1932

Abstract

Since the 1950s, there have been major changes in the scope, value, and organization of the ornamental plant industry. With fewer individual producers and a strong trend toward consolidation and globalization, increasing quantities of diverse plant genera and species are being shipped internationally. Many more ornamentals are propagated vegetatively instead of by seed, further contributing to disease spread. These factors have led to global movement of pathogens to countries where they were not formerly known. The emergence of some previously undescribed pathogens has been facilitated by high-throughput sequencing, but biological studies are often lacking, so their roles in economic diseases are not yet known. Case studies of diseases in selected ornamentals discuss the factors involved in their spread, control measures to reduce their economic impact, and some potential effects on agronomic crops. Advances in diagnostic techniques are discussed, and parallels are drawn to the international movement of human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021621-114618
2023-09-05
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021621-114618.html?itemId=/content/journals/10.1146/annurev-phyto-021621-114618&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E et al. 2009. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol. Plant Pathol. 10:4537–45
    [Google Scholar]
  2. 2.
    Adkins S, Hammond J, Gera A, Maroon-Lango CJ, Sobolev I et al. 2006. Biological and molecular characterization of a novel carmovirus isolated from Angelonia. Phytopathology 96:460–67
    [Google Scholar]
  3. 3.
    Ahlawat Y, Sardar K. 1973. Insect and dodder transmission of tea rose yellow mosaic virus. Curr. Sci. 42:181
    [Google Scholar]
  4. 4.
    AIPH 2019. International statistics flowers and plants yearbook 2019, Vol. 67. AIPH. https://aiph.org/latest-news/aiph-and-union-fleurs-publish-international-statistics-flowers-plants-2019-yearbook
    [Google Scholar]
  5. 5.
    Amingad V, Lakshmipathy M. 2014. Ornamental plants and their role in human psychology. Agrotechnology 2:4 Abstr. )
    [Google Scholar]
  6. 6.
    APHIS 2020. Plant protection and quarantine: helping U.S. agriculture thrive—across the country and around the world Fiscal Year 2020 Rep. US Dep. Agric. Washington, DC: https://www.aphis.usda.gov/publications/plant_health/report-ppq-2020.pdf
    [Google Scholar]
  7. 7.
    Arimondo O, Pachino G, Ronco R 2019. L'evoluzione dello scenario florovivaistico internazionale ed il relativo posizionamento dell'Italia e Ponente Ligure. La Floricoltura Mediterranea Verso il Futuro, Vol. 2 O Arimondo, R Ronco, F Gimelli 19–50. Genoa: Regione Liguria
    [Google Scholar]
  8. 8.
    Assis Filho FM, Harness A, Tiffany M, Gera A, Spiegel S, Adkins S 2006. Natural infection of verbena and phlox by a recently described member of the Carmovirus genus. Plant Dis. 90:1115
    [Google Scholar]
  9. 9.
    Babu B, Washburn BK, Miller SH, Poduch K, Sarigul T et al. 2017. A rapid assay for detection of Rose rosette virus using reverse transcription-recombinase polymerase amplification using multiple gene targets. J. Virol. Methods 240:78–84
    [Google Scholar]
  10. 10.
    Bellardi MG, Rubies-Autonell C, Vicchi V. 1996. Virus infections in Surfinia in Italy. Acta Hortic. 432:306–10
    [Google Scholar]
  11. 11.
    Bennett CW. 1952. Origin and distribution of new or little known virus diseases. Plant Dis. Rep. 211:Suppl.43–46
    [Google Scholar]
  12. 12.
    Benson DM, Hall JL, Moorman GW, Daughtrey ML, Chase AR, Lamour KH. 2001. Poinsettia: the Christmas flower. Plant Health Prog. 3:1 https://www.apsnet.org/edcenter/apsnetfeatures/Pages/PoinsettiaFlower.aspx
    [Google Scholar]
  13. 13.
    Bergsma-Vlami M, van de Bilt JLJ, Tjou-Tam-Sin NNA, Westenberg M, Meekes ETM et al. 2019. Phylogenetic assignment of Ralstonia pseudosolanacearum (Ralstonia solanacearum phylotype I) isolated from Rosa spp. Plant Dis. 102:112258–67
    [Google Scholar]
  14. 14.
    Beytes C. 2017. Ralstonia plagues Dutch rose industry. GrowerTalks Jan. 31. https://www.growertalks.com/Article/?articleid=22772
    [Google Scholar]
  15. 15.
    Bos L. 1992. New plant virus problems in developing countries: a corollary of agricultural modernization. Adv. Virus Res. 41:349–407
    [Google Scholar]
  16. 16.
    Bos L 1995. Viruses of ornamentals: historical perspectives. Virus and Virus-Like Diseases of Bulb and Flower Crops G Loebenstein, RH Lawson, AA Brunt 15–22. Chichester, UK: John Wiley & Sons/Balaban
    [Google Scholar]
  17. 17.
    Chakraborty P, Das S, Saha B, Karmakar A, Saha D, Saha A. 2017. Rose rosette virus: an emerging pathogen of garden roses in India. Australas. Plant Pathol. 46:3223–26
    [Google Scholar]
  18. 18.
    Chinestra SC, Curvetto NR, Marinangeli PA. 2015. Production of virus-free plants of Lilium spp. from bulbs obtained in vitro and ex vitro. Sci. Hortic. 194:304–12
    [Google Scholar]
  19. 19.
    Ciuffo M, Pacifico D, Margaria P, Turina M. 2014. A new ilarvirus isolated from Viola × wittrockiana and its detection in pansy germoplasm by qRT-PCR. Arch. Virol. 159:3561–65
    [Google Scholar]
  20. 20.
    Ciuffo M, Testa M, Lenzi R, Turina M 2011. Ranunculus latent virus: a strain of artichoke latent virus or a new macluravirus infecting artichoke?. Arch. Virol. 156:1053–57
    [Google Scholar]
  21. 21.
    Clark MF, Adams AN. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475–83
    [Google Scholar]
  22. 22.
    Cohen J, Sikron N, Shuval S, Gera G. 1999. Susceptibility of vegetatively propagated Petunia to tobamovirus infection and its possible control. HortScience 34:292–93
    [Google Scholar]
  23. 23.
    Conners L. 1941. Twentieth annual report of the Canadian plant report survey, 1940 Rep. Dominion Can. Dept. Agric. Sci. Serv. Ottawa:
    [Google Scholar]
  24. 24.
    Constable F, Chambers G, Penrose L, Daly A, Mackie J et al. 2019. Viroid-infected tomato and Capsicum seed shipments to Australia. Viruses 11:298
    [Google Scholar]
  25. 25.
    Dall D, Penrose L, Daly A, Constable F, Gibbs M. 2019. Prevalences of pospiviroid contamination in large seed lots of tomato and Capsicum, and related seed testing considerations. Viruses 11:111034
    [Google Scholar]
  26. 26.
    Danks C, Barker I. 2000. On-site detection of plant pathogens using lateral-flow devices. EPPO Bull. 30:421–26
    [Google Scholar]
  27. 27.
    Daughtrey ML, Jones RK, Moyer JW, Daub ME, Baker JR. 1997. Tospoviruses strike the greenhouse industry: INSV has become a major pathogen on flower crops. Plant Dis. 81:1220–30
    [Google Scholar]
  28. 28.
    De Avila AC, Dehaan P, Kitajima EW, Kormelink R, Resende RD et al. 1992. Characterization of a distinct isolate of tomato spotted wilt virus (TSWV) from Impatiens sp. in the Netherlands. J. Phytopathol. 134:133–51
    [Google Scholar]
  29. 29.
    Defra 2021. Pest specific plant health response plan: outbreaks of rose rosette virus (RRV) and its vector Phyllocoptes fructiphilus Rep. Dep. Environ. Food Rur. Aff. York, UK: https://planthealthportal.defra.gov.uk/assets/uploads/RRV-contingency-plan-v2022.pdf
    [Google Scholar]
  30. 30.
    Deng L, Deng Q. 2018. The basic roles of indoor plants in human health and comfort. Environ. Sci. Pollut. Res. 25:36087–101
    [Google Scholar]
  31. 31.
    Derks AFLM 1995. Lily. Virus and Virus-Like Diseases of Bulb and Flower Crops G Loebenstein, RH Lawson, AA Brunt 313–21. Chichester, UK: John Wiley & Sons/Balaban
    [Google Scholar]
  32. 32.
    Derrick KS, Brlansky RH. 1976. Assay for viruses and mycoplasmas using serologically specific electron microscopy. Phytopathology 66:815–20
    [Google Scholar]
  33. 33.
    Dodds JA, Morris TJ, Jordan RL. 1984. Plant viral double-stranded RNA. Annu. Rev. Phytopathol. 22:151–68
    [Google Scholar]
  34. 34.
    Duyker E. 2003. Citizen Labillardière. A Naturalist's Life in Revolution and Exploration (1755–1834) Melbourne: Miegunyah Press
    [Google Scholar]
  35. 35.
    EFSA 2011. Scientific opinion on the assessment of the risk of solanaceous pospiviroids for the EU territory and the identification and evaluation of risk management options. EFSA J. 9:82330
    [Google Scholar]
  36. 36.
    EPPO 1992. Certification scheme. Pathogen tested material of Pelargonium. EPPO Bull. 22:285–96
    [Google Scholar]
  37. 37.
    EPPO 2011. New pest records in EPPO member countries: Plantago asiatica mosaic virus (Potexvirus, PlAMV) found on Lilium spp. in the Netherlands EPPO Rep. Serv. 2011/082 Eur. Mediterr. Plant Prot. Organ. Paris:.
    [Google Scholar]
  38. 38.
    EU 2019. Commission Implementing Decision 2019/1739 of 16 October 2019 establishing emergency measures to prevent the introduction into and the spread within the Union of rose rosette virus. Off. J. Eur. Union. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019D1739&from=FR
    [Google Scholar]
  39. 39.
    Faggioli F, Luigi M, De Jonghe KD. 2015. Euphresco final report detection and epidemiology of pospiviroids 2 (DEP 2) Rep. Euphresco https://www.euphresco.net/media/project_reports/dep2_final_report.pdf
    [Google Scholar]
  40. 40.
    FAO 2009. Interception of Angelonia flower break virus (AnFBV) in New South Wales Rep. IPPC Rome: https://www.ippc.int/en/countries/australia/pestreports/2009/04/detection-of-angelonia-flower-break-virus-anfbv-in-new-south-wales/
    [Google Scholar]
  41. 41.
    Fox A. 2020. Reconsidering causal association in plant virology. Plant Pathol. 69:6956–61
    [Google Scholar]
  42. 42.
    Fox A, Harju V, Skelton A, Jackson L, Buxton-Kirk A et al. 2016. First report of Viola white distortion associated virus in Viola tricolor in the United Kingdom. New Dis. Rep. 34:1
    [Google Scholar]
  43. 43.
    Fox A, Mumford RA 2017. Plant viruses and viroids in the United Kingdom: an analysis of first detections and novel discoveries from 1980 to 2014. Virus Res. 241:10–18
    [Google Scholar]
  44. 44.
    Franck A, Loebenstein G 1995. Pelargonium. Virus and Virus-Like Diseases of Bulb and Flower Crops G Loebenstein, RH Lawson, AA Brunt 514–27. Chichester: John Wiley & Sons/Balaban
    [Google Scholar]
  45. 45.
    Gillings MR, Fahy P 1994. Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex. Bacterial Wilt: The Disease and its Causative Agent, Pseudomonas solanacearum AC Hayward, GL Hartman 95–112. Wallingford, UK: CABI
    [Google Scholar]
  46. 46.
    Gobatto D, Chaves ALR, Harakava R, Marque JM, Daròs JA, Eiras M. 2014. Chrysanthemum stunt viroid in Brazil: survey, identification, biological and molecular characterization and detection methods. J. Plant Pathol. 96:111–19
    [Google Scholar]
  47. 47.
    Groth-Helms D, Juszczak S, Adkins S. 2022. First report of Chili pepper mild mottle virus in Calibrachoa in the United States. New Dis. Rep. 46:e12120
    [Google Scholar]
  48. 48.
    Hammond J, Kim IH, Lim HS. 2017. Alternanthera mosaic virus: an alternative ‘model’ potexvirus of broad relevance. Korean J. Agric. Sci. 44:145–80
    [Google Scholar]
  49. 49.
    Hammond J, Reinsel M, Grinstead S, Lockhart B, Jordan R, Mollov D. 2020. A mixed infection of helenium virus S with two distinct isolates of butterbur mosaic virus, one of which has a major deletion in an essential gene. Front. Microbiol. 11:612936
    [Google Scholar]
  50. 50.
    Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65–87
    [Google Scholar]
  51. 51.
    Henderson DC, Reinsel MD, Fischer KF, Hammond J. 2014. First detection of Ligustrum necrotic ringspot virus, cucumber mosaic virus, and Alternanthera mosaic virus in Mazus reptans in the United States. Plant Dis. 98:101446
    [Google Scholar]
  52. 52.
    Hollings M, Stone OM. 1973. Some properties of chrysanthemum stunt, a virus with the characteristics of an uncoated nucleic acid. Ann. Appl. Biol. 74:333–48
    [Google Scholar]
  53. 53.
    Hu WC, Huang CH, Lee SC, Wu CI, Chang YC. 2010. Detection of four calla potyviruses by multiplex RT-PCR using nad5 mRNA as an internal control. Eur. J. Plant Pathol. 126:43–52
    [Google Scholar]
  54. 54.
    Hulme PE. 2020. Plant invasions in New Zealand: global lessons in prevention, eradication and control. Biol. Invasions 22:1539–62
    [Google Scholar]
  55. 55.
    Huttinga H, Mosch WHM, Treur A. 1987. Comparison of bi-directional electrophoresis and molecular hybridization methods to detect potato spindle tuber viroid and chrysanthemum stunt viroid. EPPO Bull. 17:37–43
    [Google Scholar]
  56. 56.
    Janse JD, van den Beld HE, Elphinstone J, Simpkins S, Tjou-Tam-Sin NAA, van Vaerenbergh J. 2004. Introduction to Europe of Ralstonia solanacearum biovar 2, race 3 in Pelargonium zonale cuttings. J. Plant Pathol. 86:147–55
    [Google Scholar]
  57. 57.
    Jia A, Yan C, Yin H, Sun R, Xia F et al. 2021. Small RNA and transcriptome sequencing of a symptomatic peony plant reveals mixed infections with novel viruses. Plant Dis. 105:123816–28
    [Google Scholar]
  58. 58.
    Jordan R, Hammond J. 1991. Comparison and differentiation of potyvirus isolates and identification of strain-, virus-, subgroup-specific and potyvirus group-common epitopes using monoclonal antibodies. J. Gen. Virol. 72:25–36
    [Google Scholar]
  59. 59.
    Jukema GD, Ramaekers P, Berkhout P, eds. 2023. De Nederlandse agrarische sector in internationaal verband—editie 2023 Rapp. 2023-004 Wageningen Econ. Res. Cent. Bur. Stat. Wageningen/Heerlen/Den Haag: https://edepot.wur.nl/584222
    [Google Scholar]
  60. 60.
    Karanfil A. 2021. Prevalence and molecular characterization of Turkish isolates of the rose viruses. Crop Prot. 143:105565
    [Google Scholar]
  61. 61.
    Kausche GA, Pfankuch E, Ruska H. 1939. Die sichtbarmachung von pflanzlichem virus im übermikroskop. Naturwissenschaften 27:292–99
    [Google Scholar]
  62. 62.
    Kawakubo S, Gao F, Li S, Tan Z, Huang YK et al. 2021. Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. PNAS 118:12e2021221118
    [Google Scholar]
  63. 63.
    Kim BS, Ruhl G, Creswell T, Loesch-Fries LS. 2014. Molecular identification of a Tobacco mosaic virus isolate from petunias. Plant Health Prog. 15:4153–54
    [Google Scholar]
  64. 64.
    Kim SH, Olson TN, Schaad NW, Moorman GW. 2003. Ralstonia solanacearum race 3, biovar 2, the causal agent of brown rot of potato, identified in geranium in Pennsylvania, Delaware, and Connecticut. Plant Dis. 87:450
    [Google Scholar]
  65. 65.
    Kirk WJD, Terry LI. 2003. The spread of western flower thrips Frankliniella occidentalis (Pergande). Agric. For. Entomol. 5:301–10
    [Google Scholar]
  66. 66.
    Kitamura K, Ogawa T, Sharma P, Ikegami M. 2008. First report of honeysuckle yellow vein mosaic virus on tomato affected by yellow dwarf disease in Japan. Plant Pathol. 57:391
    [Google Scholar]
  67. 67.
    Komatsu K, Hammond J. 2022. Plantago asiatica mosaic virus: an emerging plant virus causing necrosis in lilies and a new model RNA virus for molecular research. Mol. Plant Pathol. 23:1401–14
    [Google Scholar]
  68. 68.
    Komatsu K, Yamaji Y, Ozeki J, Hashimoto M, Kagiwada S et al. 2008. Nucleotide sequence analysis of seven Japanese isolates of Plantago asiatica mosaic virus (PlAMV): a unique potexvirus with significantly high genomic and biological variability within the species. Arch. Virol. 153:193–98
    [Google Scholar]
  69. 69.
    Lambert CD. 2002. Agricultural Bioterrorism Protection Act of 2002: possession, use, and transfer of biological agents and toxins. Fed. Regist. 67:24076908–38. https://www.federalregister.gov/documents/2005/03/18/05-5063/agricultural-bioterrorism-protection-act-of-2002-possession-use-and-transfer-of-biological-agents
    [Google Scholar]
  70. 70.
    Laney AG, Keller KE, Martin RR, Tzanetakis IE. 2011. A discovery 70 years in the making: characterization of the rose rosette virus. J. Gen. Virol. 92:71727–32
    [Google Scholar]
  71. 71.
    Lee I, Kim YS, Kim JW, Park DH. 2020. Genetic and pathogenic characterization of bacterial wilt pathogen, Ralstonia pseudosolanacearum (Ralstonia solanacearum phylotype I), on roses in Korea. Plant Pathol. J. 36:5440–49
    [Google Scholar]
  72. 72.
    Lesemann D-E. 1996. Viruses recently detected in vegetatively propagated Petunia. Acta Hortic. 432:88–94
    [Google Scholar]
  73. 73.
    Lesnaw JA. 2000. Tulip breaking: past, present, and future. Plant Dis. 84:1052–60
    [Google Scholar]
  74. 74.
    Li B, Yu R, Shi Y, Su T, Wang F et al. 2011. Reclassification of Xanthomonas isolates causing bacterial leaf spot of Euphorbia pulcherrima. Plant Pathol. J. 27:4360–66
    [Google Scholar]
  75. 75.
    Liao R, Chen Q, Zhang S, Cao M, Zhou C. 2021. Complete genome sequence of camellia virus A, a tentative new member of the genus Waikavirus. Arch. Virol. 166:3207–10
    [Google Scholar]
  76. 76.
    Lipkin WI. 2010. Microbe hunting. Microbiol. Mol. Biol. Rev. 74:363–77
    [Google Scholar]
  77. 77.
    Lisa V, Vaira AM, Milne RG, Luisoni E, Rapetti S. 1990. Tomato spotted wilt in cinque specie coltivate in Liguria. Inf. Fitopatol. 40:34–41
    [Google Scholar]
  78. 78.
    Lu M, Han Z, Xu Y, Yao L. 2013. In vitro and in vivo anti-tobacco mosaic virus activities of essential oils and individual compounds. J. Microbiol. Biotechnol. 23:6771–78
    [Google Scholar]
  79. 79.
    Malter AJ 1995. The economic importance of ornamentals. Virus and Virus-Like Diseases of Bulb and Flower Crops G Loebenstein, RH Lawson, AA Brunt 1–13. Chichester, UK: John Wiley & Sons/Balaban
    [Google Scholar]
  80. 80.
    Massart S, Candresse T, Gil J, Lacomme C, Predajna L et al. 2017. A framework for the evaluation of biosecurity, commercial, regulatory, and scientific impacts of plant viruses and viroids identified by NGS technologies. Front. Microbiol. 8:45
    [Google Scholar]
  81. 81.
    Mathews DM, Dodds JA. 2008. First report of Angelonia flower break virus in Nemesia spp. and other ornamental plants in California. Plant Dis. 92:4651
    [Google Scholar]
  82. 82.
    Maule AJ, Hull R, Donson J. 1983. The application of spot hybridization to the detection of DNA and RNA viruses in plant tissues. J. Virol. Methods 6:215–24
    [Google Scholar]
  83. 83.
    McKenny-Hughes AW. 1931. Aphids as vectors of breaking in tulips. Ann. Appl. Biol. 28:16–29
    [Google Scholar]
  84. 84.
    Meekes ETM, Hooftman M, Koenen BS, Westerhof J, Ebskamp M. 2014. Genetic variance of Xanthomonas spp. in Begonia, Pelargonium and poinsettia. Phytopathology 104:1178 Abstr. )
    [Google Scholar]
  85. 85.
    Menzel W, Winter S, Hamacher J, Heupel M. 2019. First report of Bell pepper mottle virus infecting Calibrachoa in Germany. New Dis. Rep. 39:15
    [Google Scholar]
  86. 86.
    Meshi T, Motoyoshi F, Maeda T, Yoshiwoka S, Watanabe H, Okada Y. 1989. Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. Plant Cell 1:515–22
    [Google Scholar]
  87. 87.
    Milbrath JA, McWhorter FR. 1946. Yellow mottle leaf, a virus disease of Camellia. Am. Camellia Soc. Yearb. 1946:51–53
    [Google Scholar]
  88. 88.
    Miličić D. 1989. Camellia japonica L. and C. sasanqua Thunb., two hosts of Camellia leaf yellow mottle virus. Acta Bot. Croatica 48:1–9
    [Google Scholar]
  89. 89.
    Milne RG, Luisoni E. 1975. Rapid high-resolution immune electron microscopy of plant viruses. Virology 68:270–74
    [Google Scholar]
  90. 90.
    Minist. Prim. Ind. 2021. Import health standard: nursery stock Rep. 155.02.06 N.Z. Gov. Wellington: https://www.mpi.govt.nz/dmsdocument/1152-Nursery-Stock-Import-Health-Standard
    [Google Scholar]
  91. 91.
    Minist. Prim. Ind. 2021. Import health standard: seed for sowing Rep. 155.02.05 N.Z. Gov. Wellington: https://www.mpi.govt.nz/dmsdocument/1151-Seeds-for-Sowing-Import-Health-Standard
    [Google Scholar]
  92. 92.
    Monger WA. 2018. Dahlia latent viroid and Potato spindle tuber viroid in Dahlia plants in the UK. New Dis. Rep. 38:18
    [Google Scholar]
  93. 93.
    Naktuinbouwnieuws 2004.. [‘ Drift’ in tobamovirus in Petunia. ]. Naktuinbouwnieuws 17:5 in Dutch )
    [Google Scholar]
  94. 94.
    NAPPO 2020. Ralstonia solanacearum race 3 biovar 2 (Rs R3bv2) eradicated from Canadian greenhouses Phytosanit. Alert Syst. Rep. N. Am. Plant Prot. Organ. https://www.pestalerts.org/official-pest-report/ralstonia-solanacearum-race-3-biovar-2-rsr3bv2-eradicated-canadian
    [Google Scholar]
  95. 95.
    NASS 2021. Potatoes: 2020 summary, September 2021 Natl. Agric. Stat. Serv., US Dep. Agric. Washington, DC: https://downloads.usda.library.cornell.edu/usda-esmis/files/fx719m44h/f7624b72t/db78vc14v/pots0921.pdf
    [Google Scholar]
  96. 96.
    Norman DJ, Huang Q, Yuen JMF, Mangravita-Novo A, Byrne D. 2009. Susceptibility of geranium cultivars to Ralstonia solanacearum. HortScience 44:1504–8
    [Google Scholar]
  97. 97.
    Ogawa T, Sharma P, Ikegami M. 2008. The begomoviruses honeysuckle yellow vein mosaic virus and tobacco leaf curl Japan virus with DNAβ satellites cause yellow dwarf disease of tomato. Virus Res. 137:235–44
    [Google Scholar]
  98. 98.
    Oglevee-O'Donovan W 1986. Production of culture virus-indexed geraniums. Tissue Culture as a Plant Production System for Horticultural Crops RH Zimmerman, RJ Griesbach, FA Hammerschlag, RH Lawson 119–23. Dordrecht, Neth: Springer
    [Google Scholar]
  99. 99.
    Ozeki J, Takahashi S, Komatsu K, Kagiwada S, Yamashita K et al. 2006. A single amino acid in the RNA-dependent RNA polymerase of Plantago asiatica mosaic virus contributes to systemic necrosis. Arch. Virol. 151:2067–75
    [Google Scholar]
  100. 100.
    Parkinson N, Cowie C, Heeney J, Stead D. 2009. Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. Int. J. Syst. Evol. Microbiol. 59:264–74
    [Google Scholar]
  101. 101.
    Pearson MN, Clover GRG, Guy PL, Fletcher JD, Beever RE. 2006. A review of the plant virus, viroid and mollicute records for New Zealand. Australas. Plant Pathol. 35:217–52
    [Google Scholar]
  102. 102.
    Peracchio C, Forgia M, Chiapello M, Vallino M, Turina M, Ciuffo M. 2020. A complex virome including two distinct emaraviruses associated with virus-like symptoms in Camellia japonica. Virus Res. 286:197964
    [Google Scholar]
  103. 103.
    Purdy HA. 1929. Immunologic reactions with tobacco mosaic virus. J. Exp. Med. 49:919–35
    [Google Scholar]
  104. 104.
    Rabobank 2016. 2016 world floriculture map Rabobank Utrecht, Neth.: https://research.rabobank.com/far/en/sectors/regional-food-agri/world_floriculture_map_2016.html
    [Google Scholar]
  105. 105.
    Rabobank 2021. 2021 world floriculture map Rabobank Utrecht, Neth.: https://research.rabobank.com/far/en/documents/175926_Rabobank_Flower-Map-2021_20211230.pdf
    [Google Scholar]
  106. 106.
    Ratnayake I. 2016. The experiences of New Zealand floriculture export producers in the changing international market: What can be done to strengthen the sector's capabilities? Master's Thesis Auckland Univ. Technol New Zealand:
    [Google Scholar]
  107. 107.
    Restuccia P, Mancini G, Bertaccini A, Bellardi MG. 2011. Recent findings of viruses infecting Ranunculus hybrids in Liguria (Italy). Acta Hortic. 901:113–17
    [Google Scholar]
  108. 108.
    Sabanadzovic S, Ghanem-Sabanadzovic NA, Henn A, Lawrence A. 2008. Characterization of a petunia strain of turnip vein-clearing virus. J. Plant Pathol. 90:505–9
    [Google Scholar]
  109. 109.
    Sacco E, Borghi C, Rabaglio M, Lenzi R, Ciuffo M et al. 2018. RT-PCR tests for sensitive detection of the major Ranunculus-infecting viruses: field and in vitro applications. Plant Pathol. 67:1967–76
    [Google Scholar]
  110. 110.
    Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, Kappler U. 2014. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol. 64:3087–103
    [Google Scholar]
  111. 111.
    Shaffer C, Michener DC, Vlasava N, Botermans M, Starre J, Tzanetakis IE. 2022. First report of Gentian Kobu-sho-associated virus infecting peony in the United States and the Netherlands. Plant Dis. 106:41311
    [Google Scholar]
  112. 112.
    Simmons HE, Ruchti TB, Munkvold GP. 2015. Frequencies of seed infection and transmission to seedlings by potato spindle tuber viroid (a pospiviroid) in tomato. J. Plant Pathol. Microbiol. 6:61000275
    [Google Scholar]
  113. 113.
    Singh AK, Hallan V, Verma N, Zaidi AA. 2004. Natural occurrence of lily symptomless virus on spider lily. Plant Pathol. 54:255
    [Google Scholar]
  114. 114.
    Skelton A, Buxton-Kirk A, Fowkes A, Harju V, Forde S et al. 2019. Potato spindle tuber viroid detected in seed of uncultivated Solanum anguivi, S. coagulans and S. dasyphyllum collected from Ghana, Kenya and Uganda. New Dis. Rep. 39:123
    [Google Scholar]
  115. 115.
    Sleegers J. 2020. De beginjaren van de sierteelt [The early years of floriculture]. Vakbl. Bloemist. 2020:122
    [Google Scholar]
  116. 116.
    Smith KM. 1933. The present status of virus research. Biol. Rev. 8:136–79
    [Google Scholar]
  117. 117.
    Stankovic I, Zecevic K, Vučurović A, Petrović B, Delibašić G et al. 2021. First report of viola white distortion associated virus on pansy violets (Viola x wittrockiana) in Serbia. J. Plant Pathol. 103:2679–80
    [Google Scholar]
  118. 118.
    Stat. Neth. 2021. Open data statistics Netherlands situation. Rep. StatLine Amsterdam: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/81302ned/table?dl=3C363
    [Google Scholar]
  119. 119.
    Stat. N. Z 2020. Overseas merchandise trade data sets Rep. Stat. N. Z. Wellington: https://www.stats.govt.nz/large-datasets/csv-files-for-download/overseas-merchandise-trade-datasets#yearly-datasets-of
    [Google Scholar]
  120. 120.
    Stravato VM, Carannante G, Scortichini M. 2004. Occurrence of Xanthomonas axonopodis pv. poinsettiicola on Euphorbia pulcherrima in Italy. J. Plant Pathol. 86:2177
    [Google Scholar]
  121. 121.
    Stulberg MJ, Shao J, Huang Q. 2015. A multiplex PCR assay to detect and differentiate select agent strains of Ralstonia solanacearum. Plant Dis. 99:333–41
    [Google Scholar]
  122. 122.
    Swanson JK, Montes L, Mejia L, Allen C. 2007. Detection of latent infections of Ralstonia solanacearum race 3 biovar 2 in geranium. Plant Dis. 91:828–34
    [Google Scholar]
  123. 123.
    Taghavi M, Hayward C, Sly LI, Fegan M. 1996. Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 46:110–15
    [Google Scholar]
  124. 124.
    Tammen J. 1960. Disease-free geraniums from cultured cuttings. Pa. Flower Grow. Bull. 117:1, 6–9
    [Google Scholar]
  125. 125.
    Tang J, Ward L, Delmiglio C. 2020. Occurrence of Cycas necrotic stunt virus in Paeonia lactiflora in New Zealand. Plant Dis. 104:5
    [Google Scholar]
  126. 126.
    Thomas E, Scott C. 1953. Rosette of rose. Phytopathology 43:218–19
    [Google Scholar]
  127. 127.
    Tjou-Tam-Sin NNA, van de Bilt JLJ, Westenberg M, Gorkink-Smits PPMA, Landman NM, Bergsma-Vlami M. 2017. Assessing the pathogenic ability of Ralstonia pseudosolanacearum (Ralstonia solanacearum phylotype I) from ornamental Rosa spp. plants. Front. Plant Sci. 8:1895
    [Google Scholar]
  128. 128.
    Tjou-Tam-Sin NNA, van de Bilt JLJ, Westenberg M, Korpershoek HJ, Vermunt AMW et al. 2017. First report of bacterial wilt caused by Ralstonia solanacearum in ornamental Rosa sp. Plant Dis. 101:378
    [Google Scholar]
  129. 129.
    Tsushima D, Nishimura M, Toda T, Furuya H, Fuji S. 2019. Molecular characterization and eradication of new potato spindle tuber viroid isolates from dahlia plants in Japan. Eur. J. Plant Pathol. 154:1091–102
    [Google Scholar]
  130. 130.
    Turina M, Ciuffo M, Lenzi R, Rostagno L, Mela L et al. 2006. Characterization of four viral species belonging to the family Potyviridae isolated from Ranunculus asiaticus. Phytopathology 96:560–66
    [Google Scholar]
  131. 131.
    Turina M, Tavella L, Ciuffo M. 2012. Tospoviruses in the Mediterranean area. Adv. Virus Res. 84:403–37
    [Google Scholar]
  132. 132.
    Vaira A, Accotto G, Costantini A, Milne R. 2003. The partial sequence of RNA 1 of the ophiovirus Ranunculus white mottle virus indicates its relationship to rhabdoviruses and provides candidate primers for an ophiovirus-specific RT-PCR test. Arch. Virol. 148:1037–50
    [Google Scholar]
  133. 133.
    Vaira A, Roggero P, Luisoni E, Masenga V, Milne R, Lisa V. 1993. Characterization of 2 tospoviruses in Italy: tomato spotted wilt and impatiens necrotic spot. Plant Pathol. 42:530–42
    [Google Scholar]
  134. 134.
    Valverde RA, Sabanadzovic S, Hammond J. 2012. Viruses that enhance the aesthetics of some ornamental plants: beauty or beast?. Plant Dis. 96:600–11
    [Google Scholar]
  135. 135.
    van Horen L. 2022. A mixed bouquet of developments in horticulture Rep. Rabobank Utrecht, Neth.: https://research.rabobank.com/far/en/documents/179560_Rabobank_A-Mixed-Bouquet-of-Developments-World-Floriculture-Map-2021_vanHoren_January2022.pdf
    [Google Scholar]
  136. 136.
    van Regenmortel MH. 1982. Serology and Immunochemistry of Plant Viruses New York: Academic
    [Google Scholar]
  137. 137.
    van Slogteren DHM. 1976. A single immunodiffusion drop test for the detection of lily symptomless virus. Ann. Appl. Biol. 82:91–95
    [Google Scholar]
  138. 138.
    van Tuyl J, Arens P, Miller W, Anderson N 2014. The role of ornamentals in human life. Horticulture: Plants for People and Places, Vol. 1 G Dixon, D Aldous 407–33. Dordrecht, Neth.: Springer
    [Google Scholar]
  139. 139.
    Vazquez-Iglesias I, Ochoa-Corona FM, Tang J, Robinson R, Clover GRG et al. 2020. Facing Rose rosette virus: a risk to European rose cultivation. Plant Pathol. 69:1603–17
    [Google Scholar]
  140. 140.
    Veerakone S, Tang J, Perez-Egusquiza Z, Liefting LW, Khanchiraopally D et al. 2021. New records for viruses, viroids and liberibacters from New Zealand: update 2016–2021 E-poster presented at the Australasian Plant Pathology Society Biennial Conference Nov 23–26
    [Google Scholar]
  141. 141.
    Veerakone S, Tang JZ, Ward LI, Liefting LW, Perez-Egusquiza Z et al. 2015. A review of the plant virus, viroid, phytoplasma and liberibacter records for New Zealand. Australas. Plant Pathol. 44:463–514
    [Google Scholar]
  142. 142.
    Verhoeven JTJ, Botermans M, Schoen R, Koenraadt H, Roenhorst JW. 2021. Possible overestimation of seed transmission in the spread of pospiviroids in commercial pepper and tomato crops based on large-scale grow-out trials and systematic literature review. Plants 10:1707
    [Google Scholar]
  143. 143.
    Verhoeven JTJ, Hammond RW, Stancanelli G 2017. Economic significance of viroids in ornamental crops. Viroids and Satellites A Hadidi, R Flores, JW Randles, P Palukaitis 27–38. London: Academic
    [Google Scholar]
  144. 144.
    Verhoeven JTJ, Koenraadt HMS, Jodlowska A, Hüner L, Roenhorst JW. 2020. Pospiviroid infections in Capsicum annuum: disease symptoms and lack of seed transmission. Eur. J. Plant Pathol. 156:121–29
    [Google Scholar]
  145. 145.
    Verhoeven JTJ, Westenberg M, Van Ede EPM, Visser K, Roenhorst JW. 2016. Identification and eradication of potato spindle tuber viroid in dahlia in the Netherlands. Eur. J. Plant Pathol. 146:2443–47
    [Google Scholar]
  146. 146.
    Vidal AK, Camps R, Besoain X. 2016. First report of necrotic streaking of Asiatic lilies caused by Plantago asiatica mosaic virus in Chile. Plant Dis. 100:1799
    [Google Scholar]
  147. 147.
    Wang Y, Ji J, Oh T, Oh S, Kim S et al. 2011. Occurrence of honeysuckle yellow vein virus (HYVV) containing a monopartite DNA-A genome in Korea. Eur. J. Plant Pathol. 129:361–70
    [Google Scholar]
  148. 148.
    Wassilieff M. 2008. Market gardens and production nurseries: industry structure. Te Ara - The Encyclopedia of New Zealand http://www.TeAra.govt.nz/en/market-gardens-and-production-nurseries/page-8
    [Google Scholar]
  149. 149.
    Williamson L, Nakaho K, Hudelson B, Allen C. 2002. Ralstonia solanacearum race 3, biovar 2 strains isolated from geranium are pathogenic on potato. Plant Dis. 86:987–91
    [Google Scholar]
  150. 150.
    Winter S, Hamacher A, Engelmann J, Lesemann DE. 2006. Angelonia flower mottle, a new disease of Angelonia angustifolia caused by a hitherto unknown carmovirus. Plant Pathol. 55:820
    [Google Scholar]
  151. 151.
    Zhang S, Yang L, Ma L, Tian X, Li R et al. 2020. Virome of Camellia japonica: discovery of and molecular characterization of new viruses of different taxa in camellias. Front. Microbiol. 11:945
    [Google Scholar]
  152. 152.
    Zhao B, Yang D, Zhang Y, Xu Y, Zhao X. 2018. Rapid visual detection of lily mottle virus using a loop-mediated isothermal amplification method. Arch. Virol. 163:545–48
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021621-114618
Loading
/content/journals/10.1146/annurev-phyto-021621-114618
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error