences by nematodes. Genomics and Molecular Genetics of Plant-Nematode Interactions J Jones, G Gheysen, C Fenoll 273–86 Dordrecht, Neth: Springer
    [Google Scholar]
  102. 102.
    Smant G, Stokkermans JPWG, Yan YT, de Boer JM, Baum TJ et al. 1998. Endogenous cellulases in animals: isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. PNAS 95:4906–11
    [Google Scholar]
  103. 103.
    Sun Y, Li L, Macho AP, Han Z, Hu Z et al. 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624–28
    [Google Scholar]
  104. 104.
    Teillet A, Dybal K, Kerry BR, Miller AJ, Curtis RH, Hedden P. 2013. Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. PLOS ONE 8:e61259
    [Google Scholar]
  105. 105.
    Teixeira MA, Wei LH, Kaloshian I. 2016. Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. New Phytol 211:276–87
    [Google Scholar]
  106. 106.
    Topalovic O, Bredenbruch S, Schleker ASS, Heuer H. 2020. Microbes attaching to endoparasitic phytonematodes in soil trigger plant defense upon root penetration by the nematode. Front. Plant Sci. 11:138
    [Google Scholar]
  107. 107.
    Torres JLL. 2019. Proline-rich extensin-like receptor kinases mediate damage-triggered immune responses to nematode infections Paper presented at IS-MPMI XVIII Congress Glasgow, UK: Jul. 18
    [Google Scholar]
  108. 108.
    Tsai AYL, Higaki T, Nguyen CN, Perfus-Barbeoch L, Favery B, Sawa S. 2019. Regulation of root-knot nematode behavior by seed-coat mucilage-derived attractants. Mol. Plant 12:99–112
    [Google Scholar]
  109. 109.
    Tsai AYL, Iwamoto Y, Tsumuraya Y, Oota M, Konishi T et al. 2021. Root-knot nematode chemotaxis is positively regulated by l-galactose sidechains of mucilage carbohydrate rhamnogalacturonan-I. Sci. Adv. 7:27eabh4182
    [Google Scholar]
  110. 110.
    Umemoto N, Kakitani M, Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida I. 1997. The structure and function of a soybean beta-glucan-elicitor-binding protein. PNAS 94:1029–34
    [Google Scholar]
  111. 111.
    Vanholme B, Van Thuyne W, Vanhouteghem K, De Meutter J, Cannoot B, Gheysen G. 2007. Molecular characterization and functional importance of pectate lyase secreted by the cyst nematode Heterodera schachtii. Mol. Plant Pathol. 8:267–78
    [Google Scholar]
  112. 112.
    Veronico P, Melillo MT, Saponaro C, Leonetti P, Picardi E, Jones JT. 2011. A polygalacturonase-inhibiting protein with a role in pea defence against the cyst nematode Heterodera goettingiana. Mol. Plant Pathol. 12:275–87
    [Google Scholar]
  113. 113.
    Vidal B, Aghayeva U, Sun H, Wang C, Glenwinkel L et al. 2018. An atlas of Caenorhabditis elegans chemoreceptor expression. PLOS Biol 16:e2004218
    [Google Scholar]
  114. 114.
    Wang CL, Lower S, Williamson VM. 2009. Application of Pluronic gel to the study of root-knot nematode behaviour. Nematology 11:453–64
    [Google Scholar]
  115. 115.
    Warnock ND, Wilson L, Canet-Perez JV, Fleming T, Fleming CC et al. 2016. Exogenous RNA interference exposes contrasting roles for sugar exudation in host-finding by plant pathogens. Int. J. Parasitol. 46:473–77
    [Google Scholar]
  116. 116.
    Warnock ND, Wilson L, Patten C, Fleming CC, Maule AG, Dalzell JJ. 2017. Nematode neuropeptides as transgenic nematicides. PLOS Pathog 13:e1006237
    [Google Scholar]
  117. 117.
    Wilbers RHP, Schneiter R, Holterman MHM, Drurey C, Smant G et al. 2018. Secreted venom allergen-like proteins of helminths: conserved modulators of host responses in animals and plants. PLOS Pathog 14:e1007300
    [Google Scholar]
  118. 118.
    Williamson VM, Kumar A. 2006. Nematode resistance in plants: the battle underground. Trends Genet 22:396–403
    [Google Scholar]
  119. 119.
    Wyss U, Grundler FMW. 1992. Feeding behavior of sedentary plant parasitic nematodes. Neth. J. Plant Pathol. 98:165–73
    [Google Scholar]
  120. 120.
    Wyss U, Zunke U. 1986. Observations on the behaviour of second stage juveniles of Heterodera schachtii inside host roots. Rev. Nematol. 9:153–65
    [Google Scholar]
  121. 121.
    Yan Y, Davis EL 2002. Characterisation of guanylyl cyclase genes in the soybean cyst nematode, Heterodera glycines. Int. J. Parasitol. 32:65–72
    [Google Scholar]
  122. 122.
    Yang SS, Pan L, Chen Y, Yang D, Liu Q, Jian H. 2019. Heterodera avenae GLAND5 effector interacts with pyruvate dehydrogenase subunit of plant to promote nematode parasitism. Front. Microbiol. 10:1241
    [Google Scholar]
  123. 123.
    Zhang X, Peng H, Zhu S, Xing J, Li X et al. 2020. Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Mol. Plant 13:1434–54
    [Google Scholar]
  124. 124.
    Zhao J, Li L, Liu Q, Liu P, Li S et al. 2019. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. J. Exp. Bot. 70:5943–58
    [Google Scholar]
  125. 125.
    Zhao J, Mao Z, Sun Q, Liu Q, Jian H, Xie B. 2020. MiMIF-2 effector of Meloidogyne incognita exhibited enzyme activities and potential roles in plant salicylic acid synthesis. Int. J. Mol. Sci. 21:103507
    [Google Scholar]
  126. 126.
    Zheng Q, Putker V, Goverse A. 2021. Molecular and cellular mechanisms involved in host-specific resistance to cyst nematodes in crops. Front. Plant Sci. 12:641582
    [Google Scholar]
  127. 127.
    Zhou D, Godinez-Vidal D, He J, Teixeira M, Guo J et al. 2021. A G-lectin receptor kinase is a negative regulator of Arabidopsis immunity against root-knot nematode Meloidogyne incognita. bioRxiv 459316. https://doi.org/10.1101/2021.09.07.459316
    [Crossref]
  128. 128.
    Zhuo K, Naalden D, Nowak S, Xuan Huy N, Bauters L, Gheysen G 2019. A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism. Mol. Plant Pathol. 20:346–55
    [Google Scholar]
  129. 129.
    Zipfel C. 2014. Plant pattern-recognition receptors. Trends Immunol. 35:345–51
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-102355
Loading
/content/journals/10.1146/annurev-phyto-020620-102355
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error