1932

Abstract

Plant and soil microbiomes are integral to the health and productivity of plants and ecosystems, yet researchers struggle to identify microbiome characteristics important for providing beneficial outcomes. Network analysis offers a shift in analytical framework beyond “who is present” to the organization or patterns of coexistence between microbes within the microbiome. Because microbial phenotypes are often significantly impacted by coexisting populations, patterns of coexistence within microbiomes are likely to be especially important in predicting functional outcomes. Here, we provide an overview of the how and why of network analysis in microbiome research, highlighting the ways in which network analyses have provided novel insights into microbiome organization and functional capacities, the diverse network roles of different microbial populations, and the eco-evolutionary dynamics of plant and soil microbiomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021021-041457
2023-09-05
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021021-041457.html?itemId=/content/journals/10.1146/annurev-phyto-021021-041457&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T et al. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLOS Biol. 14:e1002352Notable for unique analytical identification of hub taxa and subsequent empirical evaluation of keystoneness.
    [Google Scholar]
  2. 2.
    Almario J, Mahmoudi M, Kroll S, Agler M, Placzek A et al. 2022. The leaf microbiome of Arabidopsis displays reproducible dynamics and patterns throughout the growing season. mBio 13:3e02825–21
    [Google Scholar]
  3. 3.
    Babalola OO, Fadiji AE, Enagbonma BJ, Alori ET, Ayilara MS, Ayangbenro AS. 2020. The nexus between plant and plant microbiome: revelation of the networking strategies. Front. Microbiol. 11:548037
    [Google Scholar]
  4. 4.
    Bairey E, Kelsic ED, Kishony R. 2016. High-order species interactions shape ecosystem diversity. Nat. Commun. 7:12285
    [Google Scholar]
  5. 5.
    Bakker MG, Bradeen JM, Kinkel LL. 2013. Effects of plant host species and plant community richness on streptomycete community structure. FEMS Microbiol. Ecol. 83:596–606
    [Google Scholar]
  6. 6.
    Bakker MG, Schlatter DC, Otto-Hanson L, Kinkel LL. 2014. Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome. Mol. Ecol. 23:1571–83Provides quantitative analysis of relationships between plant host and compositional structure of network modules.
    [Google Scholar]
  7. 7.
    Banerjee S, Schlaeppi K, van der Heijden MGA. 2018. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16:567–76
    [Google Scholar]
  8. 8.
    Banerjee S, Walder F, Büchi L, Meyer M, Held AY et al. 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13:1722–36
    [Google Scholar]
  9. 9.
    Bass D, Stentiford GD, Wang H-C, Koskella B, Tyler CR. 2019. The pathobiome in animal and plant diseases. Trends Ecol. Evol. 34:996–1008
    [Google Scholar]
  10. 10.
    Bekris F, Vasileiadis S, Papadopoulou E, Samaras A, Testempasis S et al. 2021. Grapevine wood microbiome analysis identifies key fungal pathogens and potential interactions with the bacterial community implicated in grapevine trunk disease appearance. Environ. Microbiome 16:23
    [Google Scholar]
  11. 11.
    Bender EA, Canfield ER. 1978. The asymptotic number of labeled graphs with given degree sequences. J. Comb. Theory Ser. A 24:296–307
    [Google Scholar]
  12. 12.
    Bennett AE, Evans DM, Powell JR. 2019. Potentials and pitfalls in the analysis of bipartite networks to understand plant-microbe interactions in changing environments. Funct. Ecol. 33:107–17
    [Google Scholar]
  13. 13.
    Berendsen RL, Pieterse CMJ, Bakker Peter AHM. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478–86
    [Google Scholar]
  14. 14.
    Berg G, Köberl M, Rybakova D, Müller H, Grosch R et al. 2017. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol. 93:5fix050
    [Google Scholar]
  15. 15.
    Berg G, Rybakova D, Fischer D, Cernava T, Champomier Vergès M-C et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103
    [Google Scholar]
  16. 16.
    Berry D, Widder S. 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5:219
    [Google Scholar]
  17. 17.
    Blanchet FG, Cazelles K, Gravel D. 2020. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23:1050–63
    [Google Scholar]
  18. 18.
    Boon E, Meehan CJ, Whidden C, Wong DH-J, Langille MGI, Beiko RG. 2014. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol. Rev. 38:90–118
    [Google Scholar]
  19. 19.
    Borgatti SP, Mehra A, Brass DJ, Labianca G. 2009. Network analysis in the social sciences. Science 323:892–95
    [Google Scholar]
  20. 20.
    Botero D, Alvarado C, Bernal A, Danies G, Restrepo S. 2018. Network analyses in plant pathogens. Front. Microbiol. 9:35
    [Google Scholar]
  21. 21.
    Brin S, Page L. 1998. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30:107–17
    [Google Scholar]
  22. 22.
    Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA. 2019. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3:1445–54
    [Google Scholar]
  23. 23.
    Chaffron S, Rehrauer H, Pernthaler J, von Mering C. 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20:947–59
    [Google Scholar]
  24. 24.
    Chodkowski JL, Shade A. 2017. A synthetic community system for probing microbial interactions driven by exometabolites. mSystems 6:300129–17
    [Google Scholar]
  25. 25.
    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S et al. 2016. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 209:798–811
    [Google Scholar]
  26. 26.
    Coller E, Cestaro A, Zanzotti R, Bertoldi D, Pindo M et al. 2019. Microbiome of vineyard soils is shaped by geography and management. Microbiome 7:140
    [Google Scholar]
  27. 27.
    Cottee-Jones HEW, Whittaker RJ. 2012. The keystone species concept: a critical appraisal. Front. Biogeogr. 4:117–27
    [Google Scholar]
  28. 28.
    Creamer RE, Hannula SE, van Leeuwen JP, Stone D, Rutgers M et al. 2016. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl. Soil Ecol. 97:112–24
    [Google Scholar]
  29. 29.
    Dastogeer KMG, Yasuda M, Okazaki S. 2022. Microbiome and pathobiome analyses reveal changes in community structure by foliar pathogen infection in rice. Front. Microbiol. 13:949152
    [Google Scholar]
  30. 30.
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S et al. 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4:210–20
    [Google Scholar]
  31. 31.
    de Menezes AB, Prendergast-Miller MT, Richardson AE, Toscas P, Farrell M et al. 2014. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ. Microbiol. 17:2677–89
    [Google Scholar]
  32. 32.
    Dohlman AB, Shen X. 2019. Mapping the microbial interactome: statistical and experimental approaches for microbiome network inference. Exp. Biol. Med. 244:445–58
    [Google Scholar]
  33. 33.
    Dong G, Fan J, Shekhtman LM, Shai S, Du R et al. 2018. Resilience of networks with community structure behaves as if under an external field. PNAS 114:6911–15
    [Google Scholar]
  34. 34.
    Dormann CF, Fründ J, Schaefer HM. 2017. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48:559–84
    [Google Scholar]
  35. 35.
    Dundore-Arias JP, Eloe-Fadrosh EA, Schriml LM, Beattie GA, Brennan FP et al. 2020. Community-driven metadata standards for agricultural microbiome research. Phytobiomes J. 4:115–21
    [Google Scholar]
  36. 36.
    Erdős P, Rényi A. 1959. On random graphs. Publ. Math. Debr. 6:290–97
    [Google Scholar]
  37. 37.
    Fan K, Delgado-Baquerizo M, Guo X, Wang D, Zhu Y-G, Chu H. 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 15:550–61A novel investigation into the relationship between network structure and plant productivity.
    [Google Scholar]
  38. 38.
    Fan K, Weisenhorn P, Gilbert JA, Chu H. 2018. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem. 125:251–60
    [Google Scholar]
  39. 39.
    Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10:538–50
    [Google Scholar]
  40. 40.
    Finn KR, Silk MJ, Porter MA, Pinter-Wollman N. 2019. The use of multilayer network analysis in animal behaviour. Anim. Behav. 149:7–22
    [Google Scholar]
  41. 41.
    Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM et al. 2018. Assembly and ecological function of the root microbiome across angiosperm plant species. PNAS 115:6E1157–65
    [Google Scholar]
  42. 42.
    Fortunato S. 2010. Community detection in graphs. Phys. Rep. 486:75–174
    [Google Scholar]
  43. 43.
    Friedman J, Alm EJ. 2012. Inferring correlation networks from genomic survey data. PLOS Comput. Biol. 8:e1002687
    [Google Scholar]
  44. 44.
    Gao M, Xiong C, Gao C, Tsui CKM, Wang M-M et al. 2021. Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9:187
    [Google Scholar]
  45. 45.
    Garrett KA, Alcalá-Briseño RI, Andersen KF, Buddenhagen CE, Choudhury RA et al. 2018. Network analysis: a systems framework to address grand challenges in plant pathology. Annu. Rev. Phytopathol. 56:559–80
    [Google Scholar]
  46. 46.
    Gilbert EN. 1959. Random graphs. Ann. Math. Stat. 30:41141–44
    [Google Scholar]
  47. 47.
    Gómez-Aparicio L, Domínguez-Begines J, Villa-Sanabria E, García LV, Muñoz-Pajares AJ. 2022. Tree decline and mortality following pathogen invasion alters the diversity, composition and network structure of the soil microbiome. Soil Biol. Biochem. 166:108560
    [Google Scholar]
  48. 48.
    Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B et al. 2018. Microbiome interactions shape host fitness. PNAS 115:E11951–60
    [Google Scholar]
  49. 49.
    Grosskopf T, Soyer SS. 2014. Synthetic microbial communities. Curr. Opin. Microbiol. 18:72–77
    [Google Scholar]
  50. 50.
    Guimarães PR, Pires MM, Jordano P, Bascompte J, Thompson JN. 2017. Indirect effects drive coevolution in mutualistic networks. Nature 550:511–14
    [Google Scholar]
  51. 51.
    Hanski I. 1999. Metapopulation Ecology New York: Oxford Univ. Press
    [Google Scholar]
  52. 52.
    Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser J-C, Schlaeppi K. 2018. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6:14
    [Google Scholar]
  53. 53.
    Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9:1177–94
    [Google Scholar]
  54. 54.
    Hassani MA, Durán P, Hacquard S. 2018. Microbial interactions within the plant holobiont. Microbiome 6:58
    [Google Scholar]
  55. 55.
    Hirano H, Takemoto K. 2019. Difficulty in inferring microbial community structure based on co-occurrence network approaches. BMC Bioinform. 20:329
    [Google Scholar]
  56. 56.
    Hu Q, Tan L, Gu S, Xiao Y, Zeng W-A et al. 2020. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. NPJ Biofilms Microbiomes 6:8
    [Google Scholar]
  57. 57.
    Kerdraon L, Barret M, Laval V, Suffert F. 2019. Differential dynamics of microbial community networks help identify microorganisms interacting with residue-borne pathogens: the case of Zymoseptoria tritici in wheat. Microbiome 7:125
    [Google Scholar]
  58. 58.
    Kinkel LL, Bakker MB, Schlatter DS. 2011. A coevolutionary framework for the development of disease-suppressive soils. Annu. Rev. Phytopathol. 49:47–67
    [Google Scholar]
  59. 59.
    Kinkel LL, Schlatter DS, Xiao K, Baines AD. 2014. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among streptomycetes. ISME J. 8:249–56
    [Google Scholar]
  60. 60.
    Klasek SA, Brock MT, Calder WJ, Morrison HG, Weinig C, Maignien L. 2022. Spatiotemporal heterogeneity and intragenus variability in rhizobacterial associations with Brassica rapa growth. mSystems 7:3 https://doi.org/10.1128/msystems.00060-22
    [Google Scholar]
  61. 61.
    Kleinberg JM. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46:604–32
    [Google Scholar]
  62. 62.
    Landi P, Minoarivelo HO, Brännström Å, Hui C, Dieckmann U. 2018. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60:319–45
    [Google Scholar]
  63. 63.
    Lawyer G. 2015. Understanding the influence of all nodes in a network. Sci. Rep. 5:8665
    [Google Scholar]
  64. 64.
    Layeghifard M, Hwang DM, Guttman DS. 2017. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 25:217–28An excellent perspective and review of microbiome network analyses.
    [Google Scholar]
  65. 65.
    Layeghifard M, Hwang DM, Guttman DS. 2018. Constructing and analyzing microbiome networks in R. Methods Mol. Biol. 1849:243–66
    [Google Scholar]
  66. 66.
    Libralato S, Christensen V, Pauly D 2006. A method for identifying keystone species in food web models. Ecol. Model. 195:153–71
    [Google Scholar]
  67. 67.
    Lichtblau Y, Zimmermann K, Haldemann B, Lenze D, Hummel M et al. 2017. Comparative assessment of differential network analysis methods. Brief. Bioinform. 18:5837–50
    [Google Scholar]
  68. 68.
    Lin Y, Ye G, Kuzyakov Y, Liu D, Fan J, Ding W 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134:187–96
    [Google Scholar]
  69. 69.
    Ling N, Zhu C, Xue C, Chen H, Duan Y et al. 2016. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 99:137–49
    [Google Scholar]
  70. 70.
    Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME. 2019. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 19:201
    [Google Scholar]
  71. 71.
    Liu Z, Ma A, Mathé E, Merling M, Ma Q, Liu B. 2021. Network analyses in microbiome based on high-throughput multi-omics data. Brief. Bioinform. 22:1639–55
    [Google Scholar]
  72. 72.
    Ma B, Wang H, Dsouza M, Lou J, He Y et al. 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 10:1891–901
    [Google Scholar]
  73. 73.
    Ma B, Wang Y, Ye S, Liu S, Stirling E et al. 2020. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8:8
    [Google Scholar]
  74. 74.
    Ma Z, Ye D. 2017. Trios—promising in silico biomarkers for differentiating the effect of disease on the human microbiome network. Sci. Rep. 7:13259
    [Google Scholar]
  75. 75.
    Mamet SD, Redlick E, Brabant M, Lamb EG, Helgason BL et al. 2019. Structural equation modeling of a winnowed soil microbiome identifies how invasive plants re-structure microbial networks. ISME J. 13:1988–96
    [Google Scholar]
  76. 76.
    Matchado MS, Lauber M, Reitmeier S, Kacprowski T, Baumbach J et al. 2021. Network analysis methods for studying microbial communities: a mini review. Comp. Struct. Biotechnol. J. 19:2687–98
    [Google Scholar]
  77. 77.
    Michalska-Smith M, Song Z, Spawn-Lee SA, Hansen ZA, Johnson M et al. 2022. Network structure of resource use and niche overlap within the endophytic microbiome. ISME J. 16:435–46Provides a deep dive into network analyses of microbial interaction networks constructed using resource competition metrics.
    [Google Scholar]
  78. 78.
    Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. 2002. Network motifs: simple building blocks of complex networks. Science 298:824–27
    [Google Scholar]
  79. 79.
    Morueta-Holme N, Blonder B, Sandel B, McGill BJ, Peet RK et al. 2016. A network approach for inferring species associations from co-occurrence data. Ecography 39:1139–50
    [Google Scholar]
  80. 80.
    Naylor D, Fansler S, Brislawn C, Nelson WC, Hofmockel KS et al. 2020. Deconstructing the soil microbiome into reduced-complexity functional modules. mBio 11:e01349–20
    [Google Scholar]
  81. 81.
    Newman MEJ. 2006. Modularity and community structure in networks. PNAS 103:8577–82
    [Google Scholar]
  82. 82.
    Paine RT. 1966. Food web complexity and species diversity. Am. Nat. 100:65–75
    [Google Scholar]
  83. 83.
    Paine RT. 1969. A note on trophic complexity and community stability. Am. Nat. 103:91–93
    [Google Scholar]
  84. 84.
    Pons P, Latapy M. 2005. Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10:191–218
    [Google Scholar]
  85. 85.
    Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, McSpadden Gardener BB et al. 2016. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106:1083–96
    [Google Scholar]
  86. 86.
    Power ME, Tilman D, Estes JA, Menge BA, Bond WJ et al. 1996. Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. BioScience 46:609–20
    [Google Scholar]
  87. 87.
    Qiu Z, Verma JP, Liu H, Wang J, Batista BD et al. 2022. Response of the plant core microbiome to Fusarium oxysporum infection and identification of the pathobiome. Environ. Microbiol. 24:4652–69
    [Google Scholar]
  88. 88.
    Ramirez KS, Geisen S, Morriën E, Snoek BL, van der Putten WH. 2018. Network analyses can advance above-belowground ecology. Trends Plant Sci 23:759–68
    [Google Scholar]
  89. 89.
    Röttjers L, Faust K. 2018. From hairballs to hypotheses: biological insights from microbial networks. FEMS Microbiol. Rev. 42:761–80An especially insightful review of microbial networks.
    [Google Scholar]
  90. 90.
    Röttjers L, Vandeputte D, Raes J, Faust K. 2021. Null-model-based network comparison reveals core associations. ISME Commun. 1:36
    [Google Scholar]
  91. 91.
    Rybakova D, Mancinelli R, Wikström M, Birch-Jensen A-S, Postma J et al. 2017. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome 5:104
    [Google Scholar]
  92. 92.
    San Leon D, Nogales J. 2022. Toward merging bottom-up and top-down model-based designing of synthetic microbial communities. Curr. Opin. Microbiol. 69:102169
    [Google Scholar]
  93. 93.
    Sanchez-Cañizares C, Jorrín B, Poole PS, Tkacz A. 2017. Understanding the holobiont: the interdependence of plants and their microbiome. Curr. Opin. Microbiol. 38:188–96
    [Google Scholar]
  94. 94.
    Sanchez-Gorostiaga A, Bajić D, Osborne ML, Poyatos JF, Sanchez A. 2019. High-order interactions distort the functional landscape of microbial consortia. PLOS Biol. 17:e3000550
    [Google Scholar]
  95. 95.
    Saqr M, Alamro A. 2019. The role of social network analysis as a learning analytics tool in online problem-based learning. BMC Med. Educ. 19:160
    [Google Scholar]
  96. 96.
    Schlatter DC, Bakker MG, Bradeen JM, Kinkel LL. 2015. Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 96:134–42
    [Google Scholar]
  97. 97.
    Schlatter DC, Song Z, Vaz-Jauri P, Kinkel LL. 2019. Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. PLOS ONE 14:e0223779
    [Google Scholar]
  98. 98.
    Shayanthan A, Ordonez PAC, Oresnik IJ. 2022. The role of synthetic microbial communities (SynCom) in sustainable agriculture. Front. Agron. 4:896307
    [Google Scholar]
  99. 99.
    Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK. 2016. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19:926–36Superb work exploring the changes in network complexity associated with host plant development.
    [Google Scholar]
  100. 100.
    Shi Y, Delgado-Baquerizo M, Li Y, Yang Y, Zhu YG et al. 2020. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environ. Int. 142:105869
    [Google Scholar]
  101. 101.
    Siles JA, García-Sánchez M, Gómez-Brandón M. 2021. Studying microbial communities through co-occurrence network analyses during processes of waste treatment and in organically amended soils: a review. Microorganisms 9:1165
    [Google Scholar]
  102. 102.
    Singer E, Bonnette J, Kenaley SC, Woyke T, Juenger TE. 2019. Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Environ. Microbiol. Rep. 11:185–95
    [Google Scholar]
  103. 103.
    Su X, Jing G, Zhang Y, Wu S. 2020. Method development for cross-study microbiome data mining: challenges and opportunities. Comput. Struct. Biotechnol. J. 18:2075–80
    [Google Scholar]
  104. 104.
    Tedersoo L, Anslan S, Bahram M, Drenkhan R, Pritsch K et al. 2020. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 11:1953
    [Google Scholar]
  105. 105.
    Thrall PH, Burdon JJ. 2003. Evolution of virulence in a plant host-pathogen metapopulation. Science 299:1735–37
    [Google Scholar]
  106. 106.
    Thurman LL, Barner AK, Garcia TS, Chestnut T. 2019. Testing the link between species interactions and species co-occurrence in a trophic network. Ecography 42:1658–70
    [Google Scholar]
  107. 107.
    Toju H, Abe MS, Ishii C, Hori Y, Fujita H, Fukuda S. 2020. Scoring species for synthetic community design: network analyses of functional core microbiomes. Front. Microbiol. 11:1361
    [Google Scholar]
  108. 108.
    Toju H, Tanabe AS, Sato H. 2018. Network hubs in root-associated fungal metacommunities. Microbiome 6:116
    [Google Scholar]
  109. 109.
    Toju H, Yamamichi M, Guimarães PR, Olesen JM, Mougi A et al. 2017. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat. Ecol. Evol. 1:0024
    [Google Scholar]
  110. 110.
    Toju H, Yamamoto S, Tanabe AS, Hayakawa T, Ishii HS. 2016. Network modules and hubs in plant-root fungal biomes. J. R. Soc. Interface 13:20151097A thoughtful evaluation of fungal networks and the contribution of module organization to community stability.
    [Google Scholar]
  111. 111.
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18:607–21
    [Google Scholar]
  112. 112.
    Tyc O, van den Berg M, Gerards S, van Veen JA, Raaijmakers JM et al. 2014. Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front. Microbiol. 5:567
    [Google Scholar]
  113. 113.
    van der Heijden MGA, Hartmann M. 2016. Networking in the plant microbiome. PLOS Biol. 14:e1002378
    [Google Scholar]
  114. 114.
    van Dongen S, Abreu-Goodger C. 2012. Using MCL to extract clusters from networks. Methods Mol. Biol. 804:281–95
    [Google Scholar]
  115. 115.
    Vangay P, Burgin J, Johnston A, Beck KL, Berrios DC et al. 2021. Microbiome metadata standards: report of the National Microbiome Data Collaborative's workshop and follow-on activities. mSystems 6:e01194–20
    [Google Scholar]
  116. 116.
    Vayssier-Taussat M, Albina E, Citti C, Cosson J-F, Jacques M-A et al. 2014. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. 4:29
    [Google Scholar]
  117. 117.
    Vaz-Jauri P, Altier N, Pérez CA, Kinkel LL. 2018. Cropping history effects on pathogen suppressive and signaling dynamics in Streptomyces communities. Phytobiomes J. 2:14–23
    [Google Scholar]
  118. 118.
    Vaz-Jauri P, Bakker MG, Salomon CE, Kinkel LL. 2013. Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil Streptomyces. PLOS ONE 8:e81064
    [Google Scholar]
  119. 119.
    Venturelli OS, Carr AV, Fisher G, Hsu RH, Lau R et al. 2018. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14:e8157
    [Google Scholar]
  120. 120.
    Viana MP, Fourcassié V, Perna A, da F Costa L, Jost C. 2013. Accessibility in networks: a useful measure for understanding social insect nest architecture. Chaos Solitons Fractals 46:38–45
    [Google Scholar]
  121. 121.
    Vorholt JA, Vogel C, Carlström CI, Müller DB. 2017. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:142–55
    [Google Scholar]
  122. 122.
    Wei Z, Gu Y, Friman V-P, Kowalchuk GA, Xu Y et al. 2019. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5:9eaaw0759
    [Google Scholar]
  123. 123.
    Wei Z, Yang T, Friman V-P, Xu Y, Shen Q, Jousset A. 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6:8413
    [Google Scholar]
  124. 124.
    Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K et al. 2017. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27
    [Google Scholar]
  125. 125.
    Wen T, Zhao M, Liu T, Huang Q, Yuan J, Shen Q. 2020. High abundance of Ralstonia solanacearum changed tomato rhizosphere microbiome and metabolome. BMC Plant Biol. 20:166
    [Google Scholar]
  126. 126.
    Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3:160018 Erratum 2019. Sci. Data 6:16
    [Google Scholar]
  127. 127.
    Williams RJ, Howe A, Hofmockel KS. 2014. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5:358
    [Google Scholar]
  128. 128.
    Xiong C, Zhu Y-G, Wang J-T, Singh B, Han L-L et al. 2020. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 229:1091–104
    [Google Scholar]
  129. 129.
    Xiong W, Jousset A, Guo S, Karlsson I, Zhao Q et al. 2018. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 12:634–38
    [Google Scholar]
  130. 130.
    Xu Q, Vandenkoornhuyse P, Li L, Guo J, Zhu C et al. 2022. Microbial generalists and specialists differently contribute to the community diversity in farmland soils. J. Adv. Res. 40:17–27
    [Google Scholar]
  131. 131.
    Young VB, Britton RA, Schmidt TM. 2008. The human microbiome and infectious diseases: beyond Koch. Interdiscip. Perspect. Infect. Dis. 2008:296873
    [Google Scholar]
  132. 132.
    Zeng Q, Man X, Dai Y, Liu H. 2022. Pseudomonas spp. enriched in endophytic community of healthy cotton plants inhibit cotton Verticillium wilt. Front. Microbiol. 13:906732
    [Google Scholar]
  133. 133.
    Zhang B, Zhang J, Liu Y, Shi P, Wei G. 2018. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 118:178–86
    [Google Scholar]
  134. 134.
    Zheng Y, Han X, Zhao D, Wei K, Yuan Y et al. 2021. Exploring biocontrol agents from microbial keystone taxa associated to suppressive soil: a new attempt for a biocontrol strategy. Front. Plant. Sci. 12:655673
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021021-041457
Loading
/content/journals/10.1146/annurev-phyto-021021-041457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error