1932

Abstract

Viruses, bacteria, and eukaryotic symbionts interact with algae in a variety of ways to cause disease complexes, often shaping marine and freshwater ecosystems. The advent of phyconomy (a.k.a. seaweed agronomy) represents a need for a greater understanding of algal disease interactions, where underestimated cryptic diversity and lack of phycopathological basis are prospective constraints for algal domestication. Here, we highlight the limited yet increasing knowledge of algal pathogen biodiversity and the ecological interaction with their algal hosts. Finally, we discuss how ecology and cultivation experience contribute to and reinforce aquaculture practice, with the potential to reshape biosecurity policies of seaweed cultivation worldwide.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-120425
2023-09-05
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-020620-120425.html?itemId=/content/journals/10.1146/annurev-phyto-020620-120425&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agha R, Gross A, Rohrlack T, Wolinska J. 2018. Adaptation of a chytrid parasite to its cyanobacterial host is hampered by host intraspecific diversity. Front. Microbiol. 9:921
    [Google Scholar]
  2. 2.
    Agha R, Saebelfeld M, Manthey C, Rohrlack T, Wolinska J. 2016. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Sci. Rep. 6:135039
    [Google Scholar]
  3. 3.
    Allewaert CC, Hiegle N, Strittmatter M, de Blok R, Guerra T et al. 2018. Life history determinants of the susceptibility of the blood alga Haematococcus to infection by Paraphysoderma sedebokerense (Blastocladiomycota). Algal Res 31:282–90
    [Google Scholar]
  4. 4.
    Amsler CD, Amsler MO, McClintock JB, Baker BJ. 2009. Filamentous algal endophytes in macrophytic Antarctic algae: prevalence in hosts and palatability to mesoherbivores. Phycologia 48:5324–34
    [Google Scholar]
  5. 5.
    Anderson CR, Moore SK, Tomlinson MC, Silke J, Cusack CK 2015. Living with harmful algal blooms in a changing world. Coastal and Marine Hazards, Risks, and Disasters JF Shroder, JT Ellis, DJ Sherman 495–561. Amsterdam: Elsevier
    [Google Scholar]
  6. 6.
    Apprill A, Hughen K, Mincer T. 2013. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals: healthy and lesioned fungiid coral-bacteria. Environ. Microbiol. 15:72063–72
    [Google Scholar]
  7. 7.
    Ashen JB, Goff LJ. 1996. Molecular identification of a bacterium associated with gall formation in the marine red alga Prionitis lanceolata. J. Phycol. 32:2286–97
    [Google Scholar]
  8. 8.
    Ashen JB, Goff LJ. 2000. Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. Appl. Environ. Microbiol. 66:73024–30
    [Google Scholar]
  9. 9.
    Ask EI, Batibasaga A, Zertuche-González JA, de San M. 2003. Three decades of Kappaphycus alvarezii (Rhodophyta) introduction to non-endemic locations. Proc. Int. Seaweed Symp 17:49–57
    [Google Scholar]
  10. 10.
    Avrani S, Lindell D. 2015. Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage. PNAS 112:17E2191–200
    [Google Scholar]
  11. 11.
    Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D 2011. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 474:604
    [Google Scholar]
  12. 12.
    Bachy C, Yung CCM, Needham DM, Gazitúa MC, Roux S et al. 2021. Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. ISME J 15:3129–47
    [Google Scholar]
  13. 13.
    Badis Y, Klochkova TA, Strittmatter M, Garvetto A, Murúa P et al. 2018. Novel species of the oomycete Olpidiopsis potentially threaten European red algal cultivation. J. Appl. Phycol. 31:1239–50
    [Google Scholar]
  14. 14.
    Barrett LG, Thrall PH, Burdon JJ, Linde CC. 2008. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol. Evol. 23:12678–85
    [Google Scholar]
  15. 15.
    Beattie DT, Lachnit T, Dinsdale EA, Thomas T, Steinberg PD. 2018. Novel ssDNA viruses detected in the virome of bleached, habitat-forming kelp Ecklonia radiata. Front. Mar. Sci. 4:441
    [Google Scholar]
  16. 16.
    Bernard M, Dartevelle L, Strittmatter M, Peters AF, Leblanc C 2017. situ identification and laboratory studies on the interaction between filamentous brown algal endophytes and kelps. Phycologia 56:416
    [Google Scholar]
  17. 17.
    Bernard M, Rousvoal S, Jacquemin B, Ballenghien M, Peters AF, Leblanc C. 2018. qPCR-based relative quantification of the brown algal endophyte Laminarionema elsbetiae in Saccharina latissima: variation and dynamics of host–endophyte interactions. J. Appl. Phycol. 30:52901–11
    [Google Scholar]
  18. 18.
    Bernard MS, Strittmatter M, Murúa P, Heesch S, Cho GY et al. 2019. Diversity, biogeography and host specificity of kelp endophytes with a focus on the genera Laminarionema and Laminariocolax (Ectocarpales, Phaeophyceae). Eur. J. Phycol. 54:139–51
    [Google Scholar]
  19. 19.
    Blake C, Thiel M, López B, Fraser C. 2017. Gall-forming protistan parasites infect southern bull kelp across the Southern Ocean, with prevalence increasing to the south. Mar. Ecol. Prog. Ser. 583:95–106
    [Google Scholar]
  20. 20.
    Blumenthal D, Mitchell CE, Pysek P, Jarosik V. 2009. Synergy between pathogen release and resource availability in plant invasion. PNAS 106:197899–904
    [Google Scholar]
  21. 21.
    Brakel J, Sibonga RC, Dumilag RV, Montalescot V, Campbell I et al. 2021. Exploring, harnessing and conserving marine genetic resources towards a sustainable seaweed aquaculture. Plants People Planet 3:4337–49
    [Google Scholar]
  22. 22.
    Bramucci AR, Case RJ. 2019. Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi. Sci. Rep. 9:15215
    [Google Scholar]
  23. 23.
    Brodie J, Ball SG, Bouget F-Y, Chan CX, De Clerck O et al. 2017. Biotic interactions as drivers of algal origin and evolution. New Phytol 216:3670–81
    [Google Scholar]
  24. 24.
    Brosnahan ML, Farzan S, Keafer BA, Sosik HM, Olson RJ, Anderson DM. 2014. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes. Deep Sea Res. II Top. Stud. Oceanogr. 103:185–98
    [Google Scholar]
  25. 25.
    Brussaard CPD. 2004. Viral control of phytoplankton populations: a review. J. Eukaryot. Microbiol. 51:2125–38
    [Google Scholar]
  26. 26.
    Callow JA, Callow ME, Evans LV. 1979. Nutritional studies on the parasitic red alga Choreocolax polysiphoniae. New Phytol 83:2451–62
    [Google Scholar]
  27. 27.
    Campbell AH, Harder T, Nielsen S, Kjelleberg S, Steinberg PD. 2011. Climate change and disease: bleaching of a chemically defended seaweed. Glob. Change Biol. 17:92958–70
    [Google Scholar]
  28. 28.
    Campbell AH, Vergés A, Steinberg PD. 2014. Demographic consequences of disease in a habitat-forming seaweed and impacts on interactions between natural enemies. Ecology 95:1142–52
    [Google Scholar]
  29. 29.
    Campbell I, Kambey CSB, Mateo JP, Rusekwa SB, Hurtado AQ et al. 2019. Biosecurity policy and legislation for the global seaweed aquaculture industry. J. Appl. Phycol. 32:2133–46
    [Google Scholar]
  30. 30.
    Carlson MCG, McCary ND, Leach TS, Rocap G. 2016. Pseudo-nitzschia challenged with co-occurring viral communities display diverse infection phenotypes. Front. Microbiol. 7:527
    [Google Scholar]
  31. 31.
    Casadevall A, Pirofski L. 2007. Accidental virulence, cryptic pathogenesis, Martians, lost hosts, and the pathogenicity of environmental microbes. Eukaryot. Cell 6:122169–74
    [Google Scholar]
  32. 32.
    Case RJ, Longford SR, Campbell AH, Low A, Tujula N et al. 2011. Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga: temperature, disease and algal chemical defense. Environ. Microbiol. 13:2529–37
    [Google Scholar]
  33. 33.
    Chambouvet A, Monier A, Maguire F, Itoïz S, del Campo J et al. 2019. Intracellular infection of diverse diatoms by an evolutionary distinct relative of the fungi. Curr. Biol. 29:234093–101.e4
    [Google Scholar]
  34. 34.
    Chambouvet A, Morin P, Marie D, Guillou L. 2008. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322:59051254–57
    [Google Scholar]
  35. 35.
    Collén J, Mtolera MSP, Abrahamsson K, Semesi A, Pedersén MC. 1995. Farming and physiology of the red algae Eucheuma: growing commercial importance in East Africa. Ambio 24:497–501
    [Google Scholar]
  36. 36.
    Conklin KY, Kurihara A, Sherwood AR. 2009. A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. J. Appl. Phycol. 21:6691–99
    [Google Scholar]
  37. 37.
    Cottier-Cook EJ, Nagabhatla N, Badis Y, Campbell ML, Chopin T et al. 2016. Safeguarding the future of the global seaweed aquaculture industry Policy brief, U. N. Univ. Inst. Water Environ. Health Hamilton, ON: https://inweh.unu.edu/wp-content/uploads/2016/09/unu-seaweed-aquaculture-policy.pdf
  38. 38.
    Coy S, Gann E, Pound H, Short S, Wilhelm S. 2018. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses 10:9487
    [Google Scholar]
  39. 39.
    De Bruin A, Ibelings BW, Kagami M, Mooij WM, van Donk E. 2008. Adaptation of the fungal parasite Zygorhizidium planktonicum during 200 generations of growth on homogeneous and heterogeneous populations of its host, the diatom Asterionellaformosa. J. Eukaryot. Microbiol. 55:269–74
    [Google Scholar]
  40. 40.
    De Bruin A, Ibelings BW, Rijkeboer M, Brehm M, van Donk E. 2004. Genetic variation in Asterionellaformosa (Bacillariophyceae): Is it linked to frequent epidemics of host-specific parasitic fungi?. J. Phycol. 40:5823–30
    [Google Scholar]
  41. 41.
    de Vargas C, Audic S, Henry N, Decelle J, Mahé F et al. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348:62371261605
    [Google Scholar]
  42. 42.
    Demory D, Arsenieff L, Simon N, Six C, Rigaut-Jalabert F et al. 2017. Temperature is a key factor in Micromonas-virus interactions. ISME J 11:3601–12
    [Google Scholar]
  43. 43.
    Dep. Energy 2010. National algal biofuels technology roadmap. Rep., Off. Energy Effic. Renew. Energy Washington, DC: https://www1.eere.energy.gov/bioenergy/pdfs/algal_biofuels_roadmap.pdf
  44. 44.
    Donk EV, Ringelberg J. 1983. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I (The Netherlands). Freshw. Biol. 13:3241–51
    [Google Scholar]
  45. 45.
    Dorrell RG, Howe CJ. 2012. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J. Cell Sci. 125:81865–75
    [Google Scholar]
  46. 46.
    Du K, Strittmatter M, Vallet M, Prado S, Gachon CMM. 2015. A new bioassay to inoculate kelp sporophytes with the ascomycete fungus Paradendryphiella arenaria. Eur. J. Phycol. 50:189
    [Google Scholar]
  47. 47.
    Duarte CM, Marba N, Holmer M. 2007. Rapid domestication of marine species. Science 316:5823382–83
    [Google Scholar]
  48. 48.
    Dunigan DD, Fitzgerald LA, Van Etten JL. 2006. Phycodnaviruses: a peek at genetic diversity. Virus Res 117:1119–32
    [Google Scholar]
  49. 49.
    Easton LM, Lewis GD, Pearson MN. 1997. Virus-like particles associated with dieback symptoms in the brown alga Ecklonia radiata. Dis. Aquat. Org. 30:3217–22
    [Google Scholar]
  50. 50.
    Egan S, Fernandes ND, Kumar V, Gardiner M, Thomas T. 2014. Bacterial pathogens, virulence mechanism and host defence in marine macroalgae. Environ. Microbiol. 16:4925–38
    [Google Scholar]
  51. 51.
    Egan S, Gardiner M. 2016. Microbial dysbiosis: rethinking disease in marine ecosystems. Front. Microbiol. 7:991
    [Google Scholar]
  52. 52.
    Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. 2013. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol. Rev. 37:3462–76
    [Google Scholar]
  53. 53.
    Ekroth AKE, Rafaluk-Mohr C, King KC. 2019. Host genetic diversity limits parasite success beyond agricultural systems: a meta-analysis. Proc. R. Soc. B 286: 1911.20191811
    [Google Scholar]
  54. 54.
    Evans LV, Callow JA, Callow ME. 1973. Structural and physiological studies on the parasitic red alga Holmsella. New Phytol. 72:2393–402
    [Google Scholar]
  55. 55.
    FAO 2020. State of the World Fisheries and Aquaculture 2020: Sustainability in Action. Rome: FAO
    [Google Scholar]
  56. 56.
    Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:7393186–94
    [Google Scholar]
  57. 57.
    Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C. 2008. The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. PNAS 105:4115944–49
    [Google Scholar]
  58. 58.
    Francl LJ. 2001. The disease triangle: a plant pathological paradigm revisited. Plant Health Instr. https://doi.org/10.1094/PHI-T-2001-0517-01
    [Google Scholar]
  59. 59.
    Freese JM, Lane CE. 2017. Parasitism finds many solutions to the same problems in red algae (Florideophyceae, Rhodophyta). Mol. Biochem. Parasitol. 214:105–11
    [Google Scholar]
  60. 60.
    Frickel J, Theodosiou L, Becks L. 2017. Rapid evolution of hosts begets species diversity at the cost of intraspecific diversity. PNAS 114:4211193–98
    [Google Scholar]
  61. 61.
    Gachon CMM, Badis Y, Klochkova TA, Strittmatter M, Garvetto A et al. 2017. Hidden diversity in the oomycete genus Olpidiopsis is a global threat to red algal cultivation. Phycologia 56:S454–55
    [Google Scholar]
  62. 62.
    Gachon CMM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH. 2010. Algal diseases: spotlight on a black box. Trends Plant Sci 15:11633–40
    [Google Scholar]
  63. 63.
    Gachon CMM, Strittmatter M, Badis Y, Fletcher KI, Van West P, Müller DG. 2017. Pathogens of brown algae: culture studies of Anisolpidium ectocarpii and A. rosenvingei reveal that the Anisolpidiales are uniflagellated oomycetes. Eur. J. Phycol. 52:2133–48
    [Google Scholar]
  64. 64.
    Gachon CMM, Strittmatter M, Muller DG, Kleinteich J, Kupper FC et al. 2009. Detection of differential host susceptibility to the marine oomycete pathogen Eurychasma dicksonii by real-time PCR: not all algae are equal. Appl. Environ. Microbiol. 75:2322–28
    [Google Scholar]
  65. 65.
    Gagnaire P-A, Broquet T, Aurelle D, Viard F, Souissi A et al. 2015. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol. Appl. 8:8769–86
    [Google Scholar]
  66. 66.
    Garvetto A, Nézan E, Badis Y, Bilien G, Arce P et al. 2018. Novel widespread marine oomycetes parasitising diatoms, including the toxic genus Pseudo-nitzschia: genetic, morphological, and ecological characterisation. Front. Microbiol. 9:2918
    [Google Scholar]
  67. 67.
    Gerphagnon M, Agha R, Martin-Creuzburg D, Bec A, Perriere F et al. 2019. Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites. Environ. Microbiol. 21:3949–58
    [Google Scholar]
  68. 68.
    Gleason FH, Küpper FC, Amon JP, Picard K, Gachon CMM et al. 2011. Zoosporic true fungi in marine ecosystems: a review. Mar. Freshw. Res. 62:4383–93
    [Google Scholar]
  69. 69.
    Goecke F, Labes A, Wiese J, Imhoff JF. 2010. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 409:267–300
    [Google Scholar]
  70. 70.
    Goff L, Coleman A. 1995. Fate of parasite and host organelle DNA during cellular transformation of red algae by their parasites. Plant Cell 7:111899–911
    [Google Scholar]
  71. 71.
    Graham ED, Heidelberg JF, Tully BJ. 2018. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J 12:71861–66
    [Google Scholar]
  72. 72.
    Grami B, Rasconi S, Niquil N, Jobard M, Saint-Béat B, Sime-Ngando T. 2011. Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: a linear inverse modeling analysis. PLOS ONE 6:8e23273
    [Google Scholar]
  73. 73.
    Grenville-Briggs L, Gachon CMM, Strittmatter M, Sterck L, Küpper FC et al. 2011. A molecular insight into algal-oomycete warfare: cDNA analysis of Ectocarpus siliculosus infected with the basal oomycete Erychasma dicksonii. PLOS ONE 6:9e24500
    [Google Scholar]
  74. 74.
    Gsell AS, de Senerpont Domis LN, van Donk E, Ibelings BW. 2013. Temperature alters host genotype-specific susceptibility to chytrid infection. PLOS ONE 8:8e71737
    [Google Scholar]
  75. 75.
    Guan X, Li J, Zhang Z, Li F, Yang R et al. 2013. Characterizing the microbial culprit of white spot disease of the conchocelis stage of Porphyra yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 25:51341–48
    [Google Scholar]
  76. 76.
    Guillemin M-L, Valero M, Faugeron S, Nelson W, Destombe C. 2014. Tracing the trans-Pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data. PLOS ONE 9:12e114039
    [Google Scholar]
  77. 77.
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR et al. 2008. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10:123349–65
    [Google Scholar]
  78. 78.
    Hancock L, Goff L, Lane C. 2010. Red algae lose key mitochondrial genes in response to becoming parasitic. Genome Biol. Evol. 2:897–910
    [Google Scholar]
  79. 79.
    Hayashi L, Hurtado AQ, Msuya FE, Bleicher-Lhonneur G, Critchley AT 2010. A review of Kappaphycus farming: prospects and constraints. Seaweeds and their Role in Globally Changing Environments J Seckbach, R Einav, A Israel 251–83. Dordrecht, Neth: Springer
    [Google Scholar]
  80. 80.
    Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S. 2008. Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycol. Res. 112:170–81
    [Google Scholar]
  81. 81.
    Holfeld H. 1998. Fungal infections of the phytoplankton: seasonality, minimal host density, and specificity in a mesotrophic lake. New Phytol 138:3507–17
    [Google Scholar]
  82. 82.
    Holmfeldt K, Solonenko N, Shah M, Corrier K, Riemann L et al. 2013. Twelve previously unknown phage genera are ubiquitous in global oceans. PNAS 110:3112798–803
    [Google Scholar]
  83. 83.
    Hudson J, Deshpande N, Leblanc C, Egan S. 2022. Pathogen exposure leads to a transcriptional downregulation of core cellular functions that may dampen the immune response in a macroalga. Mol. Ecol. 31:123468–80
    [Google Scholar]
  84. 84.
    Hudson J, Egan S. 2022. Opportunistic diseases in marine eukaryotes: Could Bacteroidota be the next threat to ocean life?. Environ. Microbiol. 24:104505–18
    [Google Scholar]
  85. 85.
    Hudson J, Kumar V, Egan S. 2019. Comparative genome analysis provides novel insight into the interaction of Aquimarina sp. AD1, BL5 and AD10 with their macroalgal host. Mar. Genom. 46:8–15
    [Google Scholar]
  86. 86.
    Hudson PJ, Dobson AP, Lafferty KD. 2006. Is a healthy ecosystem one that is rich in parasites?. Trends Ecol. Evol. 21:7381–85
    [Google Scholar]
  87. 87.
    Hurd CL, Harrison PJ, Bischof K, Lobban CS. 2014. Seaweed Ecology and Physiology Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
  88. 88.
    Jacobsen A, Larsen A, Martínez-Martínez J, Verity P, Frischer M. 2007. Susceptibility of colonies and colonial cells of Phaeocystis pouchetii (Haptophyta) to viral infection. Aquat. Microb. Ecol. 48:105–12
    [Google Scholar]
  89. 89.
    Johansen L-H, Jensen I, Mikkelsen H, Bjørn P-A, Jansen PA, Bergh Ø. 2011. Disease interaction and pathogens exchange between wild and farmed fish populations with special reference to Norway. Aquaculture 315:3–4167–86
    [Google Scholar]
  90. 90.
    Johnson N 2014. A short introduction to disease emergence. The Role of Animals in Emerging Viral Diseases N Johnson 1–19. Amsterdam: Elsevier
    [Google Scholar]
  91. 91.
    Kagami M, von Elert E, Ibelings BW, de Bruin A, Van Donk E. 2007. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc. R. Soc. B 274:16171561–66
    [Google Scholar]
  92. 92.
    Kim GH, Klochkova TA, Lee DJ, Im SH. 2016. Chloroplast virus causes green-spot disease in cultivated Pyropia of Korea. Algal Res 17:293–99
    [Google Scholar]
  93. 93.
    Kim GH, Moon KH, Kim JY, Shim J, Klochkova TA. 2014. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:4249–65
    [Google Scholar]
  94. 94.
    Kimura K, Tomaru Y. 2014. Coculture with marine bacteria confers resistance to complete viral lysis of diatom cultures. Aquat. Microb. Ecol. 73:169–80
    [Google Scholar]
  95. 95.
    Kimura K, Tomaru Y. 2015. Discovery of two novel viruses expands the diversity of single-stranded DNA and single-stranded RNA viruses infecting a cosmopolitan marine diatom. Appl. Environ. Microbiol. 81:31120–31
    [Google Scholar]
  96. 96.
    Klawonn I, Van den Wyngaert S, Parada AE, Arandia-Gorostidi N, Whitehouse MJ et al. 2021. Characterizing the “fungal shunt”: parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. PNAS 118:23e2102225118
    [Google Scholar]
  97. 97.
    Klochkova TA, Jung S, Kim GH. 2017. Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin. J. Appl. Phycol. 29:1371–79
    [Google Scholar]
  98. 98.
    Klochkova TA, Shim JB, Hwang MS, Kim GH. 2012. Host-parasite interactions and host species susceptibility of the marine oomycete parasite, Olpidiopsis sp., from Korea that infects red algae. J. Appl. Phycol. 24:1135–44
    [Google Scholar]
  99. 99.
    Kohlmeyer J, Kohlmeyer E. 1979. Marine Mycology: The Higher Fungi London: Academic
    [Google Scholar]
  100. 100.
    Koonin EV, Senkevich TG, Dolja VV. 2006. The ancient virus world and evolution of cells. Biol. Direct 1:129
    [Google Scholar]
  101. 101.
    Kumar V, Zozaya-Valdes E, Kjelleberg S, Thomas T, Egan S. 2016. Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra. Environ. Microbiol. 18:113962–75
    [Google Scholar]
  102. 102.
    Kyle M, Haande S, Ostermaier V, Rohrlack T. 2015. The Red Queen race between parasitic chytrids and their host, Planktothrix: a test using a time series reconstructed from sediment DNA. PLOS ONE 10:3e0118738
    [Google Scholar]
  103. 103.
    Lachnit T, Thomas T, Steinberg P. 2016. Expanding our understanding of the seaweed holobiont: RNA viruses of the red alga Delisea pulchra. Front. Microbiol. 6:1489
    [Google Scholar]
  104. 104.
    Lafferty KD, Dobson AP, Kuris AM. 2006. Parasites dominate food web links. PNAS 103:3011211–16
    [Google Scholar]
  105. 105.
    Lee S-O, Kato J, Takiguchi N, Kuroda A, Ikeda T et al. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66:104334–39
    [Google Scholar]
  106. 106.
    Leonardi PI, Miravalles AB, Faugeron S, Flores V, Beltrán J, Correa JA. 2006. Diversity, phenomenology and epidemiology of epiphytism in farmed Gracilaria chilensis (Rhodophyta) in northern Chile. Eur. J. Phycol. 41:2247–57
    [Google Scholar]
  107. 107.
    Lepelletier F, Karpov SA, Alacid E, Le Panse S, Bigeard E et al. 2014. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165:2230–44
    [Google Scholar]
  108. 108.
    Lepère C, Domaizon I, Debroas D. 2008. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl. Environ. Microbiol. 74:102940–49
    [Google Scholar]
  109. 109.
    Letcher PM, Powell MJ, Davis WJ. 2015. A new family and four new genera in Rhizophydiales (Chytridiomycota). Mycologia 107:4808–30
    [Google Scholar]
  110. 110.
    Li J, Majzoub ME, Marzinelli EM, Dai Z, Thomas T, Egan S. 2022. Bacterial controlled mitigation of dysbiosis in a seaweed disease. ISME J 16:2378–87
    [Google Scholar]
  111. 111.
    Li J, Weinberger F, de Nys R, Thomas T, Egan S. 2023. A pathway to improve seaweed aquaculture through microbiota manipulation. Trends Biotechnol 41:4545–56
    [Google Scholar]
  112. 112.
    Lim L, McFadden GI. 2010. The evolution, metabolism and functions of the apicoplast. Philos. Trans. R. Soc. B 365:1541749–63
    [Google Scholar]
  113. 113.
    Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW. 2004. Transfer of photosynthesis genes to and from Prochlorococcus viruses. PNAS 101:3011013–18
    [Google Scholar]
  114. 114.
    Liu D, Zhou M 2018. Green tides of the Yellow Sea: massive free-floating blooms of Ulva prolifera. Global Ecology and Oceanography of Harmful Algal Blooms PM Glibert, E Berdalet, MA Burford, GC Pitcher, M Zhou 317–26. Cham, Switz: Springer
    [Google Scholar]
  115. 115.
    Long AM, Short SM. 2016. Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond. ISME J 10:71602–12
    [Google Scholar]
  116. 116.
    Loureiro R, Gachon CMM, Rebours C. 2015. Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206:2489–92
    [Google Scholar]
  117. 117.
    Ma X-N, Chen T-P, Yang B, Liu J, Chen F 2016. Lipid production from Nannochloropsis. Mar. Drugs 14:461
    [Google Scholar]
  118. 118.
    Maier I, Parodi E, Westermeier R, Müller DG. 2000. Maullinia ectocarpii gen. et sp. nov. (Plasmodiophorea), an intracellular parasite in Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) and other filamentous brown algae. Protist 151:3225–38
    [Google Scholar]
  119. 119.
    Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy DJ et al. 2018. High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat. Commun. 9:1266
    [Google Scholar]
  120. 120.
    Mateo JP, Campbell I, Cottier-Cook EJ, Luhan MRJ, Ferriols VMEN, Hurtado AQ. 2020. Analysis of biosecurity-related policies governing the seaweed industry of the Philippines. J. Appl. Phycol. 32:32009–22
    [Google Scholar]
  121. 121.
    Mayali X, Azam F. 2004. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51:2139–44
    [Google Scholar]
  122. 122.
    Mayali X, Doucette GJ. 2002. Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1:3277–93
    [Google Scholar]
  123. 123.
    McKeown D, Schroeder J, Stevens K, Peters A, Sáez C et al. 2018. Phaeoviral infections are present in Macrocystis, Ecklonia and Undaria (Laminariales) and are influenced by wave exposure in Ectocarpales. Viruses 10:8410
    [Google Scholar]
  124. 124.
    McKeown DA, Stevens K, Peters AF, Bond P, Harper GM et al. 2017. Phaeoviruses discovered in kelp (Laminariales). ISME J 11:122869–73
    [Google Scholar]
  125. 125.
    Meyer N, Rettner J, Werner M, Werz O, Pohnert G. 2018. Algal oxylipins mediate the resistance of diatoms against algicidal bacteria. Mar. Drugs 16:12486
    [Google Scholar]
  126. 126.
    Middelboe M. 2000. Bacterial growth rate and marine virus-host dynamics. Microb. Ecol. 40:114–24
    [Google Scholar]
  127. 127.
    Mineur F, Le Roux A, Maggs CA, Verlaque M 2014. Positive feedback loop between introductions of non-native marine species and cultivation of oysters in Europe. Conserv. Biol. 28:61667–76
    [Google Scholar]
  128. 128.
    Monier A, Chambouvet A, Milner DS, Attah V, Terrado R et al. 2017. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. PNAS 114:36E7489–98
    [Google Scholar]
  129. 129.
    Mordecai G, Verret F, Highfield A, Schroeder D. 2017. Schrödinger's Cheshire Cat: Are haploid Emiliania huxleyi cells resistant to viral infection or not?. Viruses 9:1251
    [Google Scholar]
  130. 130.
    Müller DG, Küpper FC, Küpper H. 1999. Infection experiments reveal broad host ranges of Eurychasma dicksonii (Oomycota) and Chytridium polysiphoniae (Chytridiomycota), two eukaryotic parasites in marine brown algae (Phaeophyceae). Phycol. Res. 47:3217–23
    [Google Scholar]
  131. 131.
    Murúa P, Goecke F, Westermeier R, van West P, Küpper FC, Neuhauser S. 2017. Maullinia braseltonii sp. nov. (Rhizaria, Phytomyxea, Phagomyxida): a cyst-forming parasite of the bull kelp Durvillaea spp. (Stramenopila, Phaeophyceae, Fucales). Protist 168:4468–80
    [Google Scholar]
  132. 132.
    Murúa P, Küpper FC, Muñoz LA, Bernard M, Peters AF. 2018. Microspongium alariae in Alaria esculenta: a widely-distributed non-parasitic brown algal endophyte that shows cell modifications within its host. Bot. Mar. 61:4343–54
    [Google Scholar]
  133. 133.
    Murúa P, Müller DG, Etemadi M, van West P, Gachon CMM. 2020. Host and pathogen autophagy are central to the inducible local defences and systemic response of the giant kelp Macrocystis pyrifera against the oomycete pathogen Anisolpidium ectocarpii. New Phytol 226:51445–60
    [Google Scholar]
  134. 134.
    Murúa P, Patiño DJ, Leiva FP, Muñoz L, Müller DG et al. 2019. Gall disease in the alginophyte Lessonia berteroana: a pathogenic interaction linked with host adulthood in a seasonal-dependant manner. Algal Res 39:101435
    [Google Scholar]
  135. 135.
    Neuhauser S, Kirchmair M, Bulman S, Bass D. 2014. Cross-kingdom host shifts of phytomyxid parasites. BMC Evol. Biol. 14:33
    [Google Scholar]
  136. 136.
    Neuhauser S, Kirchmair M, Gleason FH. 2011. Ecological roles of the parasitic phytomyxids (plasmodiophorids) in marine ecosystems: a review. Mar. Freshw. Res. 62:4365–71
    [Google Scholar]
  137. 137.
    Neuhauser S, Kirchmair M, Gleason FH. 2011. The ecological potentials of Phytomyxea (“plasmodiophorids”) in aquatic food webs. Hydrobiologia 659:123–35
    [Google Scholar]
  138. 138.
    Nissimov JI, Campbell CN, Probert I, Wilson WH. 2020. Aquatic virus culture collection: an absent (but necessary) safety net for environmental microbiologists. Appl. Phycol. 3:1211–25
    [Google Scholar]
  139. 139.
    Panis G, Carreon JR. 2016. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–90
    [Google Scholar]
  140. 140.
    Papkou A, Gokhale CS, Traulsen A, Schulenburg H. 2016. Host-parasite coevolution: why changing population size matters. Zoology 119:4330–38
    [Google Scholar]
  141. 141.
    Paul C, Pohnert G. 2011. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLOS ONE 6:6e21032
    [Google Scholar]
  142. 142.
    Peacock E, Olson R, Sosik H. 2014. Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Mar. Ecol. Prog. Ser. 503:1–10
    [Google Scholar]
  143. 143.
    Peng Y, Li W. 2013. A bacterial pathogen infecting gametophytes of Saccharina japonica (Laminariales, Phaeophyceae). Chin. J. Oceanol. Limnol. 31:2366–73
    [Google Scholar]
  144. 144.
    Persson OP, Pinhassi J, Riemann L, Marklund B-I, Rhen M et al. 2009. High abundance of virulence gene homologues in marine bacteria. Environ. Microbiol. 11:61348–57
    [Google Scholar]
  145. 145.
    Peters AF. 1991. Field and culture studies of Streblonema macrocystis sp. nov. (Ectocapales, Phaeophyceae) from Chile, a sexual endophyte of giant kelp. Phycologia 30:4365–77
    [Google Scholar]
  146. 146.
    Peters AF. 2003. Molecular identification, distribution and taxonomy of brown algal endophytes, with emphasis on species from Antarctica. Proc. Int. Seaweed Symp 302:293–302
    [Google Scholar]
  147. 147.
    Plomion C, Aury J-M, Amselem J, Leroy T, Murat F et al. 2018. Oak genome reveals facets of long lifespan. Nat. Plants 4:7440–52
    [Google Scholar]
  148. 148.
    Plowright RK, Sokolow SH, Gorman ME, Daszak P, Foley JE. 2008. Causal inference in disease ecology: investigating ecological drivers of disease emergence. Front. Ecol. Environ. 6:8420–29
    [Google Scholar]
  149. 149.
    Preuss M, Nelson WA, Zuccarello GC 2017. Red algal parasites: a synopsis of described species, their hosts, distinguishing characters and areas for continued research. Bot. Mar. 60:113–25
    [Google Scholar]
  150. 150.
    Rad-Menéndez C, Gerphagnon M, Garvetto A, Arce P, Badis Y et al. 2018. Rediscovering Zygorhizidium affluens Canter: molecular taxonomy, infectious cycle, and cryopreservation of a chytrid infecting the bloom-forming diatom Asterionellaformosa. Appl. Environ. Microbiol. 84:23e01826–18
    [Google Scholar]
  151. 151.
    Ramus AP, Silliman BR, Thomsen MS, Long ZT. 2017. An invasive foundation species enhances multifunctionality in a coastal ecosystem. PNAS 114:328580–85
    [Google Scholar]
  152. 152.
    Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA et al. 2014. Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J. Appl. Phycol. 26:51939–51
    [Google Scholar]
  153. 153.
    Saha M, Weinberger F. 2019. Microbial “gardening” by a seaweed holobiont: surface metabolites attract protective and deter pathogenic epibacterial settlement. J. Ecol. 107:52255–65
    [Google Scholar]
  154. 154.
    Schnepf SF, Bulman S. 2000. Phagomyxa bellerecheae sp. nov. and Phagomyxa odontellae sp. nov., plasmodiophoromycetes feeding on marine diatoms. Helgol. Mar. Res. 54:4237–42
    [Google Scholar]
  155. 155.
    Scholthof K-BG. 2007. The disease triangle: pathogens, the environment and society. Nat. Rev. Microbiol. 5:2152–56
    [Google Scholar]
  156. 156.
    Scholz B, Küpper FC, Vyverman W, Karsten U. 2014. Eukaryotic pathogens (Chytridiomycota and Oomycota) infecting marine microphytobenthic diatoms: a methodological comparison. J. Phycol. 50:61009–19
    [Google Scholar]
  157. 157.
    Schwelm A, Badstöber J, Bulman S, Desoignies N, Etemadi M et al. 2018. Not in your usual Top 10: protists that infect plants and algae. Mol. Plant Pathol. 19:41029–44
    [Google Scholar]
  158. 158.
    Sekimoto S, Yokoo K, Kawamura Y, Honda D. 2008. Taxonomy, molecular phylogeny, and ultrastructural morphology of Olpidiopsis porphyrae sp. nov. (Oomycetes, straminipiles), a unicellular obligate endoparasite of Bangia and Porphyra spp. (Bangiales, Rhodophyta). Mycol. Res. 112:3361–74
    [Google Scholar]
  159. 159.
    Sellers A, Saltonstall K, Davidson T 2015. The introduced alga Kappaphycus alvarezii (Doty ex P.C. Silva, 1996) in abandoned cultivation sites in Bocas del Toro, Panama. BioInvasions Rec. 4:11–7
    [Google Scholar]
  160. 160.
    Seyedsayamdost MR, Carr G, Kolter R, Clardy J. 2011. Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J. Am. Chem. Soc. 133:4518343–49
    [Google Scholar]
  161. 161.
    Short SM. 2012. The ecology of viruses that infect eukaryotic algae: algal virus ecology. Environ. Microbiol. 14:92253–71
    [Google Scholar]
  162. 162.
    Sohn JH, Lee JH, Yi H, Chun J, Bae KS et al. 2004. Kordia algicida gen. nov., sp. nov., an algicidal bacterium isolated from red tide. Int. J. Syst. Evol. Microbiol. 54:Pt. 3675–80
    [Google Scholar]
  163. 163.
    Solis MJL, Draeger S, dela Cruz TEE 2010. Marine-derived fungi from Kappaphycus alvarezii and K. striatum as potential causative agents of ice-ice disease in farmed seaweeds. Bot. Mar 53:6587–94
    [Google Scholar]
  164. 164.
    Sønstebø JH, Rohrlack T. 2011. Possible implications of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 77:41344–51
    [Google Scholar]
  165. 165.
    Sparrow FK. 1960. Aquatic Phycomycetes Ann Arbor, MI: Univ. Mich. Press. , 2nd ed..
  166. 166.
    Stentiford GD, Neil DM, Peeler EJ, Shields JD, Small HJ et al. 2012. Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. J. Invertebr. Pathol. 110:2141–57
    [Google Scholar]
  167. 167.
    Stentiford GD, Sritunyalucksana K, Flegel TW, Williams BAP, Withyachumnarnkul B et al. 2017. New paradigms to help solve the global aquaculture disease crisis. PLOS Pathog. 13:2e1006160
    [Google Scholar]
  168. 168.
    Strittmatter M, Grenville-Briggs LJ, Breithut L, Van West P, Gachon CMM, Küpper FC. 2016. Infection of the brown alga Ectocarpus siliculosus by the oomycete Eurychasma dicksonii induces oxidative stress and halogen metabolism. Plant Cell Environ 39:2259–71
    [Google Scholar]
  169. 169.
    Strittmatter M, Guerra T, Silva J, Gachon CMM. 2016. A new flagellated dispersion stage in Paraphysoderma sedebokerense, a pathogen of Haematococcus pluvialis. J. Appl. Phycol. 28:31553–58
    [Google Scholar]
  170. 170.
    Sun R, Sun P, Zhang J, Esquivel-Elizondo S, Wu Y. 2018. Microorganisms-based methods for harmful algal blooms control: a review. Bioresour. Technol. 248:12–20
    [Google Scholar]
  171. 171.
    Suttle CA. 2005. Viruses in the sea. Nature 437:7057356–61
    [Google Scholar]
  172. 172.
    Tano SA, Halling C, Lind E, Buriyo A, Wikström SA. 2015. Extensive spread of farmed seaweeds causes a shift from native to non-native haplotypes in natural seaweed beds. Mar. Biol. 12:1983–992
    [Google Scholar]
  173. 173.
    Taylor JD, Cunliffe M. 2016. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:92118–28
    [Google Scholar]
  174. 174.
    Thingstad T, Lignell R. 1997. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13:19–27
    [Google Scholar]
  175. 175.
    Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N et al. 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:61011546–50
    [Google Scholar]
  176. 176.
    Torruella G, Grau-Bové X, Moreira D, Karpov SA, Burns JA et al. 2018. Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi. Commun. Biol. 1:231
    [Google Scholar]
  177. 177.
    Usandizaga S, Camus C, Kappes JL, Guillemin ML, Buschmann AH. 2018. Nutrients, but not genetic diversity, affect Gracilaria chilensis (Rhodophyta) farming productivity and physiological responses. J. Phycol. 54:6860–69
    [Google Scholar]
  178. 178.
    Vairappan CS, Chung CS, Hurtado AQ, Soya FE, Lhonneur GB, Critchley A. 2008. Distribution and symptoms of epiphyte infection in major carrageenophyte-producing farms. J. Appl. Phycol. 20:5477–83
    [Google Scholar]
  179. 179.
    Vairappan CS, Chung CS, Matsunaga S. 2014. Effect of epiphyte infection on physical and chemical properties of carrageenan produced by Kappaphycus alvarezii Doty (Soliericeae, Gigartinales, Rhodophyta). J. Appl. Phycol. 26:923–31
    [Google Scholar]
  180. 180.
    Valero M, Guillemin M-L, Destombe C, Jacquemin B, Gachon CMM et al. 2017. Perspectives on domestication research for sustainable seaweed aquaculture. Perspect. Phycol. 4:133–46
    [Google Scholar]
  181. 181.
    Vallet M, Strittmatter M, Murúa P, Lacoste S, Dupont J et al. 2018. Chemically-mediated interactions between macroalgae, their fungal endophytes, and protistan pathogens. Front. Microbiol. 9:3161
    [Google Scholar]
  182. 182.
    Van den Wyngaert S, Gsell AS, Spaak P, Ibelings BW. 2013. Herbicides in the environment alter infection dynamics in a microbial host-parasite system. Environ. Microbiol. 15:3837–47
    [Google Scholar]
  183. 183.
    Van den Wyngaert S, Möst M, Freimann R, Ibelings BW, Spaak P. 2015. Hidden diversity in the freshwater planktonic diatom Asterionellaformosa. Mol. Ecol. 24:122955–72
    [Google Scholar]
  184. 184.
    Van den Wyngaert S, Rojas-Jimenez K, Seto K, Kagami M, Grossart H-P. 2018. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. J. Eukaryot. Microbiol. 65:6870–81
    [Google Scholar]
  185. 185.
    Van Etten JL, Dunigan DD. 2012. Chloroviruses: not your everyday plant virus. Trends Plant Sci 17:11–8
    [Google Scholar]
  186. 186.
    Velo-Suárez L, Brosnahan ML, Anderson DM, McGillicuddy DJ. 2013. A quantitative assessment of the role of the parasite Amoebophrya in the termination of Alexandrium fundyense blooms within a small coastal embayment. PLOS ONE 8:12e81150
    [Google Scholar]
  187. 187.
    Wang R, Gallant É, Wilson MZ, Wu Y, Li A et al. 2022. Algal p-coumaric acid induces oxidative stress and siderophore biosynthesis in the bacterial symbiont Phaeobacter inhibens. Cell Chem. Biol. 29:4670–79.e5
    [Google Scholar]
  188. 188.
    Ward GM, Faisan JP, Cottier-Cook EJ, Gachon C, Hurtado AQ et al. 2020. A review of reported seaweed diseases and pests in aquaculture in Asia. J. World Aquacult. Soc. 51:4815–28
    [Google Scholar]
  189. 189.
    Ward GM, Kambey CSB, Faisan JP, Tan P, Daumich CC et al. 2021. Ice-ice disease: an environmentally and microbiologically driven syndrome in tropical seaweed aquaculture. Rev. Aquacult. 14:1414–39
    [Google Scholar]
  190. 190.
    Ward JR, Lafferty KD. 2004. The elusive baseline of marine disease: Are diseases in ocean ecosystems increasing?. PLOS Biol 2:4e120
    [Google Scholar]
  191. 191.
    Weinberger F, Friedlander M. 2000. Response of Gracilaria conferta (Rhodophyta) to olioagars results in defence against agar-degrading epiphytes. J. Phycol. 36:61079–86
    [Google Scholar]
  192. 192.
    West JA, Pueschel CM, Klochkova TA, Kim GH, De Goer S, Zuccarello GC. 2013. Gall structure and specificity in Bostrychia culture isolates (Rhodomelaceae, Rhodophyta). Algae 28:183–92
    [Google Scholar]
  193. 193.
    Weynberg KD. 2018. Viruses in marine ecosystems: from open waters to coral reefs. Adv. Virus Res. 101:1–38
    [Google Scholar]
  194. 194.
    Wilson WH. 2005. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309:57371090–92
    [Google Scholar]
  195. 195.
    Woodward FI. 2007. Global primary production. Curr. Biol. 17:8R269–73
    [Google Scholar]
  196. 196.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:7402222–27
    [Google Scholar]
  197. 197.
    Zhang R, Chang L, Xiao L, Zhang X, Han Q et al. 2020. Diversity of the epiphytic bacterial communities associated with commercially cultivated healthy and diseased Saccharina japonica during the harvest season. J. Appl. Phycol. 32:2071–80
    [Google Scholar]
  198. 198.
    Zuccarello GC, West JA. 1994. Host specificity in the red algal parasites Bostychiocolax australis and Dawsoniocolax bostrychiae (Choreocolacaceae, Rhodophyta). J. Phycol. 30:3462–73
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-120425
Loading
/content/journals/10.1146/annurev-phyto-020620-120425
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error