1932

Abstract

Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021621-114026
2023-09-05
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021621-114026.html?itemId=/content/journals/10.1146/annurev-phyto-021621-114026&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abramovitch RB, Anderson JC, Martin GB. 2006. Bacterial elicitation and evasion of plant innate immunity. Nat. Rev. Mol. Cell Biol. 7:8601–11
    [Google Scholar]
  2. 2.
    Aldon D, Brito B, Boucher C, Genin S. 2000. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J. 19:102304–14
    [Google Scholar]
  3. 3.
    Anderson JC, Bartels S, Besteiro MAG, Shahollari B, Ulm R, Peck SC. 2011. Arabidopsis MAP kinase phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. Plant J. 67:2258–68
    [Google Scholar]
  4. 4.
    Anderson JC, Wan Y, Kim Y-M, Pasa-Tolic L, Metz TO, Peck SC. 2014. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. PNAS 111:186846–51
    [Google Scholar]
  5. 5.
    Ankenbauer RG, Nester EW. 1990. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: structural specificity and activities of monosaccharides. J. Bacteriol. 172:116442–46
    [Google Scholar]
  6. 6.
    Aragón IM, Pérez-Martínez I, Moreno-Pérez A, Cerezo M, Ramos C. 2014. New insights into the role of indole-3-acetic acid in the virulence of Pseudomonassavastanoi pv. savastanoi. FEMS Microbiol. Lett. 356:2184–92
    [Google Scholar]
  7. 7.
    Arlat M, Gough CL, Zischek C, Barberis PA, Trigalet A, Boucher CA. 1992. Transcriptional organization and expression of the large hrp gene cluster of Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 5:2187–93
    [Google Scholar]
  8. 8.
    Artiga M, Birch J, Martínez M. 2020. The meaning of biological signals. Stud. Hist. Philos. Sci. Part C 84:101348
    [Google Scholar]
  9. 9.
    Baltenneck J, Reverchon S, Hommais F. 2021. Quorum sensing regulation in phytopathogenic bacteria. Microorganisms 9:2239
    [Google Scholar]
  10. 10.
    Beattie GA, Lindow SE. 1995. The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phytopathol. 33:145–72
    [Google Scholar]
  11. 11.
    Bednarek P, Osbourn A. 2009. Plant-microbe interactions: chemical diversity in plant defense. Science 324:5928746–48
    [Google Scholar]
  12. 12.
    Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. 2021. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles. Plant Physiol. 186:2836–52
    [Google Scholar]
  13. 13.
    Brencic A, Winans SC. 2005. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Mol. Biol. Rev. 69:1155–94
    [Google Scholar]
  14. 14.
    Brito B, Aldon D, Barberis P, Boucher C, Genin S. 2002. A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Mol. Plant-Microbe Interact. 15:2109–19
    [Google Scholar]
  15. 15.
    Büttner D. 2012. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol. Rev. 76:2262–310
    [Google Scholar]
  16. 16.
    Büttner D, He SY. 2009. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 150:41656–64
    [Google Scholar]
  17. 17.
    Cangelosi GA, Ankenbauer RG, Nester EW. 1990. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. PNAS 87:176708–12
    [Google Scholar]
  18. 18.
    Casadevall A, Pirofski L. 2001. Host-pathogen interactions: the attributes of virulence. J. Infect. Dis. 184:3337–44
    [Google Scholar]
  19. 19.
    Cerna-Vargas JP, Santamaría-Hernando S, Matilla MA, Rodríguez-Herva JJ, Daddaoua A et al. 2019. Chemoperception of specific amino acids controls phytopathogenicity in Pseudomonas syringae pv. tomato. mBio 10:5e01868–19
    [Google Scholar]
  20. 20.
    Chang CH, Winans SC. 1992. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J. Bacteriol. 174:217033–39
    [Google Scholar]
  21. 21.
    Chang JH, Desveaux D, Creason AL. 2014. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. Annu. Rev. Phytopathol. 52:317–45
    [Google Scholar]
  22. 22.
    Charkowski A, Blanco C, Condemine G, Expert D, Franza T et al. 2012. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annu. Rev. Phytopathol. 50:425–49
    [Google Scholar]
  23. 23.
    Chen Z, Agnew JL, Cohen JD, He P, Shan L et al. 2007. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. PNAS 104:5020131–36
    [Google Scholar]
  24. 24.
    Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ et al. 2006. GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. PNAS 103:197460–64
    [Google Scholar]
  25. 25.
    Crabill E, Joe A, Block A, van Rooyen JM, Alfano JR. 2010. Plant immunity directly or indirectly restricts the injection of type III effectors by the Pseudomonas syringae type III secretion system. Plant Physiol. 154:1233–44
    [Google Scholar]
  26. 26.
    Dandanell G, Norris K, Hammer K. 1991. Long-distance deoR regulation of gene expression in Escherichia coli. Ann. N. Y. Acad. Sci. 646:19–30
    [Google Scholar]
  27. 27.
    Danson AE, Jovanovic M, Buck M, Zhang X. 2019. Mechanisms of σ54-dependent transcription initiation and regulation. J. Mol. Biol. 431:203960–67
    [Google Scholar]
  28. 28.
    DeFalco TA, Zipfel C. 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81:173449–67
    [Google Scholar]
  29. 29.
    Deng X, Liang H, Chen K, He C, Lan L, Tang X. 2014. Molecular mechanisms of two-component system RhpRS regulating type III secretion system in Pseudomonas syringae. Nucleic Acids Res. 42:1811472–86
    [Google Scholar]
  30. 30.
    Deng X, Xiao Y, Lan L, Zhou J-M, Tang X. 2009. Pseudomonas syringae pv. phaseolicola mutants compromised for type III secretion system gene induction. Mol. Plant-Microbe Interact. 22:8964–76
    [Google Scholar]
  31. 31.
    Djami-Tchatchou AT, Harrison GA, Harper CP, Wang R, Prigge MJ et al. 2020. Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas syringae Pto DC3000 pathogenesis. Mol. Plant-Microbe Interact. 33:81059–71
    [Google Scholar]
  32. 32.
    Djami-Tchatchou AT, Li ZA, Stodghill P, Filiatrault MJ, Kunkel BN. 2022. Identification of indole-3-acetic acid-regulated genes in Pseudomonas syringae pv. tomato strain DC3000. J. Bacteriol. 204:1e00380–21
    [Google Scholar]
  33. 33.
    Fan J, Crooks C, Creissen G, Hill L, Fairhurst S et al. 2011. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331:60211185–88
    [Google Scholar]
  34. 34.
    Ferreira AO, Myers CR, Gordon JS, Martin GB, Vencato M et al. 2006. Whole-genome expression profiling defines the HrpL regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo reconstruction of the hrp cis element, and identifies novel coregulated genes. Mol. Plant-Microbe Interact. 19:111167–79
    [Google Scholar]
  35. 35.
    Fishman MR, Zhang J, Bronstein PA, Stodghill P, Filiatrault MJ. 2018. Ca2+-induced two-component system CvsSR regulates the type III secretion system and the extracytoplasmic function sigma factor AlgU in Pseudomonas syringae pv. tomato DC3000. J. Bacteriol. 200:5e00538–17
    [Google Scholar]
  36. 36.
    Flego D, Pirhonen M, Saarilahti H, Palva TK, Palva ET. 1997. Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. Mol. Microbiol. 25:5831–38
    [Google Scholar]
  37. 37.
    Fouts DE, Abramovitch RB, Alfano JR, Baldo AM, Buell CR et al. 2002. Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. PNAS 99:42275–80
    [Google Scholar]
  38. 38.
    Gentzel I, Giese L, Ekanayake G, Mikhail K, Zhao W et al. 2022. Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic proliferation of a bacterial pathogen of maize. Cell Host Microbe 30:4502–17.e4
    [Google Scholar]
  39. 39.
    Gómez-Gómez L, Boller T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:61003–11
    [Google Scholar]
  40. 40.
    Grimm C, Panopoulos NJ. 1989. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several procaryotic regulatory proteins. J. Bacteriol. 171:95031–38
    [Google Scholar]
  41. 41.
    Halkier BA, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303–33
    [Google Scholar]
  42. 42.
    Haque MM, Tsuyumu S. 2005. Virulence, resistance to magainin II, and expression of pectate lyase are controlled by the PhoP-PhoQ two-component regulatory system responding to pH and magnesium in Erwinia chrysanthemi 3937. J. Gen. Plant Pathol. 71:147–53
    [Google Scholar]
  43. 43.
    He F, Nair GR, Soto CS, Chang Y, Hsu L et al. 2009. Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J. Bacteriol. 191:185802–13
    [Google Scholar]
  44. 44.
    Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K et al. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. PNAS 104:2912217–22
    [Google Scholar]
  45. 45.
    Helmann TC, Deutschbauer AM, Lindow SE. 2019. Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast. PNAS 116:3818900–10
    [Google Scholar]
  46. 46.
    Hendrickson EL, Guevera P, Ausubel FM. 2000. The alternative sigma factor RpoN is required for hrp activity in Pseudomonas syringae pv. maculicola and acts at the level of hrpL transcription. J. Bacteriol. 182:123508–16
    [Google Scholar]
  47. 47.
    Hirano SS, Upper CD. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64:3624–53
    [Google Scholar]
  48. 48.
    Hu X, Zhao J, DeGrado WF, Binns AN. 2013. Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. PNAS 110:2678–83
    [Google Scholar]
  49. 49.
    Hu Y, Ding Y, Cai B, Qin X, Wu J et al. 2022. Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host Microbe 30:4518–29.e6
    [Google Scholar]
  50. 50.
    Huot B, Yao J, Montgomery BL, He SY. 2014. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7:81267–87
    [Google Scholar]
  51. 51.
    Hutcheson SW, Bretz J, Sussan T, Jin S, Pak K 2001. Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. J. Bacteriol. 183:195589–98
    [Google Scholar]
  52. 52.
    Huynh TV, Dahlbeck D, Staskawicz BJ. 1989. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245:49241374–77
    [Google Scholar]
  53. 53.
    Ilyas B, Tsai CN, Coombes BK. 2017. Evolution of salmonella-host cell interactions through a dynamic bacterial genome. Front. Cell. Infect. Microbiol. 7:428
    [Google Scholar]
  54. 54.
    Jones AM, Wildermuth MC. 2011. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. J. Bacteriol. 193:112767–75
    [Google Scholar]
  55. 55.
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:7117323–29
    [Google Scholar]
  56. 56.
    Jovanovic M, James EH, Burrows PC, Rego FGM, Buck M, Schumacher J. 2011. Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat. Commun. 2:1177
    [Google Scholar]
  57. 57.
    Kang JE, Jeon BJ, Park MY, Yang HJ, Kwon J et al. 2020. Inhibition of the type III secretion system of Pseudomonas syringae pv. tomato DC3000 by resveratrol oligomers identified in Vitis vinifera L. Pest Manag. Sci. 76:72294–303
    [Google Scholar]
  58. 58.
    Kepseu WD, Sepulchre J-A, Reverchon S, Nasser W. 2010. Toward a quantitative modeling of the synthesis of the pectate lyases, essential virulence factors in Dickeya dadantii. J. Biol. Chem. 285:3728565–76
    [Google Scholar]
  59. 59.
    Klement Z, Bozsó Z, Kecskés ML, Besenyei E, Arnold C, Ott PG. 2003. Local early induced resistance of plants as the first line of defence against bacteria: local early induced resistance of plants. Pest Manag. Sci. 59:4465–74
    [Google Scholar]
  60. 60.
    Koebnik R, Krüger A, Thieme F, Urban A, Bonas U. 2006. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188:217652–60
    [Google Scholar]
  61. 61.
    Kraepiel Y, Barny M-A. 2016. Gram-negative phytopathogenic bacteria, all hemibiotrophs after all?. Mol. Plant Pathol. 17:3313–16
    [Google Scholar]
  62. 62.
    Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni M-E, Ramos JL. 2010. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu. Rev. Microbiol. 64:539–59
    [Google Scholar]
  63. 63.
    Kumar V, Sharma A, Kaur R, Thukral AK, Bhardwaj R, Ahmad P. 2017. Differential distribution of amino acids in plants. Amino Acids 49:5821–69
    [Google Scholar]
  64. 64.
    Lan L, Deng X, Zhou J, Tang X. 2006. Genome-wide gene expression analysis of Pseudomonas syringae pv. tomato DC3000 reveals overlapping and distinct pathways regulated by hrpL and hrpRS. Mol. Plant-Microbe Interact. 19:9976–87
    [Google Scholar]
  65. 65.
    Leonard S, Hommais F, Nasser W, Reverchon S. 2017. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli—molecular dialog between phytopathogens and plants. Environ. Microbiol. 19:51689–716
    [Google Scholar]
  66. 66.
    Leveau JHJ, Lindow SE. 2001. Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. PNAS 98:63446–53
    [Google Scholar]
  67. 67.
    Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ. 2002. A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. PNAS 99:1912369–74
    [Google Scholar]
  68. 68.
    Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:41875–83
    [Google Scholar]
  69. 69.
    Lovelace AH, Smith A, Kvitko BH. 2018. Pattern-triggered immunity alters the transcriptional regulation of virulence-associated genes and induces the sulfur starvation response in Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 31:7750–65
    [Google Scholar]
  70. 70.
    Mantis NJ, Winans SC. 1992. The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. J. Bacteriol. 174:41189–96
    [Google Scholar]
  71. 71.
    McClerklin SA, Lee SG, Harper CP, Nwumeh R, Jez JM, Kunkel BN. 2018. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLOS Pathog. 14:1e1006811
    [Google Scholar]
  72. 72.
    McCraw SL, Park DH, Jones R, Bentley MA, Rico A et al. 2016. GABA (γ-aminobutyric acid) uptake via the GABA permease GabP represses virulence gene expression in Pseudomonassyringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 29:12938–49
    [Google Scholar]
  73. 73.
    McCullen CA, Binns AN. 2006. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu. Rev. Cell Dev. Biol. 22:101–27
    [Google Scholar]
  74. 74.
    McIntyre KE, Bush DR, Argueso CT. 2021. Cytokinin regulation of source-sink relationships in plant-pathogen interactions. Front. Plant Sci. 12:677585
    [Google Scholar]
  75. 75.
    Mole BM, Baltrus DA, Dangl JL, Grant SR. 2007. Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol. 15:8363–71
    [Google Scholar]
  76. 76.
    Mukaihara T, Tamura N, Murata Y, Iwabuchi M. 2004. Genetic screening of Hrp type III-related pathogenicity genes controlled by the HrpB transcriptional activator in Ralstonia solanacearum. Mol. Microbiol. 54:4863–75
    [Google Scholar]
  77. 77.
    Nasser W, Reverchon S, Robert-Baudouy J. 1992. Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi. Mol. Microbiol. 6:2257–65
    [Google Scholar]
  78. 78.
    Nester EW. 2015. Agrobacterium: nature's genetic engineer. Front. Plant Sci. 5:730
    [Google Scholar]
  79. 79.
    Newman M-A, Von Roepenack E, Daniels M, Dow M. 2000. Lipopolysaccharides and plant responses to phytopathogenic bacteria. Mol. Plant Pathol. 1:125–31
    [Google Scholar]
  80. 80.
    Ngou BPM, Ahn H-K, Ding P, Jones JDG. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592:7852110–15
    [Google Scholar]
  81. 81.
    Nobori T, Velásquez AC, Wu J, Kvitko BH, Kremer JM et al. 2018. Transcriptome landscape of a bacterial pathogen under plant immunity. PNAS 115:13E3055–64
    [Google Scholar]
  82. 82.
    Oh H-S, Collmer A. 2005. Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant J. 44:2348–59
    [Google Scholar]
  83. 83.
    Oh H-S, Park DH, Collmer A. 2010. Components of the Pseudomonas syringae type III secretion system can suppress and may elicit plant innate immunity. Mol. Plant-Microbe Interact. 23:6727–39
    [Google Scholar]
  84. 84.
    O'Malley MR, Anderson JC. 2021. Regulation of the Pseudomonas syringae type III secretion system by host environment signals. Microorganisms 9:61227
    [Google Scholar]
  85. 85.
    Park DH, Mirabella R, Bronstein PA, Preston GM, Haring MA et al. 2010. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. Plant J. 64:2318–30
    [Google Scholar]
  86. 86.
    Peeters N, Guidot A, Vailleau F, Valls M. 2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14:7651–62
    [Google Scholar]
  87. 87.
    Piqué N, Miñana-Galbis D, Merino S, Tomás J. 2015. Virulence factors of Erwinia amylovora: a review. Int. J. Mol. Sci. 16:1212836–54
    [Google Scholar]
  88. 88.
    Platt TG, Bever JD, Fuqua C. 2012. A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proc. R. Soc. B 279:17341691–99
    [Google Scholar]
  89. 89.
    Plener L, Manfredi P, Valls M, Genin S. 2010. PrhG, a transcriptional regulator responding to growth conditions, is involved in the control of the type III secretion system regulon in Ralstonia solanacearum. J. Bacteriol. 192:41011–19
    [Google Scholar]
  90. 90.
    Puigvert M, Solé M, López-Garcia B, Coll NS, Beattie KD et al. 2019. Type III secretion inhibitors for the management of bacterial plant diseases. Mol. Plant Pathol. 20:120–32
    [Google Scholar]
  91. 91.
    Rasko DA, Sperandio V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9:2117–28
    [Google Scholar]
  92. 92.
    Reverchon S, Expert D, Robert-Baudouy J, Nasser W. 1997. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi. J. Bacteriol. 179:113500–8
    [Google Scholar]
  93. 93.
    Reverchon S, Nasser W. 2013. Dickeya ecology, environment sensing and regulation of virulence programme. Environ. Microbiol. Rep. 5:622–36
    [Google Scholar]
  94. 94.
    Rico A, Preston GM. 2008. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol. Plant-Microbe Interact. 21:2269–82
    [Google Scholar]
  95. 95.
    Rivera-Zuluaga K, Hiles R, Barua P, Caldwell D, Iyer-Pascuzzi AS. 2023. Getting to the root of Ralstonia invasion. Semin. Cell Dev. Biol. 148–149:3–12
    [Google Scholar]
  96. 96.
    Roussin-Léveillée C, Lajeunesse G, St-Amand M, Veerapen VP, Silva-Martins G et al. 2022. Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast. Cell Host Microbe 30:4489–501.e4
    [Google Scholar]
  97. 97.
    Saijo Y, Loo EP, Yasuda S. 2018. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 93:4592–613
    [Google Scholar]
  98. 98.
    Scheepers GH, Lycklama A, Nijeholt JA, Poolman B. 2016. An updated structural classification of substrate-binding proteins. FEBS Lett. 590:234393–401
    [Google Scholar]
  99. 99.
    Shelp BJ, Aghdam MS, Flaherty EJ. 2021. γ-Aminobutyrate (GABA) regulated plant defense: mechanisms and opportunities. Plants 10:91939
    [Google Scholar]
  100. 100.
    Shen H, Keen NT. 1993. Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J. Bacteriol. 175:185916–24
    [Google Scholar]
  101. 101.
    Singh B, Röhm K-H. 2008. Characterization of a Pseudomonas putida ABC transporter (AatJMQP) required for acidic amino acid uptake: biochemical properties and regulation by the Aau two-component system. Microbiology 154:3797–809
    [Google Scholar]
  102. 102.
    Sonawane AM, Singh B, Röhm K-H. 2006. The AauR-AauS two-component system regulates uptake and metabolism of acidic amino acids in Pseudomonas putida. Appl. Environ. Microbiol. 72:106569–77
    [Google Scholar]
  103. 103.
    Stachel SE, Messens E, Van Montagu M, Zambryski P. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:6047624–29
    [Google Scholar]
  104. 104.
    Sturm A, Heinemann M, Arnoldini M, Benecke A, Ackermann M et al. 2011. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLOS Pathog. 7:7e1002143
    [Google Scholar]
  105. 105.
    Sun Y, Li L, Macho AP, Han Z, Hu Z et al. 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:6158624–28
    [Google Scholar]
  106. 106.
    Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F et al. 2020. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat. Rev. Microbiol. 18:8415–27
    [Google Scholar]
  107. 107.
    Turk SCHJ, van Lange RP, Regensburg-Tuïnk TJG, Hooykaas PJJ. 1994. Localization of the VirA domain involved in acetosyringone-mediated vir gene induction in Agrobacterium tumefaciens. Plant Mol. Biol. 25:5899–907
    [Google Scholar]
  108. 108.
    Turner SE, Pang Y-Y, O'Malley MR, Weisberg AJ, Fraser VN et al. 2020. A DeoR-type transcription regulator is required for sugar-induced expression of type III secretion-encoding genes in Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 33:3509–18
    [Google Scholar]
  109. 109.
    Vargas P, Farias GA, Nogales J, Prada H, Carvajal V et al. 2013. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system: flavonoids affect Pto DC3000 virulence. Environ. Microbiol. Rep. 5:6841–50
    [Google Scholar]
  110. 110.
    Venturi V, Keel C. 2016. Signaling in the rhizosphere. Trends Plant Sci. 21:3187–98
    [Google Scholar]
  111. 111.
    von Bodman SB, Bauer WD, Coplin DL. 2003. Quorum sensing in plant pathogenic bacteria. Annu. Rev. Phytopathol. 41:455–82
    [Google Scholar]
  112. 112.
    Wang F-F, Cheng S-T, Wu Y, Ren B-Z, Qian W. 2017. A bacterial receptor PcrK senses the plant hormone cytokinin to promote adaptation to oxidative stress. Cell Rep. 21:102940–51
    [Google Scholar]
  113. 113.
    Wang F-F, Qian W. 2019. The roles of histidine kinases in sensing host plant and cell-cell communication signal in a phytopathogenic bacterium. Philos. Trans. R. Soc. B 374:176720180311
    [Google Scholar]
  114. 114.
    Wang L, Pan Y, Yuan Z-H, Zhang H, Peng B-Y et al. 2016. Two-component signaling system VgrRS directly senses extracytoplasmic and intracellular iron to control bacterial adaptation under iron depleted stress. PLOS Pathog. 12:12e1006133
    [Google Scholar]
  115. 115.
    Wang Q, Shakoor N, Boyher A, Veley KM, Berry JC et al. 2021. Escalation in the host-pathogen arms race: a host resistance response corresponds to a heightened bacterial virulence response. PLOS Pathog. 17:1e1009175
    [Google Scholar]
  116. 116.
    Wang W, Yang J, Zhang J, Liu Y-X, Tian C et al. 2020. An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. Cell Host Microbe 27:4601–13.e7
    [Google Scholar]
  117. 117.
    Winans SC. 1990. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J. Bacteriol. 172:52433–38
    [Google Scholar]
  118. 118.
    Xian L, Yu G, Wei Y, Rufian JS, Li Y et al. 2020. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition. Cell Host Microbe 28:4548–57.e7
    [Google Scholar]
  119. 119.
    Xiao F, Goodwin SM, Xiao Y, Sun Z, Baker D et al. 2004. Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J. 23:142903–13
    [Google Scholar]
  120. 120.
    Xiao Y, Hutcheson SW. 1994. A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol. 176:103089–91
    [Google Scholar]
  121. 121.
    Xiao Y, Lu Y, Heu S, Hutcheson SW. 1992. Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J. Bacteriol. 174:61734–41
    [Google Scholar]
  122. 122.
    Xie Y, Ding Y, Shao X, Yao C, Li J et al. 2021. Pseudomonas syringae senses polyphenols via phosphorelay crosstalk to inhibit virulence. EMBO Rep. 22:12e52805
    [Google Scholar]
  123. 123.
    Xie Y, Shao X, Deng X. 2019. Regulation of type III secretion system in Pseudomonas syringae. Environ. Microbiol. 21:124465–77
    [Google Scholar]
  124. 124.
    Xin X-F, Kvitko B, He SY. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16:5316–28
    [Google Scholar]
  125. 125.
    Xin X-F, Nomura K, Aung K, Velásquez AC, Yao J et al. 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539:7630524–29
    [Google Scholar]
  126. 126.
    Yamada K, Saijo Y, Nakagami H, Takano Y. 2016. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354:63181427–30
    [Google Scholar]
  127. 127.
    Yan Q, Rogan CJ, Pang Y-Y, Davis EW, Anderson JC. 2020. Ancient co-option of an amino acid ABC transporter locus in Pseudomonas syringae for host signal-dependent virulence gene regulation. PLOS Pathog. 16:7e1008680
    [Google Scholar]
  128. 128.
    Yuan M, Jiang Z, Bi G, Nomura K, Liu M et al. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105–9
    [Google Scholar]
  129. 129.
    Zhang X, Khadka P, Puchalski P, Leehan JD, Rossi FR et al. 2022. MAMP-elicited changes in amino acid transport activity contribute to restricting bacterial growth. Plant Physiol. 189:42315–31
    [Google Scholar]
  130. 130.
    Zhao B, Dahlbeck D, Krasileva KV, Fong RW, Staskawicz BJ. 2011. Computational and biochemical analysis of the Xanthomonas effector AvrBs2 and its role in the modulation of Xanthomonas type three effector delivery. PLOS Pathog. 7:12e1002408
    [Google Scholar]
  131. 131.
    Zhao J, Binns AN 2011. Characterization of the mmsAB-araD1 (gguABC) genes of Agrobacterium tumefaciens. J. Bacteriol 193:236586–96
    [Google Scholar]
  132. 132.
    Zupan J, Muth TR, Draper O, Zambryski P. 2000. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23:111–28
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021621-114026
Loading
/content/journals/10.1146/annurev-phyto-021621-114026
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error